Changes in Phyllosphere Microbial Communities of Pinus tabuliformis after Infestation by Bursaphelenchus xylophilus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Sample Collection
2.3. Determination of Leaf Characteristics
2.4. DNA Extraction, Amplification of the 16S rDNA Region, and Illumina MiSeq Sequencing
2.5. Bioinformatics and Statistical Analysis
3. Results
3.1. Leaf Characteristics between Diseased and Healthy Trees
3.2. Phyllosphere Microbial Community Diversity between Healthy and Diseased Trees
3.3. Phyllosphere Microbial Community Composition between Healthy and Diseased Trees
3.4. Bacterial and Fungal Co-Occurrence Networks, as Affected by Bursaphelenchus xylophilus Infection
3.5. Linking Leaf Characteristics and Phyllosphere Microorganisms
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Yang, H.; Wang, D.; Zhao, Z. Spatial distribution and growth association of regeneration in gaps of Chinese pine (Pinus tabuliformis Carr.) plantation in northern China. Forest Ecol. Manag. 2019, 432, 387–399. [Google Scholar] [CrossRef]
- Kim, N.; Jeon, H.W.; Mannaa, M.; Jeong, S.I.; Kim, K.J.; Lee, C.; Park, A.R.; Kim, J.C.; Seo, Y.S. Induction of resistance against pine wilt disease caused by Bursaphelenchus xylophilus using selected pine endophytic bacteria. Plant Pathol. 2018, 68, 434–444. [Google Scholar] [CrossRef]
- Futai, K. Pine wood nematode, Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 2013, 51, 61–83. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, H.; Ding, X.; Wang, L.; Wang, X.; Chen, F. The detection of pine wilt disease: A literature review. Int. J. Mol. Sci. 2022, 23, 10797. [Google Scholar] [CrossRef]
- Soliman, T.; Mourits, M.C.M.; van der Werf, W.; Hengeveld, G.M.; Robinet, C.; Lansink, G.M. Framework for Modelling Economic Impacts of Invasive Species, Applied to Pine Wood Nematode in Europe. PLoS ONE 2012, 7, e45505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Ye, J.; Negi, S.; Xu, X.; Wang, Z.; Ji, J. Pathogenicity of aseptic Bursaphelenchus xylophilus. PLoS ONE 2012, 7, e38095. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Wu, X.; Huang, L.; Ye, J. Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus. Int. J. Mol. Sci. 2016, 17, 125. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Chen, F.; Xie, L.Y.; Pan, H.Y.; Ye, J.R. Genetic diversity of pine–parasitic nematodes Bursaphelenchus xylophilus and Bursaphelenchus mucronatus in China. Forest Pathol. 2017, 47, 4. [Google Scholar] [CrossRef]
- Liu, K.; Ben, A.; Han, Z.; Guo, Y.; Cao, D. Interspecific hybridization between Bursaphelenchus xylophilus and Bursaphelenchus mucronatus. J. For. Res. 2019, 30, 699–707. [Google Scholar] [CrossRef]
- Kawai, M.; Shoda-Kagaya, E.; Maehara, T.; Zhou, Z.; Lian, C.; Iwata, R.; Yamane, A.; Hogetsu, T. Genetic Structure of Pine Sawyer Monochamus alternatus (Coleoptera: Cerambycidae) Populations in Northeast Asia: Consequences of the Spread of Pine Wilt Disease. Environ. Entomol. 2006, 35, 569–579. [Google Scholar] [CrossRef]
- Liu, H.; Brettell, L.E.; Qiu, Z.; Singh, B.K. Microbiome-mediated stress resistance in plants. Trends Plant Sci. 2020, 25, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Douanla-Meli, C.; Langer, E.; Mouafo, F.T. Fungal endophyte diversity and community patterns in healthy and yellowing leaves of Citrus limon. Fungal Ecol. 2013, 6, 212–222. [Google Scholar] [CrossRef]
