Relation between Topography and Gap Characteristics in a Mixed Sessile Oak–Beech Old-Growth Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Measurements
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barredo, J.I.; Brailescu, C.; Teller, A.; Sabatini, F.M.; Mauri, A. Mapping and Assessment of Primary and Old-Growth Forests in Europe; Publications Office of the European Union: Luxembourg, 2021; ISBN 9789276342304. [Google Scholar]
- Lin, S.Y.; Shaner, P.J.L.; Lin, T.C. Characteristics of Old-Growth and Secondary Forests in Relation to Age and Typhoon Disturbance. Ecosystems 2018, 21, 1521–1532. [Google Scholar] [CrossRef]
- Albrich, K.; Rammer, W.; Seidl, R. Climate change causes critical transitions and irreversible alterations of mountain forests. Glob. Chang. Biol. 2020, 26, 4013–4027. [Google Scholar] [CrossRef] [PubMed]
- Muñoz Mazón, M.; Klanderud, K.; Finegan, B.; Veintimilla, D.; Bermeo, D.; Murrieta, E.; Delgado, D.; Sheil, D. How forest structure varies with elevation in old growth and secondary forest in Costa Rica. For. Ecol. Manag. 2020, 469, 118191. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.; Aukema, B.H.; Bond-Lamberty, B.; Chini, L.; Clark, J.S.; Dietze, M.; Grossiord, C.; Hanbury-Brown, A.; et al. Pervasive shifts in forest dynamics in a changing world. Science (80-) 2020, 368, eaaz9463. [Google Scholar] [CrossRef] [PubMed]
- Chivulescu, S.; García-Duro, J.; Pitar, D.; Ștefan, L.; Badea, O. Past and Future of Temperate Forests State under Climate Change Effects in the Romanian Southern Carpathians. Forests 2021, 12, 885. [Google Scholar] [CrossRef]
- Wang, Z.; Lyu, L.; Liu, W.; Liang, H.; Huang, J.; Zhang, Q. Bin Topographic patterns of forest decline as detected from tree rings and NDVI. Catena 2021, 198, 105011. [Google Scholar] [CrossRef]
- Clark, D.B.; Hurtado, J.; Saatchi, S.S. Tropical Rain Forest Structure, Tree Growth and Dynamics along a 2700-m Elevational Transect in Costa Rica. PLoS ONE 2015, 10, e0122905. [Google Scholar] [CrossRef]
- Jucker, T.; Bongalov, B.; Burslem, D.F.R.P.; Nilus, R.; Dalponte, M.; Lewis, S.L.; Phillips, O.L.; Qie, L.; Coomes, D.A. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 2018, 21, 989–1000. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Tudose, N.; Ungurean, C.; Davidescu, Ș.; Cheval, S.; Marin, M. Information Tailored to the Needs of Stakeholders in the Romanian Case Study. Deliverable 4.3. CLISWELN Project. Available online: https://www.hzg.de/ms/clisweln/075105/index.php.en (accessed on 7 December 2021).
