Spatial and Temporal Changes of Habitat Quality and Its Influential Factors in China Based on the InVEST Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: China
2.2. Research Methods
2.2.1. Evaluation of Habitat Quality—InVEST Model
2.2.2. Spatial Statistical Analysis
2.2.3. Driving Factors Analysis: Geodetector
2.3. Research Steps
2.4. Data Sources
3. Results
3.1. Analysis of Spatial and Temporal Variation in Habitat Quality
3.1.1. Spatial and Temporal Variation in Habitat Quality
3.1.2. Spatio-Temporal Variation in Habitat Degradation
3.2. Spatial Statistical Analysis of Habitat Quality
3.2.1. Global Spatial Autocorrelation
3.2.2. Local Spatial Autocorrelation
3.3. Analysis of Influential Factors of Habitat Quality
3.3.1. Factor Analysis
3.3.2. Interaction Analysis
4. Discussion
4.1. Driving Mechanism
4.2. Policy Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, L.S.; Krausman, P.R.; Morrison, M.L. The habitat concept and a plea for standard terminology. Wildl. Soc. Bull. 1997, 25, 173–182. [Google Scholar]
- Zheng, J.C.; Xie, B.G.; You, X.B. Spatio-temporal characteristics of habitat quality based on land-use changes in Guangdong Province. Acta Ecol. Sin. 2022, 42, 6997–7010. [Google Scholar]
- Tripp, E.A.; Lendemer, J.C.; McCain, C.M. Habitat quality and disturbance drive lichen species richness in a temperate bio-diversity hotspot. Oecologia 2019, 190, 445–457. [Google Scholar] [CrossRef]
- Zhang, X.; Song, W.; Lang, Y.; Feng, X.; Yuan, Q.; Wang, J. Land use changes in the coastal zone of China’s Hebei Province and the corresponding impacts on habitat quality. Land Use Policy 2020, 99, 104957. [Google Scholar] [CrossRef]
- Barbara, R.; Stefan, L. A spatially explicit patch model of habitat quality, integrating spatio-structural indicators. Ecol. Indic. 2018, 94, 128–141. [Google Scholar]
- Song, S.; Liu, Z.; He, C.; Lu, W. Evaluating the effects of urban expansion on natural habitat quality by coupling localized shared socioeconomic pathways and the land use scenario dynamics-urban model. Ecol. Indic. 2020, 112, 106071. [Google Scholar] [CrossRef]
- Wu, J.S.; Cao, Q.W.; Shi, S.Q.; Huang, X.L.; Lu, Z.Q. Spatio-temporal variability of habitat quality in Beijing-Tianjin-Hebei Area based on land use change. Chin. J. Appl. Ecol. 2015, 6, 3457–3466. [Google Scholar]
- De Mendonça, M.J.C.; Sachsida, A.; Loureiro, P.R.A. A study on the valuing of biodiversity: The case of three endangered species in Brazil. Ecol. Econ. 2003, 46, 9–18. [Google Scholar] [CrossRef]
- Balasooriya, B.L.W.K.; Samson, R.; Mbikwa, F.; Vitharana, U.W.A.; Boeckx, P.; Van Meirvenne, M. Biomonitoring of urban habitat quality by anatomical and chemical leaf characteristics. Environ. Exp. Bot. 2009, 65, 386–394. [Google Scholar] [CrossRef]
- Partyka, M.L.; Peterson, M.S. Habitat quality and salt-marsh species assemblages along an anthropogenic estuarine landscape. J. Coast. Res. 2008, 24, 1570–1581. [Google Scholar] [CrossRef]
- Wei, W.; Wenhui, L. Impact of construction land expansion on the little egret habitat networks in Su-Xi-Chang area: From the perspective of ecosystem service function. Resour. Environ. Yangtze Basin 2018, 27, 1043–1050. [Google Scholar] [CrossRef]
- Vellend, M.; Lilley, P.L.; Starzomski, B.M. Using subsets of species in biodiversity surveys. J. Appl. Ecol. 2008, 45, 161–169. [Google Scholar] [CrossRef]
- Zhu, P.; Huang, L.; Xiao, T.; Wang, J.B. Dynamic changes of habitats in China’s typical nature reserves on spatial and temporal scales. Acta Geogr. Sin. 2018, 73, 92–103. [Google Scholar] [CrossRef]
