Combined Application of Organic and Inorganic Fertilizers Effects on the Global Warming Potential and Greenhouse Gas Emission in Apple Orchard in Loess Plateau Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Treatments and Design
2.3. Gas Collection and Parameter Determination
2.4. Soil Sample Collection and Analysis
2.5. Fruit Yield
2.6. Statistical Analysis
3. Results
3.1. Environmental Factors
3.2. Soil NH4+-N and NO3−-N Content
3.3. CH4 Fluxes
3.4. N2O Fluxes
3.5. Annual CH4 and N2O Emissions
3.6. The GWP, GHGI, and N2O EFd
3.7. Apple Yield
3.8. Relationship between GHG Emissions and Influencing Factors
4. Discussion
4.1. The Effect of CH4 Emissions from Soils in the FD and BS Sites under Different Fertilizer Applications
4.2. The Effect of N2O Emissions from Soils at FD and BS Sites under Different Fertilizer Applications
4.3. Combined Application of Organic and Inorganic Fertilizers on Apple Yield, GWP, and GHGI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Liu, Z.; Deng, Z.; Davis, S.J.; Giron, C.; Ciais, P. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ. 2022, 3, 217–219. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2022: Mitigation of Climate Change. Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Bazyli, C.; Lukasz, K. Impact of different models of agriculture on greenhouse gases (GHG) emissions: A sectoral approach. Outlook Agric. 2018, 47, 1–9. [Google Scholar]
- Liang, D.; Lu, X.; Zhuang, M.; Shi, G.; Hu, C.; Wang, S.; Hao, J. China’s greenhouse gas emissions for cropping systems from 1978–2016. Sci. Data 2021, 8, 171. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zheng, W.; Ma, Y.; Wang, X.; Li, Z.; Zhai, B. Responses of soil water, nitrate and yield of apple orchard to integrated soil management in Loess Plateau, China. Agric. Water Manag. 2020, 240, 106325. [Google Scholar] [CrossRef]
- Liu, D.; Sun, H.; Liao, X.; Luo, J.; Lindsey, S.; Yuan, J.; He, T.; Zaman, M.; Ding, W. N2O and NO Emissions as affected by the continuous combined application of organic and mineral N fertilizer to soil on the North China Plain. J. Agron. 2020, 10, 1965. [Google Scholar] [CrossRef]
- Pilecco, G.E.; Chantigny, M.H.; Weiler, D.A.; Aita, C.; Thivierge, M.N.; Schmatz, R.; Chaves, B.; Giacomini, S.J. Greenhouse gas emissions and global warming potential from biofuel cropping systems fertilized with mineral and organic nitrogen sources. Sci. Total Environ. 2020, 729, 138767. [Google Scholar] [CrossRef]
- Maillard, E.; Angers, D.A. Animal manure application and soil organic carbon stocks: A meta-analysis. Glob. Chang. Biol. 2014, 20, 666–679. [Google Scholar] [CrossRef]
- Xia, F.; Mei, K.; Xu, Y.; Zhang, C.; Dahlgren, R.A.; Zhang, M. Response of N2O emission to manure application in field trials of agricultural soils across the globe. Sci. Total Environ. 2020, 733, 139390. [Google Scholar] [CrossRef]
- Pang, J.; Wang, X.; Mu, Y.; Ouyang, Z.; Liu, W. Nitrous oxide emissions from an apple orchard soil in the semiarid Loess Plateau of China. Biol. Fertil. Soils 2009, 46, 37–44. [Google Scholar] [CrossRef]