- Tian, B.; Cao, Y.; Zhang, K. Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci. Rep. 2015, 5, 17087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vives-Peris, V.; Molina, L.; Segura, A.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. Root exudates from citrus plants subjected to abiotic stress conditions have a positive effect on rhizobacteria. J. Plant Physiol. 2018, 228, 208–217. [Google Scholar] [CrossRef]
- Cheng, X.; Cheng, F.; Xu, R.; Xie, B. Genetic variation in the invasive process of Bursaphelenchus xylophilus (Aphelenchida: Aphelenchoididae) and its possible spread routes in China. Heredity 2008, 100, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Xu, L.; Zhou, F.; Wang, B.; Wang, S.; Lu, M.; Sun, J. Gut Bacterial Communities of Dendroctonus valens and Monoterpenes and Carbohydrates of Pinus tabuliformis at Different Attack Densities to Host Pines. Front. Microbiol. 2018, 9, 1251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, D.; Liu, Y.; Li, S.; Shen, Q.; Zhang, R. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 2014, 374, 689–700. [Google Scholar] [CrossRef]
- Hayat, S.; Faraz, A.; Faizan, M. Root Exudates: Composition and Impact on Plant–Microbe Interaction. In Biofilms in Plant and Soil Health; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Yadav, R.K.; Karamanoli, K.; Vokou, D. Bacterial colonization of the phyllosphere of mediterranean perennial species as influenced by leaf structural and chemical features. Microb. Ecol. 2005, 50, 185–196. [Google Scholar] [CrossRef]
- Kembel, S.W.; O’Connor, T.K.; Arnold, H.K.; Hubbell, S.P.; Wright, S.J.; Green, J.L. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. USA 2014, 111, 13715–13720. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Nomura, K.; Wang, X.; Sohrabi, R.; Xu, J.; Yao, L.; Paasch, B.C.; Ma, L.; Kremer, J.; Cheng, Y.; et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 2020, 580, 653–657. [Google Scholar] [CrossRef]
- Lexeau, J.H. A brief from the leaf: Latest research to inform our under-standing of the phyllosphere microbiome. Curr. Opin. Microbiol. 2019, 49, 41–49. [Google Scholar] [CrossRef]
- Helfrich, E.J.N.; Vogel, C.M.; Ueoka, R.; Schäfer, M.; Ryffel, F.; Müller, D.B.; Probst, S.; Kreuzer, M.; Piel, J.; Vorholt, J.A. Bipartite inter-actions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat. Microbiol. 2018, 3, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Getzke, F.; Thiergart, T.; Hacquard, S. Contribution of bacterial-fungal balance to plant and animal health. Curr. Opin. Microbiol. 2019, 49, 66–72. [Google Scholar] [CrossRef]
- Carrion, V.; Jaramillo, J.E.P.; Cordovez, V.; Tracanna, V.; de Hollander, M.; Ruiz-Buck, D.; Mendes, L.W.; van Ijcken, W.F.J.; Gomez-Exposito, R.; Elsayed, S.S.; et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 2019, 366, 606–612. [Google Scholar] [CrossRef]
- Yin, C.; Vargas, J.M.C.; Schlatter, D.C.; Hagerty, C.H.; Hulbert, S.H.; Paulitz, T.C. Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome 2021, 9, 86. [Google Scholar] [CrossRef]