- González, M.E.; Donoso, P.J.; Szejner, P. Tree-fall gaps and patterns of tree recruitment and growth in Andean old-growth forests in south-central Chile. Bosque 2015, 36, 383–394. [Google Scholar] [CrossRef]
- Král, K.; Daněk, P.; Janík, D.; Krůček, M.; Vrška, T. How cyclical and predictable are Central European temperate forest dynamics in terms of development phases? J. Veg. Sci. 2018, 29, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Chivulescu, S.; Ciceu, A.; Leca, S.; Apostol, B.; Popescu, O.; Badea, O. Development phases and structural characteristics of the Penteleu-Viforâta virgin forest in the Curvature Carpathians. IForest 2020, 13, 389–395. [Google Scholar] [CrossRef]
- Brzeziecki, B.; Bielak, K.; Bolibok, L.; Drozdowski, S.; Zajączkowski, J.; Żybura, H. Structural and compositional dynamics of strictly protected woodland communities with silvicultural implications, using Białowieża Forest as an example. Ann. For. Sci. 2018, 75, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kern, C.C.; Burton, J.I.; Raymond, P.; D’Amato, A.W.; Keeton, W.S.; Royo, A.A.; Walters, M.B.; Webster, C.R.; Willis, J.L. Challenges facing gap-based silviculture and possible solutions for mesic northern forests in North America. For. Int. J. For. Res. 2017, 90, 4–17. [Google Scholar] [CrossRef]
- Lu, D.; Wang, G.G.; Yu, L.; Zhang, T.; Zhu, J. Seedling survival within forest gaps: The effects of gap size, within-gap position and forest type on species of contrasting shade-tolerance in Northeast China. For. Int. J. For. Res. 2018, 91, 470–479. [Google Scholar] [CrossRef]
- Mazdi, R.A.; Mataji, A.; Fallah, A. Canopy Gap Dynamics, Disturbances, and Natural Regeneration Patterns in a Beech-Dominated Hyrcanian Old-Growth Forest. Balt. For. 2021, 27, 535. [Google Scholar] [CrossRef]
- Petritan, A.M.; Nuske, R.S.; Petritan, I.C.; Tudose, N.C. Gap disturbance patterns in an old-growth sessile oak (Quercus petraea L.)–European beech (Fagus sylvatica L.) forest remnant in the Carpathian Mountains, Romania. For. Ecol. Manag. 2013, 308, 67–75. [Google Scholar] [CrossRef]
- Schütz, J.-P.; Saniga, M.; Diaci, J.; Vrška, T. Comparing close-to-naturesilviculture with processes in pristine forests: Lessons from Central Europe. Ann. For. Sci. 2016, 73, 911–921. [Google Scholar] [CrossRef] [Green Version]
- Mölder, A.; Meyer, P.; Nagel, R.V. Integrative management to sustain biodiversity and ecological continuity in Central European temperate oak (Quercus robur, Q. petraea) forests: An overview. For. Ecol. Manag. 2019, 437, 324–339. [Google Scholar] [CrossRef]
- Kuuluvainen, T.; Angelstam, P.; Frelich, L.; Jõgiste, K.; Koivula, M.; Kubota, Y.; Lafleur, B.; Macdonald, E. Natural Disturbance-Based Forest Management: Moving Beyond Retention and Continuous-Cover Forestry. Front. For. Glob. Chang. 2021, 4, 629020. [Google Scholar] [CrossRef]
- Manning, D.B. Stand Structure, Gap Dynamics and Regeneration of a Semi-Natural Mixed Beech Forest on Limestone in Central Europe—A Case Study; Sustainable Land Management View Project; Waldbau-Institut: Freiburg im Breisgau, Germany, 2007. [Google Scholar]
- Rabins, G. Canopy Gap Characteristics, Their Size-Distribution and Spatial Pattern in a Mountainous Cool Temperate Forest of Japan. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2019; p. 60. [Google Scholar]
- Runkle, J.R. Guidelines and Salmpe Protocol for Sampling Forest Gaps; Gen. Tech. Rep. PNW-GTR-283; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1992; p. 44. [Google Scholar]
- Gale, N. The Relationship between Canopy Gaps and Topography in a Western Ecuadorian Rain Forest on JSTOR. Biotropica 2000, 32, 653–661. [Google Scholar] [CrossRef]