- Zhang, C.; Chang, Q.; Shao, L.; Huo, X. The Moderate operation scales of apples based on output, profit, and unit production costs in the Shaanxi Province of China. Land 2020, 9, 25. [Google Scholar] [CrossRef]
- Cheng, L.; Raba, R. Accumulation of Macro-and Micronutrients and Nitrogen Demand-supply Relationship of ‘Gala’/‘Malling 26’ Apple Trees Grown in Sand Culture. J. Am. Soc. Hortic. Sci. 2009, 1, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J.W.; Dryden, G. Fruit mineral removal rates from New Zealand apple (Malus domestica) Orchards in the Nelson Region. N. Z. J. Crop Hortic. Sci. 2006, 1, 27–32. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, X.; Sun, Y.; Zhang, J.; Wu, W.; Liao, Y. Mulching practices altered soil bacterial community structure and improved orchard productivity and apple quality after five growing seasons. Sci. Hortic. 2014, 172, 248–257. [Google Scholar] [CrossRef]
- Wei, Z.; Li, Y.; Gong, Q.; Zhang, H.; Zhao, Z.; Zheng, Z.; Zhai, B.; Wang, Z. Improving yield and water use efficiency of apple trees through intercrop-mulch of crown vetch (Coronilla varia L.) combined with different fertilizer treatments in the Loess Plateau. Span. J. Agric. Res. 2017, 14, e1207. [Google Scholar]
- Zhao, Z.P.; Yan, S.; Liu, F.; Ji, P.H.; Wang, X.Y.; Tong, Y.A. Effects of chemical fertilizer combined with manure on Fuji apple quality, yield and soil fertility in apple orchard on the Loess Plateau of China. Int. J. Agric. Biol. 2014, 7, 45–55. [Google Scholar]
- UNEP (United Nations Environment Programme). Agri-Food and the Environment. Agri-Food Life-Cycle 2001; UNEP (United Nations Environment Programme): New York, NY, USA, 2002. [Google Scholar]
- Yang, Y.; Liu, H.; Lv, J. Response of N2O emission and denitrification genes to different inorganic and organic amendments. Sci. Rep. 2022, 12, 3940. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, S.; Shen, G.; Shaaban, M.; Ju, W.; Cui, Y.; Duan, C.; Fang, L. Effects of inorganic and organic fertilizers on CO2 and CH4 fluxes from tea plantation soil. Anthropocene 2021, 9, 90. [Google Scholar] [CrossRef]
- Bu, R.Y.; Li, M.; Han, S.; Cheng, W.L.; Wang, H.; Sun, Z.X.; Tang, S.; Wu, J. Comprehensive effects of combined application of organic and inorganic fertilizer on yield, greenhouse gas emissions, and soil nutrient in double-cropping rice systems. Chin. J. Appl. Ecol. 2021, 32, 145–153. [Google Scholar]
- Meng, L.; Cai, Z.; Ding, W. Effects of long-term fertilization on N distribution and N2O emission in fluvo-aquci soil in North China. Acta Ecol. Sin. 2008, 28, 6197–6203. [Google Scholar]
- Jin, T.; Shimizu, M.; Marutani, S.; Desyatkin, A.R.; Iizuka, N.; Hata, H.; Hatano, R. Effect of chemical fertilizer and manure application on N2O emission from reed canary grassland in Hokkaido, Japan. J. Soil. Sci. Plant Nutr. 2010, 56, 53–65. [Google Scholar] [CrossRef]
- Hou, M.M.; Lü, F.L.; Zhang, H.T.; Zhou, Y.T.; Lu, G.Y.; Ayaz, M.; Li, Q.H.; Yang, X.Y.; Zhang, S.L. Effect of organic manure substitution of synthetic nitrogen on crop yield and N2O Emission in the winter wheat-summer maize rotation system. Environ. Sci. 2018, 39, 321–330. [Google Scholar]
