Latitudinal and Altitudinal Patterns and Influencing Factors of Soil Humus Carbon in the Low-Latitude Plateau Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling
2.3. Physical and Chemical Analyses
2.4. The Composition of Soil Organic Matter Analysis
2.5. Data Analysis
3. Results
3.1. Effects of Latitude and Altitude on the Composition of Organic Matter of Forest Soil
3.2. Clustering of the Composition of Soil Organic Matter and Environmental Factors
3.3. Effect of Environmental Variables on the Composition of Soil Organic Matter
4. Discussion
4.1. Effects of Altitude and Latitude on Forest Soil Organic Carbon
4.2. Analysis of Comprehensive Influencing Factors of Soil Organic Matter Composition under Different Altitudes and Latitudes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meinshausen, M.; Lewis, J.; McGlade, C.; Gütschow, J.; Nicholls, Z.; Burdon, R.; Cozzi, L.; Hackmann, B. Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature 2022, 604, 304–309. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Babur, E.; Dindaroglu, T. Seasonal Changes of Soil Organic Carbon and Microbial Biomass Carbon in Different Forest Ecosystems. In Environmental Factors Affecting Human Health; Uher, I., Ed.; IntechOpen: London, UK, 2020; ISBN 978-1-78985-527-2. [Google Scholar]
- Funghi, C.; Trigo, S.; Gomes, A.C.R.; Soares, M.C.; Cardoso, G.C. Release from ecological constraint erases sex difference in social ornamentation. Behav. Ecol. Sociobiol. 2018, 72, 67. [Google Scholar] [CrossRef]
- Cicuzza, D.; de Nicola, C.; Testi, A.; Pignatti, S.; Zanella, A. Which is the contribution to the carbon sequestration of the forest ecosystems in the Castelporziano Reserve? Evidences from an integrated study on humus and vegetation. Rend. Fis. Acc. Lincei 2015, 26, 403–411. [Google Scholar] [CrossRef]
- Cheng, M.; Xue, Z.; Xiang, Y.; Darboux, F.; An, S. Soil organic carbon sequestration in relation to revegetation on the Loess Plateau, China. Plant Soil 2015, 397, 31–42. [Google Scholar] [CrossRef]
- Andreetta, A.; Ciampalini, R.; Moretti, P.; Vingiani, S.; Poggio, G.; Matteucci, G.; Tescari, F.; Carnicelli, S. Forest humus forms as potential indicators of soil carbon storage in Mediterranean environments. Biol Fertil Soils 2011, 47, 31–40. [Google Scholar] [CrossRef]
- Faggian, V.; Bini, C.; Zilioli, D.M. Carbon stock evaluation from topsoil of forest stands in NE Italy. Int. J. Phytoremediat. 2012, 14, 415–428. [Google Scholar] [CrossRef]
- Olaya-Abril, A.; Parras-Alcántara, L.; Lozano-García, B.; Obregón-Romero, R. Soil organic carbon distribution in Mediterranean areas under a climate change scenario via multiple linear regression analysis. Sci. Total Environ. 2017, 592, 134–143. [Google Scholar] [CrossRef]
- Han, B.; Kitamura, K.; Hirota, M.; Shen, H.; Tang, Y.; Suzuki, T.; Fujitake, N. Humus composition and humification degree of humic acids of alpine meadow soils in the northeastern part of the Qinghai–Tibet Plateau. Soil Sci. Plant Nutr. 2019, 65, 11–19. [Google Scholar] [CrossRef]
- Singh, R.P.; Manchanda, G.; Bhattacharjee, K.; Panosyan, H. Microbial Syntrophy-Mediated Eco-Enterprising; Academic Press: Amsterdam, The Netherlands, 2022; ISBN 978-0-323-99900-7. [Google Scholar]
- Cotrufo, M.F.; Soong, J.L.; Horton, A.J.; Campbell, E.E.; Haddix, M.L.; Wall, D.H.; Parton, W.J. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat. Geosci. 2015, 8, 776–779. [Google Scholar] [CrossRef]
- Jones, D.L.; Nguyen, C.; Finlay, R.D. Carbon flow in the rhizosphere: Carbon trading at the soil–root interface. Plant Soil 2009, 321, 5–33. [Google Scholar] [CrossRef]