- Wang, D.C.; Zhang, W.; Wang, Z.H.; Chen, J.H.; Wang, X.; Cao, Z.J.; Xing, T. Impact of Laxiwa Hydropower Station construction on the regional landscape pattern and habitat quality. J. Soil Water Conserv. 2021, 35, 200–205. [Google Scholar] [CrossRef]
- Liu, H.C.; Zhao, N.X.; Zhuang, Y.Q.; Yang, M.L.; Zhao, H.R.; Ye, X.P. Assessment of habitat suitability for Naemorhedus griseus in the Qinling Mountains with MaxEnt Model. Acta Ecol. Sin. 2022, 42, 4181–4188. [Google Scholar] [CrossRef]
- Tang, Z.H.; Luo, H.L.; Wang, J.H.; Liu, J.L.; You, Z.Q. Potential suitable habitat and protection gap analysis of white-lipped deer (Cervus albirostris) based on GIS and Maxent Model. Acta Ecol. Ainica 2022, 42, 9394–9403. [Google Scholar] [CrossRef]
- Duflot, R.; Avon, C.; Roche, P.; Bergès, L. Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: An applied methodological framework and a species case study. J. Nat. Conserv. 2018, 46, 38–47. [Google Scholar] [CrossRef]
- Lewis, N.S.; Fox, E.W.; Dewitt, T.H. Estimating the distribution of harvested estuarine bivalves with natural-history-based habitat suitability models. Estuar. Coast. Shelf Sci. 2019, 219, 453–472. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, B.T.; Lyu, Y.P.; Yang, K.; Che, Y. Assessment of the social values of ecosystem services based on SolVES Model: A case study of Wusong Paotaiwan Wetland Forest Park, Shanghai, China. J. Appl. Ecol. 2016, 27, 1767–1774. [Google Scholar]
- Sherrouse, B.C.; Semmens, D.J.; Clement, J.M. An application of Social Values for Ecosystem Services (SolVES) to three national forests in Colorado and Wyoming. Ecol. Indic. 2014, 36, 68–79. [Google Scholar] [CrossRef]
- Hong, H.-J.; Kim, C.-K.; Lee, H.-W.; Lee, W.-K. Conservation, restoration, and sustainable use of biodiversity based on habitat quality monitoring: A case study on Jeju Island, South Korea (1989–2019). Land 2021, 10, 774. [Google Scholar] [CrossRef]
- Mushet, D.M.; Neau, J.L.; Euliss, N.H. Modeling effects of conservation grassland losses on amphibian habitat. Biol. Conserv. 2014, 174, 93–100. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, F.; Jiang, L. Effects of land use pattern change on regional scale habitat quality based on InVEST Model-A case study in Beijing. Acta Sci. Nat. Univ. Pekin. 2016, 52, 553–562. [Google Scholar]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of Land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Env. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, J.J.; Zhu, W.B.; Wang, L.; Zhang, L.; Zhu, L. Impact of land use change on habitat in the Qihe River Basin of Taihang Mountains. Prog. Geogr. 2018, 37, 1693–1704. [Google Scholar]
- Shang, J.; Cai, H.S.; Long, Y.; Zeng, J.Q.; Chen, Y.; Zhang, X.L. Temporal-spatial distribution and transition of habitat quality in Poyang Lake region based on InVEST Model. Resour. Environ. Yangtze Basin 2021, 30, 1901–1915. [Google Scholar]
- Zhang, X.R.; Zhou, J.; Li, M.M. Analysis on spatial and temporal changes of regional habitat quality based on the spatial pattern reconstruction of land use. Acta Geogr. Sin. 2020, 75, 160–178. [Google Scholar] [CrossRef]
- Upadhaya, S.; Dwivedi, P. Conversion of forestlands to blueberries: Assessing implications for habitat quality in Alabaha river watershed in Southeastern Georgia, United States. Land Use Policy 2019, 89, 104229. [Google Scholar] [CrossRef]