- Fentabila, M.M.; Nichola, C.H.; Neilsenc, D.; Hannamb, K.D. Effect of drip irrigation frequency, nitrogen rate and mulching on nitrous oxide emissions in a semi-arid climate: An assessment across two years in an apple orchard. Agric. Ecosyst. Environ. 2016, 235, 242–252. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Padre, A.; Wassmann, R.; Aquino, E.; Pangga, G.V.; Cruz, P.S. spatial and temporal variations in Methane fluxes from irrigated lowland rice fields. Philipp. Agric. Sci. 2011, 94, 335–342. [Google Scholar]
- Wang, K.; Li, F.; Dong, Y. Methane emission related to enzyme activities and organic carbon fractions in paddy soil of south china under different irrigation and nitrogen management. J. Plant Nutr. Soil Sci. 2020, 20, 1397–1410. [Google Scholar] [CrossRef]
- Guo, C.; Ren, T.; Li, P.; Wang, B.; Zou, J.; Hussain, S.; Cong, R.; Wu, L.; Lu, J.; Li, X. Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea. Environ. Sci. Pollut. Res. 2019, 26, 2569–2579. [Google Scholar] [CrossRef]
- Aliyu, G.; Luo, J.F.; Di, H.J.; Liu, D.Y.; Yuan, J.J.; Chen, Z.M.; He, T.H.; Ding, W.X. Yield-scaled nitrous oxide emissions from nitrogen-fertilized croplands in China: A meta-analysis of contrasting mitigation scenarios. Pedosphere 2021, 31, 231–242. [Google Scholar] [CrossRef]
- Li, W.J. Effects of Cover Crop on Water, Carbon and Nitrogen Distribution in Deep Soil of Apple Orchard in Loess Plateau. Master’s Thesis, Lanzhou University, Lanzhou, China, May 2022. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Part II. Chemical and Microbiological Properties. In Methods of Soil Analysis, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Abubakar, S.A.; Hamani, A.K.M.; Chen, J.; Sun, W.; Wang, G.; Gao, Y.; Duan, A. Optimizing N-fertigation scheduling maintains yield and mitigates global warming potential of winter wheat field in North China Plain. J. Clean. Prod. 2022, 357, 131906. [Google Scholar] [CrossRef]
- Li, N.; Kumar, P.; Lai, L.; Abagandura, G.O.; Kumar, S.; Nleya, T.; Sieverding, H.L.; Stone, J.J.; Gibbons, W. Response of soil greenhouse gas fluxes and soil properties to nitrogen fertilizer rates under camelina and carinata nonfood oilseed crops. Bioenergy Res. 2019, 12, 524–535. [Google Scholar] [CrossRef]
- Fan, Y.; Hao, X.; Carswell, A.; Misselbrook, T.; Ding, R.; Li, S.; Kang, S.Z. Inorganic nitrogen fertilizer and high N application rate promote N2O emission and suppress CH4 uptake in a rotational vegetable system. Soil Tillage Res. 2021, 206, 104848. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Li, H.; Feng, W.T.; He, X.H.; Zhu, P.; Gao, H.J.; Sun, N.; Xu, M.G. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. J. Integr. Agric. 2017, 16, 937–946. [Google Scholar] [CrossRef]
- Yang, W.; Feng, G.; Miles, D.; Gao, L.; Jia, Y.; Li, C.; Qu, Z. Impact of biochar on greenhouse gas emissions and soil carbon sequestration in corn grown under drip irrigation with mulching. Sci. Total Environ. 2020, 729, 138752. [Google Scholar] [CrossRef]
