Codon Usage Profiling of Chloroplast Genome in Juglandaceae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Codon Usage Bias and Related Index Analysis
2.3. Evaluation of Relative Synonymous Codon Usage
2.4. Codon Usage Bias and Related Index Analyses
2.4.1. ENC Plot
2.4.2. Neutrality Plot
2.4.3. Parity Rule 2-Bias Plot
2.4.4. MILC Analysis
3. Results
3.1. Composition of Nucleotides at Different Codon Positions in Juglandaceae
3.2. Codon Usage Bias Patterns in Juglandaceae CDSs
3.3. Optimal Codon Analysis
3.4. Factors Affecting Codon Preferences in Juglandaceae CDSs
3.5. The A/G and C/U Balance Is Disrupted at the Third Position across Juglandaceae CDSs
3.6. The Primary Driver of Codon Usage Bias in Juglandaceae Is Natural Selection
3.7. Gene Expression Is Altered by Codon Usage Bias
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Li, H.; Zhi, J.; Shen, C.; Yang, X.; Xu, J. Codon Usage of Expansin Genes in Populus trichocarpa. Curr. Bioinform. 2017, 12, 452–461. [Google Scholar] [CrossRef]
- Morton, B.R. The Role of Context-Dependent Mutations in Generating Compositional and Codon Usage Bias in Grass Chloroplast DNA. J. Mol. Evol. 2003, 56, 616–629. [Google Scholar] [CrossRef]
- Quax, T.E.F.; Claassens, N.J.; Söll, D.; van der Oost, J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol. Cell 2015, 59, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.; Wu, G.; Wang, Z.; Chai, X.; Nie, Q.; Zhang, X. Mutation Bias is the Driving Force of Codon Usage in the Gallus gallus genome. DNA Res. 2011, 18, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.M. On the Geographical Distribution of the Juglandaceae. Acta Phytotaxon. Sin. 1982, 20, 257–274. [Google Scholar]
- Wu, X.-M. The analysis method and progress in the study of codon bias. Hereditas 2007, 29, 420–426. [Google Scholar] [CrossRef]
- Hu, X.J.; Zhao, X.J.; Zhou, F.; Yu, M.R.; Chen, Y.Y.; Li, R.Z.; Jia, Y.H.; Ding, Z.S. The Anti-Tumor Effects of Carya cathayensis Sarg Extracts in Vitro. Chin. Arch. Tradit. Chin. 2007, 25, 369–370. [Google Scholar] [CrossRef]
- Li, X.F. Progress of Research on the Chemical Components and Pharmaceutical Action of Walnut Green Husk. Food Sci. Technol. 2007, 4, 241–242. (in Chinese). [Google Scholar] [CrossRef]
- Zhang, C.; Ji, Z.H.; Song, C.S. Anti-Tumor Effect F Water Extract from Manchurian Walnut. World Chin. Med. 2010, 5, 210–212. [Google Scholar]
- Xu, C.; Cai, X.; Chen, Q.; Zhou, H.; Cai, Y.; Ben, A. Factors Affecting Synonymous Codon Usage Bias in Chloroplast Genome of Oncidium Gower Ramsey. Evol. Bioinform. 2011, 7, EBO.S8092. [Google Scholar] [CrossRef]
- Sugiura, M. The chloroplast genome. Plant Mol. Biol. 1992, 19, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Morton, B.R. Selection on the codon bias of chloroplast and cyanelle genes in different plant and algal lineages. J. Mol. Evol. 1998, 46, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Luo, Y.; He, Y.; Qin, X.; Li, C.; Deng, X. Complete Chloroplast Genome of Michelia shiluensis and a Comparative Analysis with Four Magnoliaceae Species. Forests 2020, 11, 267. [Google Scholar] [CrossRef]