- Sokol, N.W.; Kuebbing, S.E.; Karlsen-Ayala, E.; Bradford, M.A. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol. 2019, 221, 233–246. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Wallenstein, M.D.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef]
- Pausch, J.; Kuzyakov, Y. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Glob. Chang. Biol. 2018, 24, 1–12. [Google Scholar] [CrossRef]
- Labaz, B.; Galka, B.; Bogacz, A.; Waroszewski, J.; Kabala, C. Factors influencing humus forms and forest litter properties in the mid-mountains under temperate climate of southwestern Poland. Geoderma 2014, 230–231, 265–273. [Google Scholar] [CrossRef]
- Prescott, C.E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 2010, 101, 133–149. [Google Scholar] [CrossRef]
- Buresova, A.; Tejnecky, V.; Kopecky, J.; Drabek, O.; Madrova, P.; Rerichova, N.; Omelka, M.; Krizova, P.; Nemecek, K.; Parr, T.B.; et al. Litter chemical quality and bacterial community structure influenced decomposition in acidic forest soil. Eur. J. Soil Biol. 2021, 103, 103271. [Google Scholar] [CrossRef]
- Ahirwal, J.; Nath, A.; Brahma, B.; Deb, S.; Sahoo, U.K.; Nath, A.J. Patterns and driving factors of biomass carbon and soil organic carbon stock in the Indian Himalayan region. Sci. Total Environ. 2021, 770, 145292. [Google Scholar] [CrossRef]
- Tan, W.; Xi, B.; Wang, G.; Jiang, J.; He, X.; Mao, X.; Gao, R.; Huang, C.; Zhang, H.; Li, D.; et al. Increased Electron-Accepting and Decreased Electron-Donating Capacities of Soil Humic Substances in Response to Increasing Temperature. Environ. Sci. Technol. 2017, 51, 3176–3186. [Google Scholar] [CrossRef]
- Cardelli, V.; de Feudis, M.; Fornasier, F.; Massaccesi, L.; Cocco, S.; Agnelli, A.; Weindorf, D.C.; Corti, G. Changes of topsoil under Fagus sylvatica along a small latitudinal-altitudinal gradient. Geoderma 2019, 344, 164–178. [Google Scholar] [CrossRef]
- Babur, E.; Dindaroğlu, T.; Solaiman, Z.M.; Battaglia, M.L. Microbial respiration, microbial biomass and activity are highly sensitive to forest tree species and seasonal patterns in the Eastern Mediterranean Karst Ecosystems. Sci. Total Environ. 2021, 775, 145868. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, S.; Zhu, A.-X.; Hu, B.; Shi, Z.; Li, Y. Revealing the scale- and location-specific controlling factors of soil organic carbon in Tibet. Geoderma 2021, 382, 114713. [Google Scholar] [CrossRef]
- Alvarez, R.; Lavado, R. Climate, organic matter and clay content relationships in the Pampa and Chaco soils, Argentina. Geoderma 1998, 83, 127–141. [Google Scholar] [CrossRef]
- Ponge, J.-F.; Jabiol, B.; Gégout, J.-C. Geology and climate conditions affect more humus forms than forest canopies at large scale in temperate forests. Geoderma 2011, 162, 187–195. [Google Scholar] [CrossRef]
- Shedayi, A.A.; Xu, M.; Naseer, I.; Khan, B. Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges. Springerplus 2016, 5, 320. [Google Scholar] [CrossRef]
- Zhang, Y.; Ai, J.; Sun, Q.; Li, Z.; Hou, L.; Song, L.; Tang, G.; Li, L.; Shao, G. Soil organic carbon and total nitrogen stocks as affected by vegetation types and altitude across the mountainous regions in the Yunnan Province, south-western China. CATENA 2021, 196, 104872. [Google Scholar] [CrossRef]
- Startsev, V.V.; Mazur, A.S.; Dymov, A.A. The Content and Composition of Organic Matter in Soils of the Subpolar Urals. Eurasian Soil Sc. 2020, 53, 1726–1734. [Google Scholar] [CrossRef]
- Badía-Villas, D.; Girona-García, A. Soil humus changes with elevation in Scots pine stands of the Moncayo Massif (NE Spain). Appl. Soil Ecol. 2018, 123, 617–621. [Google Scholar] [CrossRef]