- Meng, C.; Wang, F.; Yang, K.; Clinton, C.S.; Bernard, A.E.; Zhang, Y.; Tao, L.; Gu, X. Small wetted proportion of drip irrigation and non-mulched treatment with manure application enhanced methane uptake in upland field. Agric. For. Meteorol. 2020, 281, 107821. [Google Scholar] [CrossRef]
- Schimel, J. Rice, microbes and methane. Nature 2000, 403, 375–377. [Google Scholar] [CrossRef]
- Lu, Y.; Wassmann, R.; Neue, H.U.; Huang, C. Dissolved organic carbon and methane emissions from a rice paddy fertilized with ammonium and nitrate. J. Environ. Qual. 2000, 29, 1733–1740. [Google Scholar] [CrossRef]
- Bao, Q.; Huang, Y.; Wang, F.; Nie, S.; Nicol, G.W.; Yao, H.; Ding, L. Effect of nitrogen fertilizer and/or rice straw amendment on methanogenic archaeal communities and methane production from a rice paddy soil. Appl. Microbiol. Biotechnol. 2016, 100, 5989–5998. [Google Scholar] [CrossRef]
- Sabrekov, A.F.; Danilova, O.V.; Terentieva, I.E.; Ivanova, A.A.; Belova, S.E.; Litti, Y.V.; Glagolev, M.V.; Dedysh, S.N. Atmospheric methane consumption and methanotroph communities in West Siberian boreal upland forest ecosystems. Forests 2021, 12, 1738. [Google Scholar] [CrossRef]
- Sakabe, A.; Kosugi, Y.; Takahashi, k.; Itoh, M.; Kanazawa, A.; Makita, N.; Ataka, M. One year of continuous measurements of soil CH4 and CO2 fluxes in a Japanese cypress forest: Temporal and spatial variations associated with Asian monsoon rainfall. J. Geophys. Res. Biogeosci. 2015, 120, 585–599. [Google Scholar] [CrossRef]
- Wrage, N.; Horn, M.A.; Well, R.; Müller, C.; Velthof, G.; Oenema, O. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 2018, 123, 3–16. [Google Scholar] [CrossRef]
- He, T.; Yuan, J.; Luo, J.; Wang, W.; Fan, J.; Liu, D.; Ding, W. Organic fertilizers have divergent effects on soil N2O emissions. Biol. Fertil. Soils 2019, 55, 685–699. [Google Scholar] [CrossRef]
- Qin, H.L.; Xing, X.; Tang, Y.; Zhu, B.L.; Wei, X.M.; Chen, X.B.; Liu, Y. Soil moisture and activity of nitrite- and nitrous oxidereducing microbes enhanced nitrous oxide emissions in fallow paddy soils. Biol. Fert. Soil. 2020, 56, 53–67. [Google Scholar] [CrossRef]
- Lazcano, C.; Barker, X.Z.; Decock, C. Effects of organic fertilizers on the soil microorganisms responsible for N2O Emissions: A Review. Microorganisms 2021, 9, 983. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Mehariya, S.; Kumar, A.; Singh, E.; Yang, J.; Kumar, S.; Li, H.; Awasthi, M.K. Apple orchard waste recycling and valorization of valuable product-A review. Bioengineered 2021, 12, 476–495. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Gao, H.; Lal, R.; Zhu, P.; Peng, C.; Deng, A.; Zheng, C.; Song, Z.; Zhang, W. Nitrous oxide emission, global warming potential, and denitrifier abundances as affected by long-term fertilization on mollisols of Northeastern China. Arch. Agron. Soil Sci. 2019, 65, 1831–1844. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Mu, Y.; Xu, Z.; Pei, S.; Lun, X.; Zhang, Y. Nitrous oxide emissions from a maize field during two consecutive growing seasons in the North China Plain. Res. J. Environ. Sci. 2012, 24, 160–168. [Google Scholar] [CrossRef]