- Jiang, L.; Li, M.; Zhao, F.; Chu, S.; Zha, L.; Xu, T.; Peng, H.; Zhang, W. Molecular Identification and Taxonomic Implication of Herbal Species in Genus Corydalis (Papaveraceae). Molecules 2018, 23, 1393. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.F.; Luo, W.H.; Huang, Z.H. Codon Usage Bias of Chloroplast Genome from Two Species of Firmiana Marsili. Guihaia 2020, 40, 173–183. [Google Scholar]
- Gui, L.Q.; Li, Y.F.; Pan, W.D. Progress of Studies on Chloroplast Genetic Engineering. Biotechnol. Bull. 2012, 25, 1–6. [Google Scholar] [CrossRef]
- Wright, F. The ‘effective number of codons’ used in a gene. Gene 1990, 87, 23–29. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Q.; Xia, X. An Improved Implementation of Effective Number of Codons (Nc). Mol. Biol. Evol. 2012, 30, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.M.; Tuohy, T.M.; Mosurski, K.R. Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986, 14, 5125–5143. [Google Scholar] [CrossRef]
- Zhou, J.-H.; Zhang, J.; Sun, D.-J.; Ma, Q.; Chen, H.-T.; Ma, L.-N.; Ding, Y.-Z.; Liu, Y.-S. The Distribution of Synonymous Codon Choice in the Translation Initiation Region of Dengue Virus. PLoS ONE 2013, 8, e77239. [Google Scholar] [CrossRef]
- Shi, S.-L.; Xia, R.-X. Codon Usage in the Iflaviridae Family is Not Diverse Though the Family Members are Isolated from Diverse Host Taxa. Viruses 2019, 11, 1087. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.H.; Smith, D.K.; Rabadan, R.; Peiris, M.; Poon, L.L. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus. BMC Evol. Biol. 2010, 10, 253. [Google Scholar] [CrossRef]
- Feng, J.W. Codon Pattern of Papillomavirus (Type I) from Bos Grunniens Based on the Codonw Software. In Proceedings of the 5th International Conference on Mechanics and Mechatronics, Tokyo, Japan, 19–21 July 2018. [Google Scholar] [CrossRef]
- Seetharaman, J.; Srinivasan, R. Analysis of Codon Usage: Positional Preference in Various Organisms. Indian J. Biochem. Biophys. 1995, 32, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Luo, Y.; Wang, C.; Liao, W. Deciphering Codon Usage Patterns in Genome of Cucumis sativus in Comparison with Nine Species of Cucurbitaceae. Agronomy 2021, 11, 2289. [Google Scholar] [CrossRef]
- Yang, G.F.; Su, K.L.; Zhao, Y.R.; Sun, J.; Song, Z.B. Analysis of Codon Us-Age in the Chloroplast Genome of Medicago Truncatula. Acta Prataculturae Sin. 2015, 24, 171–179. [Google Scholar]
- Zhang, W.-J.; Zhou, J.; Li, Z.-F.; Wang, L.; Gu, X.; Zhong, Y. Comparative Analysis of Codon Usage Patterns Among Mitochondrion, Chloroplast and Nuclear Genes in Triticum aestivum L. J. Integr. Plant Biol. 2007, 49, 246–254. [Google Scholar] [CrossRef]
- Guan, D.-L.; Ma, L.-B.; Khan, M.S.; Zhang, X.-X.; Xu, S.-Q.; Xie, J.-Y. Analysis of codon usage patterns in Hirudinaria manillensis reveals a preference for GC-ending codons caused by dominant selection constraints. BMC Genom. 2018, 19, 542. [Google Scholar] [CrossRef]
- Sueoka, N. Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J. Mol. Evol. 1995, 40, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N. On the Genetic Basis Of Variation And Heterogeneity of DNA Base Composition. Proc. Natl. Acad. Sci. USA 1962, 48, 582–592. [Google Scholar] [CrossRef]