- Pickett, S.T.A. The Ecology of Natural Disturbance and Patch Dynamics; White, P.S., Ed.; Academic Press: London, UK, 1985; ISBN 0125545215. [Google Scholar]
- de Lima, R.A.F.; de Moura, L.C. Gap disturbance regime and composition in the Atlantic Montane Rain Forest: The influence of topography. Plant Ecol. 2008, 197, 239–253. [Google Scholar] [CrossRef]
- Florinsky, I.V. Influence of Topography on Soil Properties. In Digital Terrain Analysis in Soil Science and Geology; Elsevier: Amsterdam, The Netherlands, 2012; pp. 145–149. [Google Scholar]
- Tang, F.; Quan, W.; Li, C.; Huang, X.; Wu, X.; Yang, Q.; Pan, Y.; Xu, T.; Qian, C.; Gu, Y. Effects of Small Gaps on the Relationship Among Soil Properties, Topography, and Plant Species in Subtropical Rhododendron Secondary Forest, Southwest China. Int. J. Environ. Res. Public Health 2019, 16, 1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulamoussène, Y.; Bedeau, C.; Descroix, L.; Linguet, L.; Hérault, B. Environmental control of natural gap size distribution in tropical forests. Biogeosciences 2017, 14, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Zhu, J.; Zheng, X.; Lu, D.; Li, X. Comparison of gap formation and distribution pattern induced by wind/snowstorm and flood in a temperate secondary forest ecosystem, Northeast China. Silva Fenn. 2017, 51, 15. [Google Scholar] [CrossRef] [Green Version]
- Stage, A.R.; Salas, C. Interactions of Elevation, Aspect, and Slope in Models of Forest Species Composition and Productivity. For. Sci. 2007, 53, 486–492. [Google Scholar]
- Chen, S.; Wen, Z.; Ma, M.; Wu, S. Disentangling Climatic Factors and Human Activities in Governing the Old and New Forest Productivity. Remote Sens. 2021, 13, 3746. [Google Scholar] [CrossRef]
- Ehbrecht, M.; Seidel, D.; Annighöfer, P.; Kreft, H.; Köhler, M.; Zemp, D.C.; Puettmann, K.; Nilus, R.; Babweteera, F.; Willim, K.; et al. Global patterns and climatic controls of forest structural complexity. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Gendreau-Berthiaume, B.; Kneeshaw, D. Influence of Gap Size and Position within Gaps on Light Levels. Int. J. For. Res. 2009, 2009, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Muscolo, A.; Bagnato, S.; Sidari, M.; Mercurio, R. A review of the roles of forest canopy gaps. J. For. Res. 2014, 25, 725–736. [Google Scholar] [CrossRef]
- Farhadur Rahman, M.; Onoda, Y.; Kitajima, K. Forest canopy height variation in relation to topography and forest types in central Japan with LiDAR. For. Ecol. Manag. 2022, 503, 119792. [Google Scholar] [CrossRef]
- Ohkubo, T.; Tani, M.; Noguchi, H.; Yamakura, T.; Itoh, A.; Kanzaki, M.; Seng, H.L.; Tan, S.; Ashton, P.S.; Ogino, K.; et al. Spatial and topographic patterns of canopy gap formation in a mixed dipterocarp forest in Sarawak, Malaysia. Tropics 2007, 16, 151–163. [Google Scholar] [CrossRef]
- Måren, I.E.; Karki, S.; Prajapati, C.; Yadav, R.K.; Shrestha, B.B. Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? J. Arid Environ. 2015, 121, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Bałazy, R.; Kamińska, A.; Ciesielski, M.; Socha, J.; Pierzchalski, M. Modeling the Effect of Environmental and Topographic Variables Affecting the Height Increment of Norway Spruce Stands in Mountainous Conditions with the Use of LiDAR Data. Remote Sens. 2019, 11, 2407. [Google Scholar] [CrossRef] [Green Version]
- Schliemann, S.A.; Bockheim, J.G. Methods for studying treefall gaps: A review. For. Ecol. Manag. 2011, 261, 1143–1151. [Google Scholar] [CrossRef]
- Zhu, J.; Lu, D.; Zhang, W. Effects of gaps on regeneration of woody plants: A meta-analysis. J. For. Res. 2014, 25, 501–510. [Google Scholar] [CrossRef]