- Berta Aneseyee, A.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. J. Environ. Manag. 2021, 281, 111885. [Google Scholar] [CrossRef]
- Liu, Z.F.; Tang, L.N.; Qiu, Q.Y.; Xiao, L.S.; Xu, T.; Yang, L. Temporal and spatial changes in habitat quality based on land-use change in Fujian Province. Acta Ecol. Sin. 2017, 37, 4538–4548. [Google Scholar]
- Xiao, P.; Zhou, Y.; Li, M.; Xu, J. Spatiotemporal patterns of habitat quality and its topographic gradient effects of Hubei Province based on the InVEST Model. Environ. Dev. Sustain. 2022; in press. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.G.; Wang, W.J.; Lv, J.X.; Chen, K. Urban expansion led to the degradation of habitat quality in the Beijing- TianjinHebei area. Acta Ecol. Sin. 2018, 38, 4516–4525. [Google Scholar]
- Wu, J.; Li, X.; Luo, Y.; Zhang, D. Spatiotemporal effects of urban sprawl on habitat quality in the Pearl River Delta from 1990 to 2018. Sci. Rep. 2021, 11, 13981. [Google Scholar] [CrossRef]
- Dai, Y.Z.; Li, J.F.; Yang, J.X. Spatiotemporal responses of habitat quality to urban sprawl in the Changsha metropolitan area. Prog. Geogr. 2018, 37, 1340–1351. [Google Scholar] [CrossRef]
- Peng, J.; Xu, F.X.; Wu, J.; Deng, K.; Hu, T. Spatial differentiation of habitat quality in typical tourist city and their Influencing factors mechanisms: A case study of Huangshan City. Resour. Environ. Yangtze Basin 2019, 28, 2397–2409. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Li, S.; Li, Y. Multi-Scenario simulation analysis of land use impacts on habitat quality in Tianjin based on the PLUS Model coupled with the InVEST Model. Sustainability 2022, 14, 6923. [Google Scholar] [CrossRef]
- Liu, C.F.; Wang, C.; Liu, L.C. Spatio-temporal variation on habitat quality and its mechanism within the transitional area of the Three Natural Zones: A case study in Yuzhong county. Geogr. Res. 2018, 37, 419–432. [Google Scholar] [CrossRef]
- Li, Y.; Duo, L.; Zhang, M.; Yang, J.; Guo, X. Habitat quality assessment of mining cities based on InVEST Model-a case study of Yanshan County, Jiangxi Province. Int. J. Coal Sci. Technol. 2022, 9, 28. [Google Scholar] [CrossRef]
- Bao, Y.B.; Liu, K.; Li, T.; Hu, S. Effects of land use change on habitat based on InVEST Model: Taking Yellow River Wetland Nature Reserve in Shaanxi Province as an example. Arid. Zone Res. 2015, 32, 622–629. [Google Scholar] [CrossRef]
- Sallustio, L.; De, T.A.; Strollo, A.; Di, F.M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafo, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Hack, J.; Molewijk, D.; Beißler, M.R. A conceptual approach to modeling the geospatial impact of typical urban threats on the habitat quality of river corridors. Remote Sens. 2020, 12, 1345. [Google Scholar] [CrossRef]
- Zhang, H.; Han, W.H.; Song, J.Y.; Li, M. Spatial-temporal variations of habitat quality in Qilian Mountain National Park. Chin. J. Ecol. 2021, 40, 1419–1430. [Google Scholar] [CrossRef]
- Chen, L.; Wei, Q.; Fu, Q.; Feng, D. Spatiotemporal evolution analysis of habitat quality under high-speed urbanization: A case study of urban core area of China Lin-Gang Free Trade Zone (2002–2019). Land 2021, 10, 167. [Google Scholar] [CrossRef]
- Dezhi, Z.; Yinghui, G.; Bingbin, Z.; Rong, C.; Xiuru, W. Spatial-temporal evolution of habitat quality in northern Shaanxi Province of northwestern China based on land use change and its driving factors. J. Beijing For. Univ. 2022, 44, 85–95. [Google Scholar]