- Dorić, S.; Bilela, L.L. Comparison of Codon Usage in Mitochondrial Genomes of Rhinolophid and Hipposiderid Bats. In Proceedings of the 5th International Symposium on Sustainable Development, Venice, Italy, 15 May 2014. [Google Scholar]
- Whittle, C.A.; Extavour, C.G. Codon and Amino Acid Usage Are Shaped by Selection Across Divergent Model Organisms of the Pancrustacea. G3 Genes Genomes Genet. 2015, 5, 2307–2321. [Google Scholar] [CrossRef]
- Whittle, C.A.; Sun, Y.; Johannesson, H. Evolution of Synonymous Codon Usage in Neurospora tetrasperma and Neurospora discreta. Genome Biol. Evol. 2011, 3, 332–343. [Google Scholar] [CrossRef]
- Li, L.X.; Peng, J.Y.; Wang, D.W.; Duan, A.A. Chloroplast Genome Phylogeny and Codon Preference of Docynia longiunguis. Chin. J. Biotechnol. 2022, 38, 328–342. [Google Scholar] [CrossRef]
- Shu, J.X.; Yang, L.; Zhou, T.; Shen, L.W.; Wang, D.W. Analysis of Codon Bias in the Chloroplast Genome of Four Medicinal Plants of Juniperus. Chin. Tradit. Herb. Drugs 2022, 53, 7507–7515. (in Chinese). [Google Scholar] [CrossRef]
- Xia, X.; Peng, J.Y.; Wang, D.W.; Zhang, X.L.; Li, J.F. Codon Usage Bias in Chloroplast Genomes of Three Ficus Species. J. Northwest For. Univ. 2022, 37, 88–94. (in Chinese). [Google Scholar] [CrossRef]
- Zhou, T.; Yang, L.; Shu, J.X.; Shen, L.W.; Xia, X.; Wang, D.W. Analysis of Codon Bias in the Chloroplast Genome of Three of Michelia spp. Species. J. West China For. Sci. 2022, 51, 91–100. [Google Scholar] [CrossRef]
- Liu, Q.; Xue, Q. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J. Genet. 2005, 84, 55–62. [Google Scholar] [CrossRef]
- Campbell, W.; Gowri, G. Codon Usage in Higher Plants, Green Algae, and Cyanobacteria. Plant Physiol. 1990, 92, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N. Directional Mutation Pressure and Neutral Molecular Evolution. Proc. Natl. Acad. Sci. USA 1988, 85, 2653–2657. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.M.; Cowe, E.; Higgins, D.G.; Shields, D.C.; Wolfe, K.H.; Wright, F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res. 1988, 16, 8207–8211. [Google Scholar] [CrossRef] [PubMed]
- Akashi, H. Gene expression and molecular evolution. Curr. Opin. Genet. Dev. 2001, 11, 660–666. [Google Scholar] [CrossRef]
- Duret, L. Evolution of synonymous codon usage in metazoans. Curr. Opin. Genet. Dev. 2002, 12, 640–649. [Google Scholar] [CrossRef]
- Sharp, P.M.; Li, W.-H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef]
- Wolfe, K.H.; Morden, C.W.; Palmer, J.D. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc. Natl. Acad. Sci. USA 1992, 89, 10648–10652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, R.R.; Nandhini, M.B.; Monalisha, E.; Murugan, K.; Sethuraman, T.; Nagarajan, S.; Rao, N.S.P.; Ganesh, D. Synonymous codon usage in chloroplast genome of Coffea arabica. Bioinformation 2012, 8, 1096–1104. [Google Scholar] [CrossRef]
- Sablok, G.; Nayak, K.C.; Vazquez, F.; Tatarinova, T.V. Synonymous Codon Usage, GC3, and Evolutionary Patterns across Plastomes of Three Pooid Model Species: Emerging Grass Genome Models for Monocots. Mol. Biotechnol. 2011, 49, 116–128. [Google Scholar] [CrossRef]