- Demeter, L.; Bede-Fazekas, Á.; Molnár, Z.; Csicsek, G.; Ortmann-Ajkai, A.; Varga, A.; Molnár, Á.; Horváth, F. The legacy of management approaches and abandonment on old-growth attributes in hardwood floodplain forests in the Pannonian Ecoregion. Eur. J. For. Res. 2020, 139, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Bottero, A.; Garbarino, M.; Dukić, V.; Govedar, Z.; Lingua, E.; Nagel, T.A.; Motta, R. Gap-phase dynamics in the old-growth forest of Lom, Bosnia and Herzegovina. Silva Fenn. 2011, 45, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Valerio, M.; Ib, R. The Role of Canopy Cover Dynamics over a Decade of Changes in the Understory of an Atlantic Beech-Oak Forest. Forests 2021, 12, 938. [Google Scholar] [CrossRef]
- Schall, P.; Gossner, M.M.; Heinrichs, S.; Fischer, M.; Boch, S.; Prati, D.; Jung, K.; Baumgartner, V.; Blaser, S.; Böhm, S.; et al. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 2018, 55, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Jaloviar, P.; Sedmáková, D.; Pittner, J.; Danková, L.J.; Kucbel, S.; Sedmák, R.; Saniga, M. Gap Structure and Regeneration in the Mixed Old-Growth Forests of National Nature Reserve. Forests 2020, 11, 81. [Google Scholar] [CrossRef]
- Zhu, C.; Zhu, J.; Wang, G.G.; Zheng, X.; Lu, D.; Gao, T. Dynamics of gaps and large openings in a secondary forest of Northeast China over 50 years. Ann. For. Sci. 2019, 76, 1–10. [Google Scholar] [CrossRef]
- Hunter, M.O.; Keller, M.; Morton, D.; Cook, B.; Lefsky, M.; Ducey, M.; Saleska, S.; De Oliveira, R.C.; Schietti, J.; Zang, R. Structural dynamics of tropical moist forest gaps. PLoS ONE 2015, 10, e0132144. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, E.; Glatthorn, J.; Ammer, C. Regeneration Dynamics Following the Formation of Understory Gaps in a Slovakian Beech Virgin Forest. Forests 2020, 11, 585. [Google Scholar] [CrossRef]
- Zeibig, A.; Diaci, J.; Wagner, S. Gap disturbance patterns of a Fagus sylvatica virgin forest remnant in the mountain vegetation belt of Slovenia Gap disturbance patterns of a Fagus sylvatica virgin forest remnant in the mountain vegetation belt of Slovenia. For. Snow Landsc. Res. 2005, 79, 69–80. [Google Scholar]
- Freer-Smith, P.; Muys, B.; Bozzano, M.; Drössler, L.; Farrelly, N.; Jactel, H.; Korhonen, J.; Minotta, G.; Nijnik, M.; Orazio, C. Plantation Forests in Europe: Challenges and Opportunities. From Science to Policy 9; European Forest Institute: Joensuu, Finland, 2019. [Google Scholar] [CrossRef]
- Veen, P.; Fanta, J.; Raev, I.; Biris, I.-A.; Biris, B.; De Smidt, J.; Maes, B. Virgin forests in Romania and Bulgaria: Results of two national inventory projects and their implications for protection. Biodivers. Conserv. 2010, 19, 1805–1819. [Google Scholar] [CrossRef]
- Spînu, A.P.; Petrițan, I.C.; Mikoláš, M.; Janda, P.; Vostarek, O.; Čada, V.; Svoboda, M. Moderate-to High-Severity Disturbances Shaped the Structure of Primary Picea Abies (L.) Karst. Forest in the Southern Carpathians. Forests 2020, 11, 1315. [Google Scholar] [CrossRef]
- Bolte, A.; Czajkowski, T.; Kompa, T. The north-eastern distribution range of European beech—A review. For. Int. J. For. Res. 2007, 80, 413–429. [Google Scholar] [CrossRef] [Green Version]
- Parviainen, J.; Little, D.; Doyle, M.; O’sullivan, A.; Kettunen, M.; Korhonen, M. Research in Forest Reserves and Natural Forests in European Countries—Country Reports for the COST Action E4: Forest Reserves Research Network; European Forest Institute: Joensuu, Finland, 1999. [Google Scholar]