- Chen, M.; Bai, Z.; Wang, Q.; Shi, Z. Habitat quality effect and driving mechanism of land use transitions: A case study of Henan water source area of the middle route of the south-to-north water transfer project. Land 2021, 10, 796. [Google Scholar] [CrossRef]
- Jianhong, D.; Zhibin, Z.; Benteng, L.; Xinhong, Z.; Wenbin, Z.; Long, C. Spatiotemporal variations and driving factors of habitat quality in the loess hilly area of the Yellow River Basin: A case study of Lanzhou City, China. J. Arid. Land 2022, 14, 637–652. [Google Scholar] [CrossRef]
- Zhang, X.; Lyu, C.; Fan, X.; Bi, R.; Xia, L.; Xu, C.; Sun, B.; Li, T.; Jiang, C. Spatiotemporal variation and influence factors of habitat quality in loess hilly and gully area of Yellow River Basin: A case study of Liulin County, China. Land 2022, 11, 127. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, D.G.; Chen, J.G. Analysis on spatial-temporal variation of habitat quality in China based on land use change. Grass Land Turf 2020, 40, 36–42+51. [Google Scholar] [CrossRef]
- Yuan, H.W.; Cai, J.; Zhang, L. Temporal and spatial changes of human activities and habitat quality in national key ecological function areas and their spatial Effects. Arid. Land Geogr. 2022; in press. [Google Scholar] [CrossRef]
- Sun, H.Y.; Gong, Q.Q.; Liu, Q.G.; Sun, P.L. Spatio-temporal evolution of habitat quality based on the land use changes in Shandong Province. Chin. J. Soil Sci. 2022, 12, 15422. [Google Scholar] [CrossRef]
- Sharp, R.; Chaplin-Kramer, R.; Wood, S. InVEST 3.2.0 User’s Guide [EB/OL]. 2015. Available online: https://naturalcapitalproject.stanford.edu/invest/ (accessed on 22 September 2022).
- Li, S.P.; Liu, J.L.; Lin, J.; Li, S.L. Spatial and temporal evolution of habitat quality in Fujian Province, China based on the land use change from 1980 to 2018. Chin. J. Appl. Ecol. 2020, 31, 4080–4090. [Google Scholar] [CrossRef]
- Li, D.D.; Zhou, Z.F.; Dan, Y.S.; Tan, W.Y.; Tian, Z.H. Spatial and temporal evolutionary study of landscape fragmentation in rocky desertification area based on ESDA mode. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 262–270. [Google Scholar] [CrossRef]
- Wen, Z.Y.; Liu, J.F.; Zhang, R.; Mao, D.H.; Zhang, B. Spatial and temporal analysis of habitat quality in western Jilin based on InVEST Model. J. Northeast. Norm. Univ. 2022, 54, 142–149. [Google Scholar] [CrossRef]
- Yue, W.Z.; Xia, H.X.; Wu, T.; Xiong, J.H.; Zhong, P.Y.; Chen, Y. Spatio-temporal evolution of habitat quality and ecological red line assessment in Zhejiang Province. Acta Ecol. Sin. 2022, 42, 6406–6417. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. -Form. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Chen, C.; Bi, L. Study on spatio-temporal changes and driving factors of carbon emissions at the building operation stage—A case study of China. Build. Environ. 2022, 219, 109147. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, P.; Li, W. A study on evaluation of influencing factors for sustainable development of smart construction enterprises: Case study from China. Buildings 2021, 11, 221. [Google Scholar] [CrossRef]
- Zhang, P.; Li, W.; Zhao, K.; Zhao, S. Spatial pattern and driving mechanism of urban-rural income gap in Gansu Province of China. Land 2021, 10, 1002. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, Y.; Han, J. Industrial land change in Chinese Silk Road cities and its influence on environments. Land 2021, 10, 806. [Google Scholar] [CrossRef]
- Geodetector. Available online: http://www.geodetector.cn (accessed on 24 September 2022).