- Sang, M.K.; Kim, K.D. Plant growth-promoting rhizobacteria suppressive to Phytophthora blight affect microbial activities and communities in the rhizosphere of pepper (Capsicum annuum L.) in the field. Appl. Soil Ecol. 2012, 62, 88–97. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, Y.; Luo, F.; He, Z.; Yang, Y. Phylogenetic Molecular Ecological Network of Soil Microbial Communities in Response to Elevated CO2. mBio 2011, 2, e00122-11. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Wang, C.; Xu, X.; Huang, B.; Wu, L.; Yang, D. Comparison of bacterial communities in soil between nematode-infected and nematode-uninfected Pinus massoniana pinewood forest. Appl. Soil Ecol. 2015, 85, 11–20. [Google Scholar] [CrossRef]
- Tóth, Á. Bursaphelenchus xylophilus, the pinewood nematode: Its significance and a historical review. Acta Biologica Szegediensis 2011, 55, 213–217. [Google Scholar]
- Deckers, J.A.; Driessen, P.M.; Nachtergaele, F.; Spaargaren, O. The world reference base for soil resources. In Soils of Tropical Forest Ecosystems Characteristics Ecology and Management; Spinger: Berlin/Heidelberg, Germany, 2016; Volume 41, pp. 21–28. [Google Scholar]
- Millberg, H.; Boberg, J.; Stenlid, J. Changes in fungal community of Scots pine (Pinus sylvestris) needles along a latitudinal gradient in Sweden. Fung. Ecol. 2015, 17, 126–139. [Google Scholar] [CrossRef]
- Kikuchi, T.; Aikawa, T.; Oeda, Y.; Karim, N.; Kanzaki, N. A Rapid and Precise Diagnostic Method for Detecting the Pinewood Nematode Bursaphelenchus xylophilus by Loop-Mediated Isothermal Amplification. Phytopathology 2009, 99, 1365–1369. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Zhu, C.W.; Alam, M.S.; Tokida, T.; Sakai, H.; Nakamura, H.; Usui, Y.; Zhu, J.G.; Hasegawa, T.; Jia, Z.J. Response of soil, leaf endosphere and phyllosphere bacterial communities to elevated CO2 and soil temperature in a rice paddy. Plant Soil 2015, 392, 27–44. [Google Scholar] [CrossRef]
- Liu, J.; Ding, C.; Zhang, W.; Wei, Y.; Zhou, Y.; Zhu, W. Litter mixing promoted decomposition rate through increasing diversities of phyllosphere microbial communities. Front. Microbiol. 2022, 13, 1009091. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M.; et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [CrossRef] [Green Version]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Cordovez, V.; Dini-Andreote, F.; Carrión, V.J.; Raaijmakers, J.M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 2019, 73, 69–88. [Google Scholar] [CrossRef]
- Kwak, M.; Kong, H.G.; Choi, K.; Kwon, S.; Song, J.Y.; Lee, J.; Lee, P.A.; Choi, S.Y.; Seo, M.; Lee, H.J.; et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 2018, 36, 1100–1109. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; van Themaat, E.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, G.; Coaker, G.L.; Leveau, J.H.J. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol. Lett. 2013, 348, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jayakumar, J.; Ramakrishnan, S. Evaluation of Avermectin and its Combination with Nematicide and Bioagents against Root Knot Nematode, Meloidogyne incognita in Tomato. J. Biol. Control 2009, 23, 317–319. [Google Scholar] [CrossRef]
- Anter, A.; Amin, A.; Ashoub, A.; El-Nuby, A. Evaluation of some rhizobacteria as induce systemic resistance or biocontrol agents in controlling root-knot nematode, Meloidogyne incognita on tomato. Egypt. J. Agronematol. 2014, 13, 107–123. [Google Scholar] [CrossRef]