- Gálhidy, L.; Mihók, B.; Hagyó, A.; Rajkai, K.; Standovár, T. Effects of gap size and associated changes in light and soil moisture on the understorey vegetation of a Hungarian beech forest. Plant Ecol. 2006, 183, 133–145. [Google Scholar] [CrossRef]
- Nagel, T.A.; Svoboda, M. Gap disturbance regime in an old-growth Fagus-Abies forest in the Dinaric Mountains, Bosnia-Herzegovina. Can. J. For. Res. 2008, 38, 2728–2737. [Google Scholar] [CrossRef] [Green Version]
- Garbarino, M.; Mondino, B.; Nagel, T.; Borgogno Mondino, E.; Lingua, E.; Nagel, T.A.; Dukić, V.; Govedar, Z.; Motta, R.; Garbarino, M.; et al. Gap disturbances and regeneration patterns in a Bosnian old-growth forest: A multispectral remote sensing and ground-based approach Gap disturbances and regeneration patterns in a Bosnian old-growth forest: A multispectral remote sensing and ground-based. Herzegovina Ann. For. Sci. 2011, 69, 617–625. [Google Scholar] [CrossRef]
- Zellweger, F.; Braunisch, V.; Morsdorf, F.; Baltensweiler, A.; Abegg, M.; Roth, T.; Bugmann, H.; Bollmann, K. Disentangling the effects of climate, topography, soil and vegetation on stand-scale species richness in temperate forests. For. Ecol. Manag. 2015, 349, 36–44. [Google Scholar] [CrossRef]
- Drössler, L.; Feldmann, E.; Glatthorn, J.; Annighöfer, P.; Kucbel, S.; Tabaku, V.; Drössler, L.; Feldmann, E.; Glatthorn, J.; Annighöfer, P.; et al. What Happens after the Gap?— Size Distributions of Patches with Homogeneously Sized Trees in Natural and Managed Beech Forests in Europe. Open J. For. 2016, 6, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Orman, O.; Dobrowolska, D. Gap dynamics in the Western Carpathian mixed beech old-growth forests affected by spruce bark beetle outbreak. Eur. J. For. Res. 2017, 136, 571–581. [Google Scholar] [CrossRef]
- Kenderes, K.; Aszalós, R.; Ruff, J.; Barton, Z.; Standovár, T. Effects of topography and tree stand characteristics on susceptibility of forests to natural disturbances (ice and wind) in the Börzsöny Mountains (Hungary). Community Ecol. 2007, 8, 209–220. [Google Scholar] [CrossRef]
- Van der Meer, P.; Bongers, F.; Chatrou, L.; Riera, B. Defining canopy gaps in a tropical rain forest: Effects on gap size and turnover time. Acta Oecologica-Int. J. Ecol. 1994, 15, 701–714. [Google Scholar]
- Gutiérrez, Á.G.; Chávez, R.O.; Díaz-Hormazábal, I. Canopy gap structure as an indicator of intact, old-growth temperate rainforests in the valdivian ecoregion. Forests 2021, 12, 1183. [Google Scholar] [CrossRef]
- Fransson, P.; Brännström, Å.; Franklin, O. A tree’s quest for light—Optimal height and diameter growth under a shading canopy. Tree Physiol. 2021, 41, 1–11. [Google Scholar] [CrossRef]
- Sabatini, F.M.; Burrascano, S.; Keeton, W.S.; Levers, C.; Lindner, M.; Pötzschner, F.; Verkerk, P.J.; Bauhus, J.; Buchwald, E.; Chaskovsky, O.; et al. Where are Europe’s last primary forests? Divers. Distrib. 2018, 24, 1426–1439. [Google Scholar] [CrossRef] [Green Version]
- Petritan, A.M.; Biris, I.A.; Merce, O.; Turcu, D.O.; Petritan, I.C. Structure and diversity of a natural temperate sessile oak (Quercus petraea L.)—European Beech (Fagus sylvatica L.) forest. For. Ecol. Manag. 2012, 280, 140–149. [Google Scholar] [CrossRef]
- Merce, O.; Turcu, D.; Cantar, I. The structure of a natural mixed beech—Sessile oak forest in Runcu Grosi Natural Reserve. J. Hortic. For. Biotechnol. 2012, 16, 131–138. [Google Scholar]
- Merce, O.; Turcu, D.O. Natura 2000 forest habitats of the “Runcu-Groși” Nature Reserve. For. Biotechnol. 2016, 20, 140–144. [Google Scholar]
- IFER. Field-Map—Tool Designed for Computer Aided Field Data Collection. Available online: https://www.fieldmap.cz/ (accessed on 11 August 2022).