- Limin, B.; Chunliang, X.; Xinghua, F.; Daqian, L. Influence of urbanization on regional habitat quality: A case study of Changchun City. Habitat Int. 2019, 93, 102042. [Google Scholar] [CrossRef]
- Wang, Y.L.; Lan, A.J.; Fan, Z.M.; Lin, S.S.; Zhu, N. Spatial-temporal differentiation and driving factors of habitat quality in the Chishui River Basin based on InVEST Model. China Rural. Water Hydropower 2023, 1, 17–23. [Google Scholar] [CrossRef]
- Yang, L.; Liang, Y.; He, B.; Lu, Y.; Gou, Z. COVID-19 effects on property markets: The pandemic decreases the implicit price of metro accessibility. Tunn. Undergr. Space Technol. 2022, 125, 104528. [Google Scholar] [CrossRef]
- Liu, J.L.; Xiang, Q.X.; Wang, K.; Zou, J.; Kong, Y. Mid- to long-term low carbon development pathways of China’s building sector. Resour. Sci. 2019, 41, 509–520. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, E.; Dong, N.; Tian, G.; Kim, G.; Song, P.; Ge, S.; Liu, S. Driving mechanism of habitat quality at different grid-scales in a metropolitan city. Forests 2022, 13, 248. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, L.; Xu, Z.; Zhang, J.; Chi, M.; Lan, S.; Gan, Q. Interactive effects on habitat quality using InVEST and Ge-oDetector Models in Wenzhou, China. Land 2022, 11, 630. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, Y.; Wang, T.; Ma, H.; He, G. Pattern of patent-based environmental technology innovation in China. Technol. Technol. Forecast. Soc. Chang. 2008, 75, 1032–1042. [Google Scholar] [CrossRef]
- Huang, J.; Tang, Z.; Liu, D.; He, J. Ecological response to urban development in a changing socio-economic and climate context: Policy implications for balancing regional development and habitat conservation. Land Use Policy 2020, 97, 104772. [Google Scholar] [CrossRef]
- Chen, C.; Bi, L.; Zhu, K. Study on spatial-temporal change of urban green space in Yangtze River Economic Belt its driving mechanism. Int. J. Environ. Res. Public Health 2021, 18, 12498. [Google Scholar] [CrossRef]
- Nematollahi, S.; Fakheran, S.; Kienast, F.; Jafari, A. Application of InVEST habitat quality module in spatially vulnerability assessment of natural habitats (case study: Chaharmahal and Bakhtiari province, Iran). Environ. Monit. Assess 2020, 192, 487. [Google Scholar] [CrossRef] [PubMed]
- Resource and Environment Science and Data Center. Available online: http://www.resdc.cn (accessed on 24 September 2022).
- National Bureau of Statistics. Available online: http://www.stats.gov.cn/tjsj/ndsj/ (accessed on 24 September 2022).
- National Meteorological Science Data Center. Available online: http://data.cma.cn/analysis/yearbooks.html (accessed on 24 September 2022).
- Ministry of Housing and Urban-rural Development of the People’s Republic of China. Available online: https://www.mohurd.gov.cn/gongkai/fdzdgknr/sjfb/tjxx/index.html (accessed on 24 September 2022).
- Zhang, L.; Ren, Z.; Chen, B.; Gong, P.; Fu, H.; Xu, B. A Prolonged Artificial Nighttime-Light Dataset of China (1984–2020). Available online: https://data.tpdc.ac.cn/en/data/e755f1ba-9cd1-4e43-98ca-cd081b5a0b3e/?q= (accessed on 26 August 2022).
- Li, E.; Parker, S.S.; Pauly, G.B.; Randall, J.M.; Brown, B.V.; Cohen, B.S. An urban biodiversity assessment framework that combines an urban habitat classification scheme and citizen science data. Front. Ecol. Evol. 2019, 7, 277. [Google Scholar] [CrossRef]
- Zuñiga-Palacios, J.; Zuria, I.; Castellanos, I.; Lara, C.; Sánchez-Rojas, G. What do we know (and need to know) about the role of urban habitats as ecological traps? Systematic review and meta-analysis. Sci. Total Environ. 2021, 780, 146559. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, Y.; Han, L.; Ao, Y.; Yang, H. Impact of COVID-19 on mental health of Chinese residents in its initial stage. Front. Psychol. 2021, 12, 722093. [Google Scholar] [CrossRef] [PubMed]