- Siddique, S.; Syed, Q.; Adnan, A.; Qureshi, F.A. Solation, Characterization and Selection of Avermectin-Producing Streptomyces avermitilis Strains from Soil Samples. Jundishapur J. Microbiol. 2014, 7, e10366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Mota, M.; Vieira, P.; Buycher, R.A.; Sun, J. Interspecific communication between pinewood nematode, its insect vector, and associated microbes. Trends Parasitol. 2014, 30, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Proença, D.N.; Grass, G.; Morais, P.V. Understanding pine wilt disease: Roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode. Microbiologyopen 2017, 6, e00415. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Wu, X.; Zhou, A. Bacterial Diversity and Community Structure in the Pine Wood Nematode Bursaphelenchus xylophilus and B. mucronatus with Different Virulence by High-Throughput Sequencing of the 16S rDNA. PLoS ONE 2015, 10, e0137386. [Google Scholar] [CrossRef]
- Proença, D.; Francisco, R.; Santos, C.V.; Lopes, A.; Fonseca, L.; Abrantes, I.M.O.; Morais, P.V. Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease. PLoS ONE 2010, 5, e15191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millet, Y.A.; Danna, C.H.; Clay, N.K.; Songnuan, W.; Simon, M.D.; Werck-Reichhart, D.; Ausubel, F.M. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 2010, 22, 973–990. [Google Scholar] [CrossRef] [Green Version]
- Zdouc, M.M.; Iorio, M.; Maffioli, S.I.; Crüsemann, M.; Donadio, S.; Sosio, M. Planomonospora: A Metabolomics Perspective on an Underexplored Actinobacteria Genus. J. Nat. Prod. 2021, 84, 204–219. [Google Scholar] [CrossRef]
- Alexander, A.; Singh, V.K.; Mishra, A. Overexpression of differentially expressed AhCytb6 gene during plant-microbe interaction improves tolerance to N2 deficit and salt stress in transgenic tobacco. Sci. Rep. 2021, 11, 13435. [Google Scholar] [CrossRef]
- Innerebner, G.; Knief, C.; Vorholt, J.A. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 2011, 77, 3202–3210. [Google Scholar] [CrossRef]
- Mendes, L.W.; Raaijmakers, J.M.; de Hollander, M.; Mendes, R.; Tsai, S.M. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J. 2018, 12, 212–224. [Google Scholar] [CrossRef] [Green Version]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Gu, Y.; Friman, V.; Kowalchuk, G.A.; Xu, Y.; Shen, Q.; Jousset, A. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 2019, 5, eaaw0759. [Google Scholar] [CrossRef] [Green Version]
- Remus-Emsermann, M.N.P.; Schlechter, R.O. Phyllosphere microbiology: At the interface between microbial individuals and the plant host. New Phytol. 2018, 218, 1327–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tukey, J.H.B. The Leaching of Substances from Plants. Annu. Rev. Plant. Physiol. 1970, 21, 305–324. [Google Scholar] [CrossRef]
- Laforest-Lapointe, I.; Messier, C.; Kembel, S.W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 2016, 4, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delmotte, N.; Knief, C.; Chaffron, S.; Innerebner, G.; Roschitzki, B.; Schlapbach, R.; von Meing, C.; Vorholt, J.A. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. PNAS 2009, 106, 16428–16433. [Google Scholar] [CrossRef] [Green Version]
- van der Wal, A.; Leveau, J.H.L. Modelling sugar diffusion across plant leaf cuticles: The effect of free water on substrate availability to phyllosphere bacteria. Environ. Micrbiol. 2011, 13, 792–797. [Google Scholar] [CrossRef]