- Bojko, O.; Kabala, C.; Mendyk, Ł.; Markiewicz, M.; Pagacz-Kostrzewa, M.; Glina, B. Labile and stabile soil organic carbon fractions in surface horizons of mountain soils—Relationships with vegetation and altitude. J. Mt. Sci. 2017, 14, 2391–2405. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, P.; Zha, J.; Zhao, D.; Lu, W. Evaluating the long-term changes in temperature over the low-latitude plateau in China using a statistical downscaling method. Clim. Dyn. 2019, 52, 4269–4292. [Google Scholar] [CrossRef]
- Duan, X.; Rong, L.; Hu, J.; Zhang, G. Soil organic carbon stocks in the Yunnan Plateau, southwest China: Spatial variations and environmental controls. J. Soils Sediments 2014, 14, 1643–1658. [Google Scholar] [CrossRef]
- Chen, D.; Xue, M.; Duan, X.; Feng, D.; Huang, Y.; Rong, L. Changes in topsoil organic carbon from 1986 to 2010 in a mountainous plateau region in Southwest China. Land Degrad. Dev. 2020, 31, 734–747. [Google Scholar] [CrossRef]
- Walkley, A.J.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and A Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, J.; Meng, T.; Zhang, Y.; Yang, J.; Müller, C.; Cai, Z. Tea plantation destroys soil retention of NO3− and increases N2O emissions in subtropical China. Soil Biol. Biochem. 2014, 73, 106–114. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; You, C.; Cao, R.; Tan, B.; Li, H.; Jiang, Y.; Yang, W. The three-dimension zonal pattern of soil organic carbon density in China’s forests. CATENA 2021, 196, 104950. [Google Scholar] [CrossRef]
- Aerts, R.; van Bodegom, P.M.; Cornelissen, J.H.C. Litter stoichiometric traits of plant species of high-latitude ecosystems show high responsiveness to global change without causing strong variation in litter decomposition. New Phytol. 2012, 196, 181–188. [Google Scholar] [CrossRef]
- Xu, L.; Wang, C.; Zhu, J.; Gao, Y.; Li, M.; Lv, Y.; Yu, G.; He, N. Latitudinal patterns and influencing factors of soil humic carbon fractions from tropical to temperate forests. J. Geogr. Sci. 2018, 28, 15–30. [Google Scholar] [CrossRef]
- Manlay, R.J.; Feller, C.; Swift, M.J. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems. Agric. Ecosyst. Environ. 2007, 119, 217–233. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, L.; Shao, M. Spatial variations and influencing factors of soil organic carbon under different land use types in the alpine region of Qinghai-Tibet Plateau. CATENA 2023, 220, 106706. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Ji, X.; Zhang, Z.; Zhang, H.; Zha, T.; Jiang, L. Elevation and total nitrogen are the critical factors that control the spatial distribution of soil organic carbon content in the shrubland on the Bashang Plateau, China. CATENA 2021, 204, 105415. [Google Scholar] [CrossRef]
- Berg, B. Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Manag. 2000, 133, 13–22. [Google Scholar] [CrossRef]
- Fang, H.; Ji, B.; Deng, X.; Ying, J.; Zhou, G.; Shi, Y.; Xu, L.; Tao, J.; Zhou, Y.; Li, C.; et al. Effects of topographic factors and aboveground vegetation carbon stocks on soil organic carbon in Moso bamboo forests. Plant Soil 2018, 433, 363–376. [Google Scholar] [CrossRef]
- Bayranvand, M.; Akbarinia, M.; Salehi Jouzani, G.; Gharechahi, J.; Alberti, G. Dynamics of humus forms and soil characteristics along a forest altitudinal gradient in Hyrcanian forest. iForest 2021, 14, 26–33. [Google Scholar] [CrossRef]
- Kuznetsova, A.I.; Lukina, N.V.; Gornov, A.V.; Gornova, M.V.; Tikhonova, E.V.; Smirnov, V.E.; Danilova, M.A.; Tebenkova, D.N.; Braslavskaya, T.Y.; Kuznetsov, V.A.; et al. Carbon Stock in Sandy Soils of Pine Forests in the West of Russia. Eurasian Soil Sc. 2020, 53, 1056–1065. [Google Scholar] [CrossRef]