- Jassal, R.S.; Black, T.A.; Roy, R.; Ethier, G. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and Bole respiration. Geoderma 2011, 162, 182–186. [Google Scholar] [CrossRef]
- Montes, F.; Meinen, R.; Dell, C.; Rotz, A.; Hristov, A.N.; Oh, J.; Waghorn, G.; Gerber, P.J.; Henderson, B.; Makkar, H.P.S.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J. Anim. Sci. 2013, 91, 5070–5094. [Google Scholar] [CrossRef] [Green Version]
- Senbayram, M.; Chen, R.; Budai, A.; Bakken, L.; Dittert, K. N2O emission and the N2O/(N2O + N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agric. Ecosyst. Environ. 2012, 147, 4–12. [Google Scholar] [CrossRef]
- Zhou, M.; Zhu, B.; Wang, S.; Zhu, X.; Vereecken, H.; Brüggemann, N. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: A global meta-analysis. Glob. Chang. Biol. 2017, 23, 4068–4083. [Google Scholar] [CrossRef]
- Meng, L.; Ding, W.; Cai, Z. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil. Soil Biol. Biochem. 2005, 37, 2037–2045. [Google Scholar] [CrossRef]
- Shan, J.; Yan, X. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmos. Environ. 2013, 71, 170–175. [Google Scholar] [CrossRef]
- Gu, J.; Nie, H.; Guo, H.; Xu, H.; Gunnathorn, T. Nitrous oxide emissions from fruit orchards: A review. Atmos. Environ. 2019, 201, 166–172. [Google Scholar] [CrossRef]
- Tao, R.; Wakelin, S.A.; Liang, Y.; Hu, B.; Chu, G. Nitrous oxide emission and denitrifier communities in drip-irrigated calcareous soil as affected by chemical and organic fertilizers. Sci. Total Environ. 2018, 612, 739–749. [Google Scholar] [CrossRef]
- Fan, D.; Cao, C.; Li, C. Integrated organic-inorganic nitrogen fertilization mitigates nitrous oxide emissions by regulating ammonia-oxidizing bacteria in purple caitai fields. Agriculture 2022, 12, 723. [Google Scholar] [CrossRef]
- Liang, Z.; Jin, X.; Zhai, P.; Zhao, Y.; Cai, J.; Li, S.; Yang, S.; Li, C.; Li, C.J. Combination of organic fertilizer and slow-release fertilizer increases pineapple yields, agronomic efficiency and reduces greenhouse gas emissions under reduced fertilization conditions in tropical areas. J. Clean. Prod. 2022, 343, 131054. [Google Scholar] [CrossRef]
- Hou, M.; Ohkama-Ohtsu, N.; Suzuki, S.; Tanaka, H.; Schmidhalter, U.; Bellingrath-Kimura, S.D. Nitrous oxide emission from tea soil under different fertilizer managements in Japan. Catena 2015, 135, 304–312. [Google Scholar] [CrossRef]
- Ding, W.; Luo, J.; Li, J.; Yu, H.; Fan, J.; Liu, D. Effect of long-term compost and inorganic fertilizer application on background N2O and fertilizer-induced N2O emissions from an intensively cultivated soil. Sci. Total Environ. 2013, 465, 115–124. [Google Scholar] [CrossRef]
- Chen, Z.; Ding, W.; Luo, Y.; Yu, H.; Xu, Y.; Müller, C.; Xu, X.; Zhu, T. Nitrous oxide emissions from cultivated black soil: A case study in Northeast China and global estimates using empirical model. Glob. Biogeochem. Cycles. 2014, 28, 1311–1326. [Google Scholar] [CrossRef]