- IFER. Available online: https://fieldmap.cz/?page=fmsoftware (accessed on 29 November 2022).
- Jucker, T. Deciphering the fingerprint of disturbance on the three-dimensional structure of the world’s forests. New Phytol. 2022, 233, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, E.; Garcia, C.C.; Pimenta, J.A.; Torezan, J.M.D. Slope variation and population structure of tree species from different ecological groups in South Brazil. An. Acad. Bras. Cienc. 2010, 82, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Lobo, E.; Dalling, J.W. Effects of topography, soil type and forest age on the frequency and size distribution of canopy gap disturbances in a tropical forest. Biogeosciences 2013, 10, 6769–6781. [Google Scholar] [CrossRef] [Green Version]
- Splechtna, B.E.; Gratzer, G.; Black, B.A. Disturbance History of a European Old-Growth Mixed-Species Forest: A Spatial Dendro. Source J. Veg. Sci. 2005, 16, 511–522. [Google Scholar]
- Negrón-Juárez, R.I.; Chambers, J.Q.; Hurtt, G.C.; Annane, B.; Cocke, S.; Powell, M.; Stott, M.; Goosem, S.; Metcalfe, D.J.; Saatchi, S.S. Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests. Remote Sens. 2014, 6, 5633–5649. [Google Scholar] [CrossRef] [Green Version]
- Lertzman, K.P.; Sutherland, G.D.; Inselberg, A.; Saunders, S.C. Canopy gaps and the landscape mosaic in a coastal temperate rain forest. Ecology 1996, 77, 1254–1270. [Google Scholar] [CrossRef]
- Baker, P.J.; Bunyavejchewin, S.; Oliver, C.D.; Ashton, P.S. Disturbance history and historical stand dynamics of a seasonal tropical forest in western Thailand. Ecol. Monogr. 2005, 75, 317–343. [Google Scholar] [CrossRef]
- Fisher, J.I.; Hurtt, G.C.; Thomas, R.Q.; Chambers, J.Q. Clustered disturbances lead to bias in large-scale estimates based on forest sample plots. Ecol. Lett. 2008, 11, 554–563. [Google Scholar] [CrossRef]
- Foster, J.R.; Townsend, P.A.; Zganjar, C.E. Spatial and temporal patterns of gap dominance by low-canopy lianas detected using EO-1 Hyperion and Landsat Thematic Mapper. Remote Sens. Environ. 2008, 112, 2104–2117. [Google Scholar] [CrossRef]
- Chambers, J.Q.; Robertson, A.L.; Carneiro, V.M.C.; Lima, A.J.N.; Smith, M.L.; Plourde, L.C.; Higuchi, N. Hyperspectral remote detection of niche partitioning among canopy trees driven by blowdown gap disturbances in the Central Amazon. Oecologia 2009, 160, 107–117. [Google Scholar] [CrossRef]
- King, S.L.; Antrobus, T.J. Relationships between Gap Makers and Gap Fillers in an Arkansas. J. Veg. Sci. 2005, 16, 471–478. [Google Scholar] [CrossRef]
- Rentch, J.S.; Schuler, T.M.; Nowacki, G.J.; Beane, N.R.; Ford, W.M. Canopy gap dynamics of second-growth red spruce-northern hardwood stands in West Virginia. For. Ecol. Manag. 2010, 260, 1921–1929. [Google Scholar] [CrossRef]
- Amolikondori, A.; Abrari Vajari, K.; Feizian, M. Assessing the effects of forest gaps on beech (Fagus orientalis L.) trees traits in the logged temperate broad-leaf forest. Ecol. Indic. 2021, 127, 107689. [Google Scholar] [CrossRef]