- Andreetta, A.; Cecchini, G.; Bonifacio, E.; Comolli, R.; Vingiani, S.; Carnicelli, S. Tree or soil? Factors influencing humus form differentiation in Italian forests. Geoderma 2016, 264, 195–204. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma 2013, 192, 189–201. [Google Scholar] [CrossRef]
- Chertov, O.G.; Nadporozhskaya, M.A. Humus Forms in Forest Soils: Concepts and Classifications. Eurasian Soil Sc. 2018, 51, 1142–1153. [Google Scholar] [CrossRef]
- Guimarães, D.V.; Gonzaga, M.I.S.; Da Silva, T.O.; Da Silva, T.L.; Da Silva Dias, N.; Matias, M.I.S. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Tillage Res. 2013, 126, 177–182. [Google Scholar] [CrossRef]
- Ding, X.; Liu, G.; Fu, S.; Chen, H.Y. Tree species composition and nutrient availability affect soil microbial diversity and composition across forest types in subtropical China. CATENA 2021, 201, 105224. [Google Scholar] [CrossRef]
- Yang, C.; Ni, H.; Zhong, Z.; Zhang, X.; Bian, F. Changes in soil carbon pools and components induced by replacing secondary evergreen broadleaf forest with Moso bamboo plantations in subtropical China. CATENA 2019, 180, 309–319. [Google Scholar] [CrossRef]
- Montti, L.; Campanello, P.I.; Gatti, M.G.; Blundo, C.; Austin, A.T.; Sala, O.E.; Goldstein, G. Understory bamboo flowering provides a very narrow light window of opportunity for canopy-tree recruitment in a neotropical forest of Misiones, Argentina. For. Ecol. Manag. 2011, 262, 1360–1369. [Google Scholar] [CrossRef]
- Kõlli, R.; Köster, T. Interrelationships of humus cover (pro humus form) with soil cover and plant cover: Humus form as transitional space between soil and plant. Appl. Soil Ecol. 2018, 123, 451–454. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Li, Y.-L.; Xiao, Y.; Wenigmann, K.O.; Zhou, G.-Y.; Zhang, D.-Q.; Wenigmann, M.; Tang, X.-L.; Liu, J.-X. Controls of litter quality on the carbon sink in soils through partitioning the products of decomposing litter in a forest succession series in South China. For. Ecol. Manag. 2011, 261, 1170–1177. [Google Scholar] [CrossRef]
- Wang, B.; Wei, W.J.; Liu, C.J.; You, W.Z.; Niu, X.; Man, R.Z. Biomass and Carbon Stock in Moso Bamboo Forests in Subtropical China: Characteristics and Implications. J. Trop. For. Sci. 2013, 25, 137–148. [Google Scholar]
- Wang, H.; Jin, J.; Yu, P.; Fu, W.; Morrison, L.; Lin, H.; Meng, M.; Zhou, X.; Lv, Y.; Wu, J. Converting evergreen broad-leaved forests into tea and Moso bamboo plantations affects labile carbon pools and the chemical composition of soil organic carbon. Sci. Total Environ. 2020, 711, 135225. [Google Scholar] [CrossRef]
- Hansen, R.A. Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology 2000, 81, 1120–1132. [Google Scholar] [CrossRef]
- Zaninovich, S.C.; Montti, L.F.; Alvarez, M.F.; Gatti, M.G. Replacing trees by bamboos: Changes from canopy to soil organic carbon storage. For. Ecol. Manag. 2017, 400, 208–217. [Google Scholar] [CrossRef]
- Salmon, S. Changes in humus forms, soil invertebrate communities and soil functioning with forest dynamics. Appl. Soil Ecol. 2018, 123, 345–354. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, X.; Zeng, R.; Cai, C.; Guo, Z. Spatial variations of aggregate-associated humic substance in heavy-textured soils along a climatic gradient. Soil Tillage Res. 2020, 197, 104497. [Google Scholar] [CrossRef]
- Pintaldi, E.; D’Amico, M.E.; Stanchi, S.; Catoni, M.; Freppaz, M.; Bonifacio, E. Humus forms affect soil susceptibility to water erosion in the Western Italian Alps. Appl. Soil Ecol. 2018, 123, 478–483. [Google Scholar] [CrossRef]