Threat Factors | Threat Distance/km | Threatened | Type of Declining |
---|---|---|---|
Urban land | 10 | 1.0 | exponential |
Rural residential area | 8 | 0.8 | exponential |
Other construction land | 9 | 0.9 | exponential |
Cultivated land | 6 | 0.6 | linear |
Bare land | 4 | 0.4 | linear |
Land Use Types | Habitat Suitability | Sensitivity | ||||
---|---|---|---|---|---|---|
Urban Land | Rural Residential Area | Other Construction Land | Cultivated Land | Bare Land | ||
Cultivated land | 0.3 | 0.8 | 0.6 | 0.7 | 0.0 | 0.4 |
Forest land | 1.0 | 0.8 | 0.7 | 0.7 | 0.6 | 0.2 |
Grassland | 1.0 | 0.7 | 0.5 | 0.6 | 0.5 | 0.6 |
Water area | 0.9 | 0.7 | 0.6 | 0.7 | 0.4 | 0.4 |
Construction land | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Bare land | 0.6 | 0.6 | 0.5 | 0.6 | 0.4 | 0.0 |
Variable | Index | Code | Type |
---|---|---|---|
Dependent Variable () | Habitat quality | biodiversity | |
Independent Variable () | General public budget revenue (100 million yuan) | Economic level | |
Investment in gardening&greening (10,000 yuan) | |||
Average annual temperature (℃) | Natural condition | ||
Forest area (10,000 hectares) | |||
Per capita water resources (cu.m/person) | |||
Air conditioner owned per 100 urban households (set) | Social activities | ||
Nighttime light index (nW/(cm2·sr) | |||
Inventions of domestic patents granted (piece) | |||
Number of national nature reserves (number) | |||
Forest Fires (case) | |||
Destructed Forest Area (hectare) | |||
Area of afforested land (10,000 hectares) | Land use | ||
Area of green space (hectare) | |||
Per capita area of paved roads (sq.m) |
Grade | Habitat Quality | Proportion of Different Grades/% | |
---|---|---|---|
2010 | 2020 | ||
Low | 0.000–0.297 | 2.38 | 3.25 |
Relatively low | 0.297–0.598 | 21.53 | 21.55 |
Medium | 0.598–0.941 | 24.61 | 24.12 |
Relatively high | 0.941–0.992 | 0.61 | 0.57 |
high | 0.992–1.000 | 50.87 | 50.51 |
Grade | Habitat Degradation | Proportion of Different Grades/% | |
---|---|---|---|
2010 | 2020 | ||
Low | 0.000–0.006 | 0.54 | 0.52 |
Relatively low | 0.006–0.019 | 0.24 | 0.24 |
Medium | 0.019–0.032 | 0.12 | 0.13 |
Relatively high | 0.032–0.045 | 0.06 | 0.06 |
high | ≥0.045 | 0.04 | 0.05 |
Quantity of Factor Pairs | Interaction Intensity | Significant Interaction Factors | ||||||
---|---|---|---|---|---|---|---|---|
Total | High | Medium | Low | Min | Max | Average | ||
2020 | 66 | 22 | 19 | 25 | 0.31 | 1 | 0.81 | |
2010 | 45 | 5 | 18 | 22 | 0.45 | 0.93 | 0.77 |
2020 | 2010 | |||
---|---|---|---|---|
1 | 0.756 | 0.664 | ||
2 | 0.732 | 0.657 | ||
3 | 0.706 | 0.626 | ||
4 | 0.697 | 0.554 | ||
5 | 0.651 | 0.521 | ||
6 | 0.526 | 0.518 | ||
7 | 0.503 | 0.378 | ||
8 | 0.495 | 0.340 | ||
9 | 0.386 | 0.330 | ||
10 | 0.295 | 0.314 | ||
11 | 0.253 | 0.303 | ||
12 | 0.242 | 0.259 | ||
13 | 0.201 | 0.237 | ||
14 | 0.172 | 0.194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Liu, J.; Bi, L. Spatial and Temporal Changes of Habitat Quality and Its Influential Factors in China Based on the InVEST Model. Forests 2023, 14, 374. https://doi.org/10.3390/f14020374
Chen C, Liu J, Bi L. Spatial and Temporal Changes of Habitat Quality and Its Influential Factors in China Based on the InVEST Model. Forests. 2023; 14(2):374. https://doi.org/10.3390/f14020374
Chicago/Turabian StyleChen, Chunyu, Jin Liu, and Linglan Bi. 2023. "Spatial and Temporal Changes of Habitat Quality and Its Influential Factors in China Based on the InVEST Model" Forests 14, no. 2: 374. https://doi.org/10.3390/f14020374
APA StyleChen, C., Liu, J., & Bi, L. (2023). Spatial and Temporal Changes of Habitat Quality and Its Influential Factors in China Based on the InVEST Model. Forests, 14(2), 374. https://doi.org/10.3390/f14020374