- Cielo-Filho, R.; Gneri, M.A.; Martins, F.R. Position on slope, disturbance, and tree species coexistence in a Seasonal Semideciduous Forest in SE Brazil. Plant Ecol. 2007, 190, 189–203. [Google Scholar] [CrossRef]
- Becker, P.; Rabenold, P.E.; Idol, J.R.; Smith, A.P. Water potential gradients for gaps and slopes in a Panamanian tropical moist forest’s dry season. J. Trop. Ecol. 1988, 4, 173–184. [Google Scholar] [CrossRef]
- Condit, R.; Hubbell, S.P.; Foster, R.B. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr. 1995, 65, 419–439. [Google Scholar] [CrossRef]
- Reis, C.R.; Jackson, T.D.; Gorgens, E.B.; Dalagnol, R.; Jucker, T.; Nunes, M.H.; Ometto, J.P.; Aragão, L.E.O.C.; Rodriguez, L.C.E.; Coomes, D.A. Forest disturbance and growth processes are reflected in the geographical distribution of large canopy gaps across the Brazilian Amazon. J. Ecol. 2022, 110, 1–13. [Google Scholar] [CrossRef]
- Larsen, J.B.; Angelstam, P.; Bauhus, J.; Carvalho, J.F.; Diaci, J.; Dobrowolska, D.; Gazda, A.; Gustafsson, L.; Krumm, F.; Knoke, T.; et al. Closer-to-Nature Forest Management. In From Science to Policy 12; European Forest Institute: Joensuu, Finland, 2022. [Google Scholar] [CrossRef]
- Poudyal, B.H.; Maraseni, T.; Cockfield, G. Impacts of forest management on tree species richness and composition: Assessment of forest management regimes in Tarai landscape Nepal. Appl. Geogr. 2019, 111, 102078. [Google Scholar] [CrossRef]
- Goodbody, T.R.H.; Tompalski, P.; Coops, N.C.; White, J.C.; Wulder, M.A.; Sanelli, M. Uncovering spatial and ecological variability in gap size frequency distributions in the Canadian boreal forest. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Dusan, R.; Stjepan, M.; Igor, A.; Jurij, D. Gap regeneration patterns in relationship to light heterogeneity in two old-growth beech–fir forest reserves in South East Europe. For. Int. J. For. Res. 2007, 80, 431–443. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Jiang, L.; Zhu, D.-H.; Xing, C.; Jin, M.-R.; Liu, J.-F.; He, Z.-S. Forest gaps regulate seed germination rate and radicle growth of an endangered plant species in a subtropical natural forest. Plant Divers. 2021, 44, 445–454. [Google Scholar] [CrossRef]
- Margreiter, V.; Walde, J.; Erschbamer, B. Competition-free gaps are essential for the germination and recruitment of alpine species along an elevation gradient in the European Alps. Alp. Bot. 2021, 131, 135–150. [Google Scholar] [CrossRef]
- Harmer, R.; Robertson, M. Seedling root growth of six broadleaved tree species grown in competition with grass under irrigated nursery conditions. Ann. For. Sci. 2003, 60, 601–608. [Google Scholar] [CrossRef]
- Tinya, F.; Kovács, B.; Aszalós, R.; Tóth, B.; Csépányi, P.; Németh, C.; Ódor, P. Initial regeneration success of tree species after different forestry treatments in a sessile oak-hornbeam forest. For. Ecol. Manag. 2020, 459, 117810. [Google Scholar] [CrossRef]