- Ponge, J.-F.; Sartori, G.; Garlato, A.; Ungaro, F.; Zanella, A.; Jabiol, B.; Obber, S. The impact of parent material, climate, soil type and vegetation on Venetian forest humus forms: A direct gradient approach. Geoderma 2014, 226–227, 290–299. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, F.; Li, H.; Gao, Q.; Song, X.; Ke, X.; Wang, L. Effects of earthworm activity on humus composition and humic acid characteristics of soil in a maize residue amended rice–wheat rotation agroecosystem. Appl. Soil Ecol. 2011, 51, 1–8. [Google Scholar] [CrossRef]
- Ascher, J.; Sartori, G.; Graefe, U.; Thornton, B.; Ceccherini, M.T.; Pietramellara, G.; Egli, M. Are humus forms, mesofauna and microflora in subalpine forest soils sensitive to thermal conditions? Biol. Fertil. Soils 2012, 48, 709–725. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, S.; Ciais, P.; Manzoni, S.; Fang, J.; Yu, G.; Tang, X.; Zhou, P.; Wang, W.; Yan, J.; et al. Climate and litter C/N ratio constrain soil organic carbon accumulation. Natl. Sci. Rev. 2019, 6, 746–757. [Google Scholar] [CrossRef]
- Angst, G.; Pokorný, J.; Mueller, C.W.; Prater, I.; Preusser, S.; Kandeler, E.; Meador, T.; Straková, P.; Hájek, T.; van Buiten, G.; et al. Soil texture affects the coupling of litter decomposition and soil organic matter formation. Soil Biol. Biochem. 2021, 159, 108302. [Google Scholar] [CrossRef]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Yakushev, A.V.; Kuznetsova, I.N.; Blagodatskaya, E.V.; Blagodatsky, S.A. Temperature dependence of the activity of polyphenol peroxidases and polyphenol oxidases in modern and buried soils. Eurasian Soil Sc. 2014, 47, 459–465. [Google Scholar] [CrossRef]
- Cools, N.; Vesterdal, L.; de Vos, B.; Vanguelova, E.; Hansen, K. Tree species is the major factor explaining C:N ratios in European forest soils. For. Ecol. Manag. 2014, 311, 3–16. [Google Scholar] [CrossRef]
- Descheemaeker, K.; Muys, B.; Nyssen, J.; Sauwens, W.; Haile, M.; Poesen, J.; Raes, D.; Deckers, J. Humus Form Development during Forest Restoration in Exclosures of the Tigray Highlands, Northern Ethiopia. Restor. Ecol. 2009, 17, 280–289. [Google Scholar] [CrossRef]
Slope Type | Sample Numbers | SOC/g·kg −1 | HAC/g·kg−1 | FAC/g·kg −1 | HMC/g·kg−1 |
---|---|---|---|---|---|
Gentle slope | 25 | 47.84 | 7.89 | 13.26 | 26.29 |
Abrupt slope | 25 | 59.21 | 10.40 | 15.35 | 33.46 |
Steep slope | 20 | 45.93 | 9.05 | 16.87 | 20.01 |
Acute slope | 10 | 52.38 | 11.13 | 15.87 | 22.97 |
Forest Types | Sample Numbers | SOC/g·kg −1 | HAC/g·kg−1 | FAC/g·kg −1 | HMC/g·kg−1 |
---|---|---|---|---|---|
Coniferous forest | 50 | 53.05 | 9.28 | 15.54 | 28.23 |
Broadleaf forest | 22 | 55.72 | 11.13 | 15.82 | 28.77 |
Bamboo forest | 8 | 30.01 | 6.78 | 8.35 | 14.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Yan, Y.; Dai, Q.; He, Z.; Yi, X. Latitudinal and Altitudinal Patterns and Influencing Factors of Soil Humus Carbon in the Low-Latitude Plateau Regions. Forests 2023, 14, 344. https://doi.org/10.3390/f14020344
Zhou H, Yan Y, Dai Q, He Z, Yi X. Latitudinal and Altitudinal Patterns and Influencing Factors of Soil Humus Carbon in the Low-Latitude Plateau Regions. Forests. 2023; 14(2):344. https://doi.org/10.3390/f14020344
Chicago/Turabian StyleZhou, Hong, Youjin Yan, Quanhou Dai, Zhongjun He, and Xingsong Yi. 2023. "Latitudinal and Altitudinal Patterns and Influencing Factors of Soil Humus Carbon in the Low-Latitude Plateau Regions" Forests 14, no. 2: 344. https://doi.org/10.3390/f14020344
APA StyleZhou, H., Yan, Y., Dai, Q., He, Z., & Yi, X. (2023). Latitudinal and Altitudinal Patterns and Influencing Factors of Soil Humus Carbon in the Low-Latitude Plateau Regions. Forests, 14(2), 344. https://doi.org/10.3390/f14020344