- Deng, M.; Hou, M.; Ohkama-Ohtsu, N.; Yokoyama, T.; Tanaka, H.; Nakajima, K.; Omata, R.; Bellingrath-Kimura, S.D. Nitrous oxide emission from organic fertilizer and controlled release fertilizer in Tea fields. Agriculture 2017, 7, 29. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, A.; Pan, Y.; Hussain, G.; Li, Q.; Zheng, L.; Zhang, X. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from central China Plain. Plant Soil. 2012, 351, 263–275. [Google Scholar] [CrossRef]
- Lv, F.; Yang, X.; Xu, H.; Khan, A.; Zhang, S.; Sun, B.; Gu, J. Effect of organic amendments on yield-scaled N2O emissions from winter wheat-summer maize cropping systems in Northwest China. Environ. Sci. Pollut. Res. 2020, 27, 31933–31945. [Google Scholar] [CrossRef] [PubMed]
- Cen, Y.; Guo, L.; Liu, M.; Gu, X.; Li, C.; Jiang, G. Using organic fertilizers to increase crop yield, economic growth, and soil quality in a temperate farmland. PeerJ 2020, 8, e9668. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shu, A.; Song, W.; Shi, W.; Li, M.; Zhang, W.; Li, Z.; Liu, G.; Yuan, F.; Zhang, S.; et al. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma 2021, 404, 115287. [Google Scholar] [CrossRef]
- Ma, D.; Chen, L.; Qu, H.; Wang, Y.; Missel, T.; Jiang, R. Impacts of plastic film mulching on crop yields, soil water, nitrate, and organic carbon in Northwestern China: A meta-analysis. Agric. Water Manag. 2018, 202, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Cho, S.R.; Jeong, S.T.; Hwang, H.Y.; Kima, P.J. Different response of plastic film mulching on greenhouse gas intensity (GHGI) between chemical and organic fertilization in maize upland soil. Sci. Total Environ. 2019, 696, 133827. [Google Scholar] [CrossRef]
- Zhang, M.; Li, B.; Xiong, Z.Q. Effects of organic fertilizer on net global warming potential under an intensively managed vegetable field in southeastern China: A threeyear field study. Atmos. Environ. 2016, 145, 92–103. [Google Scholar] [CrossRef]
- Xu, P.; Han, Z.; Wu, J.; Li, Z.; Wang, J.; Zou, J. Emissions of greenhouse gases and no from rice fields and a peach orchard as affected by N input and land-use conversion. Agronomy 2022, 12, 1850. [Google Scholar] [CrossRef]
- Zhuang, M.; Zhang, J.; Lam, S.K.; Li, H.; Wang, L. Management practices to improve economic benefit and decrease greenhouse gas intensity in a green onion-winter wheat relay intercropping system in the North China Plain. J. Clean. Prod. 2019, 208, 709–715. [Google Scholar] [CrossRef]
- Ameloot, N.; Maenhout, P.; De, N.S.; Sleutel, S. Biochar-induced N2O emission reductions after field incorporation in a loam soil. Geoderma 2016, 267, 10–16. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environ. Int. 2016, 87, 1–12. [Google Scholar] [CrossRef]
Parameters | Mean |
---|---|
pH (H2O) | 8.30 |
Soil organic carbon [g kg−1] | 13.00 |
Total nitrogen TN [g kg−1] | 1.05 |
Total phosphorus P [mg kg−1] | 15.95 |
Total potassium K [mg kg−1] | 151.22 |
Bulk density [g cm−3] | 1.40 |
Clay [<2 μm, %] | 25.00 |
Silt [2–200 μm, %] | 67.00 |