- Lüpke, V.B. Überschirmungstoleranz von Stiel- und Traubeneichen als Voraussetzung für Verjüngungsverfahren unter Schirm. Mitt. ad Forstl. Vers. Anst. Rheinland-Pfalz. Hrsg. von Forstliche Versuchsanstalt Rheinland-Pfalz 1995, 34/95, 141–160. [Google Scholar]
- Zhang, C.; Deng, Q.; Liu, A.; Liu, C.; Xie, G. Effects of Stand Structure and Topography on Forest Vegetation Carbon Density in Jiangxi Province. Forests 2021, 12, 1483. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; Lindeskog, M.; Smith, B.; Poulter, B.; Arneth, A.; Haverd, V.; Calle, L. Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 4382–4387. [Google Scholar] [CrossRef] [Green Version]
- Martin-Benito, D.; Pederson, N.; Férriz, M.; Gea-Izquierdo, G. Old forests and old carbon: A case study on the stand dynamics and longevity of aboveground carbon. Sci. Total Environ. 2021, 765, 142737. [Google Scholar] [CrossRef] [PubMed]
Predicted/Given Groups | 3 | 4 | 2 | 1 | 5 | Total |
---|---|---|---|---|---|---|
3 | 75 | 4 | 6 | 0 | 0 | 85 |
4 | 2 | 92 | 0 | 0 | 2 | 96 |
2 | 0 | 0 | 57 | 3 | 0 | 60 |
1 | 0 | 0 | 0 | 29 | 0 | 29 |
5 | 0 | 2 | 0 | 0 | 49 | 51 |
Total | 77 | 98 | 63 | 32 | 51 | 321 |
Gap Characteristics | a | Pa > |t| | b | Pb > |t| | C | Pc > |t| |
---|---|---|---|---|---|---|
Canopy gap size (m2) | 457.844 | 0.004 | −0.448 | 0.033 | −4.054 | 0.163 |
Expanded gap size (m2) | 818.295 | 0.001 | −0.666 | 0.038 | −8.612 | 0.053 |
Expanded gap size to canopy gap size ratio | 1.241 | 0.346 | 0.003 | 0.037 | −0.027 | 0.024 |
Canopy gap perimeter (m) | 118.015 | 0.001 | −0.097 | 0.005 | −0.965 | 0.044 |
Expanded gap perimeter (m) | 139.291 | 0.001 | −0.089 | 0.016 | −1.230 | 0.017 |
Proportion of sessile oaks as bordering trees (%) | −97.833 | 0.078 | 0.154 | 0.028 | 3.294 | 0.006 |
Number of gap makers | 9.136 | 0.003 | −0.007 | 0.085 | −0.068 | 0.221 |
Number of gap fillers | 332.414 | 0.215 | −0.505 | 0.141 | 11.690 | 0.041 |
Number of gap saplings | 4542.484 | 0.128 | −3.319 | 0.382 | −93.648 | 0.139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudose, N.C.; Petritan, I.C.; Toiu, F.L.; Petritan, A.-M.; Marin, M. Relation between Topography and Gap Characteristics in a Mixed Sessile Oak–Beech Old-Growth Forest. Forests 2023, 14, 188. https://doi.org/10.3390/f14020188
Tudose NC, Petritan IC, Toiu FL, Petritan A-M, Marin M. Relation between Topography and Gap Characteristics in a Mixed Sessile Oak–Beech Old-Growth Forest. Forests. 2023; 14(2):188. https://doi.org/10.3390/f14020188
Chicago/Turabian StyleTudose, Nicu Constantin, Ion Catalin Petritan, Florin Lucian Toiu, Any-Mary Petritan, and Mirabela Marin. 2023. "Relation between Topography and Gap Characteristics in a Mixed Sessile Oak–Beech Old-Growth Forest" Forests 14, no. 2: 188. https://doi.org/10.3390/f14020188
APA StyleTudose, N. C., Petritan, I. C., Toiu, F. L., Petritan, A. -M., & Marin, M. (2023). Relation between Topography and Gap Characteristics in a Mixed Sessile Oak–Beech Old-Growth Forest. Forests, 14(2), 188. https://doi.org/10.3390/f14020188