TC (g·kg−1) | TN (g·kg−1) | C/N | Soluble Sugar (mg·g−1) | Starch (mg·g−1) | |
---|---|---|---|---|---|
Ya | 17.71 ± 0.77 a | 554.31 ± 11.49 a | 31.52 ± 1.36 a | 83.97 ± 3.58 a | 65.85 ± 4.40 a |
Yb | 17.39 ± 0.48 a | 545.56 ± 1.24 ab | 31.47 ± 0.85 a | 65.27 ± 1.95 b | 41.93 ± 5.83 b |
Yc | 16.94 ± 0.73 a | 532.81 ± 2.71 b | 31.70 ± 1.49 a | 45.20 ± 2.37 c | 35.05 ± 3.28 b |
F value | 0.32 | 2.49 | 0.01 | 50.82 | 12.24 |
p value | 0.73 | 0.12 | 0.99 | <0.01 | <0.01 |
Phyllosphere Bacterial Community Diversity | Ya | Yb | Yc | F | p |
---|---|---|---|---|---|
Chao 1 index | 1783.20 ± 683.14 b | 2842.11 ± 388.24 a | 3254.42 ± 268.42 a | 12.53 | <0.01 |
Good’s coverage | 0.995 ± 0.002 a | 0.992 ± 0.001 b | 0.991 ± 0.001 b | 15.67 | <0.01 |
Observed species | 1636.98 ± 644.96 b | 2527.68 ± 396.60 a | 2972.96 ± 272.61 a | 10.72 | <0.01 |
Pielou e index | 0.59 ± 0.10 a | 0.65 ± 0.06 a | 0.68 ± 0.06 a | 1.78 | 0.21 |
Shannon index | 6.33 ± 1.33 b | 7.34 ± 0.74 ab | 7.85 ± 0.73 a | 3.15 | 0.08 |
Simpson index | 0.940 ± 0.051 a | 0.962 ± 0.030 a | 0.958 ± 0.043 a | 0.36 | 0.71 |
Phyllosphere Fungal Community Diversity | Ya | Yb | Yc | F | p |
Chao 1 index | 232.72 ± 45.25 b | 427.15 ± 90.10 a | 357.30 ± 9.34 a | 14.19 | <0.01 |
Good’s coverage | 0.9996 ± 0.0002 a | 0.9996 ± 0.0004 a | 0.9995 ± 0.0001 a | 0.38 | 0.69 |
Observed species | 226.50 ± 43.44 b | 418.90 ± 80.75 a | 348.32 ± 9.81 a | 16.71 | <0.01 |
Pielou e index | 0.50 ± 0.09 b | 0.66 ± 0.02 a | 0.61 ± 0.04 a | 10.56 | <0.01 |
Shannon index | 3.93 ± 0.79 b | 5.77 ± 0.35 a | 5.12 ± 0.36 a | 15.03 | <0.01 |
Simpson index | 0.85 ± 0.09 b | 0.94 ± 0.02 a | 0.92 ± 0.02 ab | 4.15 | 0.04 |
Bacteria | Soluble Sugar | Starch | TC | TN | C/N |
---|---|---|---|---|---|
Chao 1 index | −0.86 ** | −0.55 * | 0.05 | −0.42 | −0.19 |
Good’s coverage | 0.81 ** | 0.52 * | −0.06 | 0.28 | 0.21 |
Observed species | −0.83 ** | −0.50 | 0.01 | −0.44 | −0.18 |
Pielou e index | −0.49 | −0.40 | 0.11 | −0.30 | −0.23 |
Shannon | −0.55 * | −0.44 | 0.10 | −0.30 | −0.23 |
Simpson | −0.40 | −0.36 | −0.03 | −0.33 | −0.10 |
Fungi | Soluble Sugar | Starch | TC | TN | C/N |
Chao 1 | 0.34 | 0.17 | −0.08 | −0.03 | 0.03 |
Good’s coverage | 0.25 | 0.48 | −0.00 | 0.26 | 0.01 |
Observed species | 0.40 | 0.25 | −0.05 | −0.00 | 0.00 |
Pielou e | 0.48 | 0.30 | −0.18 | 0.09 | 0.14 |
Shannon | 0.45 | 0.31 | −0.17 | 0.06 | 0.13 |
Simpson | 0.44 | 0.15 | −0.13 | 0.06 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Liu, J.; Liang, S.; Zhu, W.; Li, H. Changes in Phyllosphere Microbial Communities of Pinus tabuliformis after Infestation by Bursaphelenchus xylophilus. Forests 2023, 14, 179. https://doi.org/10.3390/f14020179
Jiang Y, Liu J, Liang S, Zhu W, Li H. Changes in Phyllosphere Microbial Communities of Pinus tabuliformis after Infestation by Bursaphelenchus xylophilus. Forests. 2023; 14(2):179. https://doi.org/10.3390/f14020179
Chicago/Turabian StyleJiang, Yong, Jiaying Liu, Shichu Liang, Wenxu Zhu, and Hui Li. 2023. "Changes in Phyllosphere Microbial Communities of Pinus tabuliformis after Infestation by Bursaphelenchus xylophilus" Forests 14, no. 2: 179. https://doi.org/10.3390/f14020179
APA StyleJiang, Y., Liu, J., Liang, S., Zhu, W., & Li, H. (2023). Changes in Phyllosphere Microbial Communities of Pinus tabuliformis after Infestation by Bursaphelenchus xylophilus. Forests, 14(2), 179. https://doi.org/10.3390/f14020179