Sand [>200 μm, %] | 8.00 |
Treatments 1 | Fertilizers (kg ha−1) 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Basal Fertilizers | Flowering STAGE | Fruit Expansion Stage | |||||||
N | P2O5 | K2O | N | P2O5 | K2O | N | P2O5 | K2O | |
CK | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
M | 191.88 * | 111.24 * | 168.12 * | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
NPK | 115.2 | 64.8 | 100.8 | 38.4 | 21.6 | 33.6 | 38.4 | 21.6 | 33.6 |
MNPK | 57.6 | 32.4 | 50.4 | 19.2 | 10.8 | 16.8 | 19.2 | 10.8 | 16.8 |
95.94 * | 55.62 * | 84.06 * |
Year | T 1 | CH4 Emission (kg ha−1) 2 | N2O Emission (kg ha−1) 3 | GWP (Emission CO2−eq ha−1) 4 | GHGI (g kg−1) 5 | ||||
---|---|---|---|---|---|---|---|---|---|
FD | BS | FD | BS | FD | BS | FD | BS | ||
2018 | CK | - | −1.70 ± 0.07 a | - | 0.95 ± 0.05 d | - | 240.70 ± 6.84 c | - | 12.08 ± 1.64 a |
M | −4.93 ± 0.08 d | −6.57 ± 0.23 d | 2.13 ± 0.02 c | 1.35 ± 0.03 c | 512.44 ± 7.62 c | 238.09 ± 9.99 c | 16.15 ± 2.03 bc | 7.54 ± 1.33 b | |
NPK | −2.73 ± 0.15 b | −3.37 ± 0.12 b | 2.48 ± 0.07 b | 1.56 ± 0.03 b | 672.10 ± 20.81 b | 379.67 ± 7.26 b | 24.11 ± 4.45 a | 13.56 ± 1.83 a | |
MNPK | −3.87 ± 0.18 c | −4.75 ± 0.30 c | 2.98 ± 0.02 a | 1.93 ± 0.05 a | 790.81 ± 5.43 a | 457.78 ± 12.32 a | 20.43 ± 0.66 ab | 11.83 ± 0.52 a | |
2019 | CK | - | −1.64 ± 0.15 a | - | 1.25 ± 0.08 d | - | 330.91 ± 24.66 d | - | 14.25 ± 2.66 a |
M | −6.04 ± 0.40 d | −7.67 ± 0.22 d | 4.45 ± 0.11 c | 1.98 ± 0.05 c | 1174.36 ± 29.13 c | 398.21 ± 19.08 c | 21.81 ± 1.58 b | 7.39 ± 0.45 b | |
NPK | −2.84 ± 0.16 b | −4.31 ± 0.21 b | 4.82 ± 0.47 b | 2.24 ± 0.12 b | 1365.42 ± 18.14 b | 560.80 ± 39.02 b | 39.19 ± 1.29 a | 16.07 ± 0.68 a | |
MNPK | −4.06 ± 0.25 c | −5.71 ± 0.39 c | 5.15 ± 0.15 a | 2.69 ± 0.17 a | 1434.34 ± 46.47 a | 659.87 ± 26.52 a | 20.63 ± 1.40 b | 9.50 ± 0.94 b | |
2020 | CK | - | −1.06 ± 0.05 a | - | 1.76 ± 0.05 d | - | 497.56 ± 14.46 d | - | 18.40 ± 2.41 b |
M | −3.66 ± 0.19 d | −5.50 ± 0.23 d | 4.69 ± 0.22 c | 2.65 ± 0.02 c | 1305.54 ± 31.81 c | 652.13 ± 10.76 c | 27.70 ± 1.15 c | 13.85 ± 0.75 c | |
NPK | −2.15 ± 0.07 b | −3.25 ± 0.16 b | 5.38 ± 0.05 b | 2.90 ± 0.07 b | 1548.47 ± 15.62 b | 783.85 ± 20.43 b | 44.34 ± 4.98 a | 22.47 ± 2.92 a | |
MNPK | −2.67 ± 0.11 c | −4.46 ± 0.20 c | 5.91 ± 0.08 a | 3.36 ± 0.11 a | 1693.97 ± 21.24 a | 888.49 ± 27.86 a | 33.40 ± 2.06 b | 17.52 ± 1.36 bc | |
AV | CK | - | −1.47 ± 0.06 a | - | 1.32 ± 0.02 d | - | 356.39 ± 4.64 d | - | 14.91 ± 1.27 b |
M | −4.88 ± 0.20 c | −6.58 ± 0.22 d | 3.76 ± 0.10 c | 1.99 ± 0.02 c | 997.45 ± 25.63 c | 429.48 ± 11.45 c | 21.89 ± 0.89 b | 9.59 ± 0.44 c | |
NPK | −2.57 ± 0.07 a | −3.64 ± 0.15 b | 4.23 ± 0.06 b | 2.23 ± 0.05 b | 1195.33 ± 18.18 b | 574.77 ± 17.15 b | 35.88 ± 2.73 a | 17.37 ± 1.70 a | |
MNPK | −3.54 ± 0.17 b | −4.97 ± 0.23 c | 4.68 ± 0.06 a | 2.66 ± 0.07 a | 1306.38 ± 16.42 a | 668.71 ± 15.64 a | 24.82 ± 0.16 b | 12.95 ± 0.18 b |
Year | T 1 | Apple Yield (t ha−1) 2 | Yield-Scaled CH4 Absorption (kg t−1) 3 | Yield-Scaled N2O Emission (kg t−1) 4 | N2O Emission Factor EFd (%) 5 | |||
---|---|---|---|---|---|---|---|---|
FD | BS | FD | BS | FD | BS | |||
2018 | CK | 20.12 ± 2.22 c | - | −0.08 ± 0.19 a | - | 0.05 ± 0.26 ab | - | - |
M | 32.13 ± 4.86 b | −0.16 ± 0.24 b | −0.21 ± 0.03 c | 0.07 ± 0.08 b | 0.04 ± 0.31 b | - | - | |
NPK | 28.38 ± 4.20 b | −0.10 ± 0.14 a | −0.12 ± 0.02 b | 0.09 ± 0.16 a | 0.06 ± 0.11 a | 0.23 ± 0.01 b | 0.09 ± 0.07 b | |
MNPK | 38.73 ± 1.01 a | −0.10 ± 0.05 a | −0.12 ± 0.02 b | 0.08 ± 0.25 ab | 0.05 ± 0.18 ab | 0.32 ± 0.07 a | 0.15 ± 0.08 a | |
2019 | CK | 23.59 ± 3.22 d | - | −0.07 ± 0.04 a | - | 0.05 ± 0.22 b | - | - |
M | 53.98 ± 2.66 b | −0.11 ± 0.12 c | −0.14 ± 0.08 d | 0.08 ± 0.06 b | 0.04 ± 2.11 c | - | - | |
NPK | 34.87 ± 1.35 c | −0.08 ± 0.06 b | −0.12 ± 0.08 c | 0.14 ± 0.04 a | 0.06 ± 0.18 a | 0.53 ± 0.01 b | 0.15 ± 0.22 b | |
MNPK | 69.71 ± 4.30 a | −0.06 ± 0.01 a | −0.08 ± 0.02 b | 0.07 ± 0.04 b | 0.04 ± 0.25 c | 0.62 ± 0.20 a | 0.23 ± 0.02 a | |
2020 | CK | 27.30 ± 3.10 c | - | −0.04 ± 0.19 a | - | 0.06 ± 0.19 b | - | - |
M | 47.19 ± 2.93 a | −0.08 ± 0.05 c | −0.12 ± 0.16 c | 0.10 ± 0.04 b | 0.05 ± 0.17 b | - | - | |
NPK | 35.22 ± 3.90 b | −0.06 ± 0.06 b | −0.09 ± 0.42 b | 0.15 ± 0.17 a | 0.08 ± 0.11 a | 0.54 ± 0.09 b | 0.17 ± 0.02 b | |
MNPK | 50.82 ± 2.43 a | −0.05 ± 0.04 b | −0.09 ± 0.22 b | 0.12 ± 0.07 b | 0.06 ± 0.28 b | 0.65 ± 0.15 a | 0.25 ± 0.02 a | |
AV | CK | 23.67 ± 2.30 d | - | −0.06 ± 0.01 a | - | 0.06 ± 0.01 b | - | - |
M | 44.44 ± 1.53 b | −0.12 ± 0.01 c | −0.16 ± 0.01 d | 0.08 ± 0.03 b | 0.04 ± 0.01 c | - | - | |
NPK | 32.82 ± 2.20 c | −0.08 ± 0.04 b | −0.11 ± 0.01 c | 0.13 ± 0.09 a | 0.07 ± 0.01 a | 0.43 ± 0.01 b | 0.14 ± 0.01 b | |
MNPK | 53.09 ± 0.89 a | −0.07 ± 0.02 a | −0.10 ± 0.04 b | 0.09 ± 0.01 b | 0.05 ± 0.01 bc | 0.52 ± 0.01 a | 0.21 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sompouviset, T.; Ma, Y.; Zhao, Z.; Zhen, Z.; Zheng, W.; Li, Z.; Zhai, B. Combined Application of Organic and Inorganic Fertilizers Effects on the Global Warming Potential and Greenhouse Gas Emission in Apple Orchard in Loess Plateau Region of China. Forests 2023, 14, 337. https://doi.org/10.3390/f14020337
Sompouviset T, Ma Y, Zhao Z, Zhen Z, Zheng W, Li Z, Zhai B. Combined Application of Organic and Inorganic Fertilizers Effects on the Global Warming Potential and Greenhouse Gas Emission in Apple Orchard in Loess Plateau Region of China. Forests. 2023; 14(2):337. https://doi.org/10.3390/f14020337
Chicago/Turabian StyleSompouviset, Thongsouk, Yanting Ma, Zhiyuan Zhao, Zhaoxia Zhen, Wei Zheng, Ziyan Li, and Bingnian Zhai. 2023. "Combined Application of Organic and Inorganic Fertilizers Effects on the Global Warming Potential and Greenhouse Gas Emission in Apple Orchard in Loess Plateau Region of China" Forests 14, no. 2: 337. https://doi.org/10.3390/f14020337
APA StyleSompouviset, T., Ma, Y., Zhao, Z., Zhen, Z., Zheng, W., Li, Z., & Zhai, B. (2023). Combined Application of Organic and Inorganic Fertilizers Effects on the Global Warming Potential and Greenhouse Gas Emission in Apple Orchard in Loess Plateau Region of China. Forests, 14(2), 337. https://doi.org/10.3390/f14020337