- Liu, Q.; Feng, Y.; Xue, Q. Analysis of factors shaping codon usage in the mitochondrion genome of Oryza sativa. Mitochondrion 2004, 4, 313–320. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, Q.; Wang, Y.; Li, M.; Wang, C.; Wang, Z.; Jiao, C.; Xu, C.; Wang, H.; Zhang, Z. Comparative Analysis of Codon Bias in the Chloroplast Genomes of Theaceae Species. Front. Genet. 2022, 13, 824610. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.-L.; Liu, Y.-Q.; Xia, R.-X.; Qin, L. Comprehensive Analysis of Codon Usage in Quercus Chloroplast Genome and Focus on psbA Gene. Genes 2022, 13, 2156. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Yengkhom, S.; Uddin, A. Analysis of codon usage bias of chloroplast genes in Oryza species: Codon usage of chloroplast genes in Oryza species. Planta 2020, 252, 67. [Google Scholar] [CrossRef] [PubMed]
Genus | Species | Accession No. | Letter Series | Genome Size (bp) | Protein-Coding Genes | |
---|---|---|---|---|---|---|
Before Processing | After Processing | |||||
Juglans | Juglans regia | KT870116.1 | a | 160,537 | 85 | 71 |
Juglans regia 192 | - | b | 160,367 | 84 | 72 | |
Juglans regia 193 | - | c | 160,367 | 84 | 72 | |
Juglans regia 194 | - | d | 160,367 | 84 | 72 | |
Juglans regia 196 | - | e | 160,367 | 84 | 72 | |
Juglans regia 197 | - | f | 160,367 | 84 | 72 | |
Juglans regia 198 | - | g | 160,367 | 84 | 72 | |
Juglans regia 199 | - | h | 160,367 | 84 | 72 | |
Juglans regia 200 | - | i | 160,367 | 84 | 72 | |
Juglans regia 201 | - | j | 160,367 | 84 | 72 | |
Juglans regia 202 | - | k | 106,349 | 84 | 72 | |
Juglans mandshurica | NC_033892.1 | l | 159,729 | 86 | 71 | |
Juglans hopeiensis | NC_033894.1 | m | 159,714 | 86 | 70 | |
Pterocarya | Pterocarya stenoptera | MN866892.1 | n | 160,212 | 88 | 74 |
Pterocarya macroptera | MW194257.1 | o | 160,168 | 88 | 67 | |
Pterocarya hupehensis | NC_046431.1 | p | 159,770 | 89 | 67 | |
Pterocarya tonkinensis | NC_046427.1 | q | 160,096 | 89 | 65 | |
Engelhardia | Engelhardia hainanensis | NC_068233.1 | r | 161,574 | 83 | 72 |
Engelhardia roxburghiana | MN652922.1 | s | 161,550 | 83 | 72 | |
Annamocarya | Annamocarya sinensis | MN473449.1 | t | 160,065 | 85 | 71 |
Cyclocarya | Cyclocarya paliurus | NC_034315.1 | u | 160,562 | 89 | 68 |
Carya | Carya kweichowensis | NC_040864.1 | v | 175,313 | 64 | 49 |
Carya hunanensis | NC_046435.1 | w | 160,397 | 89 | 66 | |
Carya illinoensis | MH188302.1 | x | 160,585 | 88 | 66 | |
Carya cathayensis | MN892516.1 | y | 160,825 | 84 | 73 | |
Carya tonkin Ensis | NC_066504.1 | z | 160,715 | 85 | 72 |
Species | T/U (%) | C (%) | A (%) | G (%) | 1st (GC%) | 2nd (GC%) | 3rd (GC%) | All (GC%) | MILC |
---|---|---|---|---|---|---|---|---|---|
J. regia | 31.7 | 17.2 | 31.1 | 20 | 45.68 | 37.65 | 28.29 | 37.21 | 0.55 |
J. regia 192 | 31.7 | 17.2 | 31.1 | 20 | 45.68 | 37.65 | 28.3 | 37.21 | 0.55 |
J. regia 193 | 31.7 | 17.2 | 31.1 | 20 | 45.55 | 37.62 | 28.26 | 37.14 | 0.55 |
J. regia 194 | 31.7 | 17.2 | 31.1 | 20 | 45.43 | 37.56 | 29.08 | 37.36 | 0.55 |
J. regia 196 | 31.7 | 17.2 | 31.1 | 20 | 45.68 | 37.65 | 28.31 | 37.21 | 0.55 |
J. regia 197 | 31.9 | 17.4 | 30.2 | 20.5 | 46.77 | 38.86 | 28.1 | 37.91 | 0.55 |
J. regia 198 | 31.7 | 17.2 | 31.1 | 20 | 45.68 | 37.65 | 28.3 | 37.21 | 0.55 |
J. regia 199 | 31.7 | 17.2 | 31.1 | 20 | 45.68 | 37.65 | 28.31 | 37.21 | 0.55 |
J. regia 200 | 31.7 | 17.2 | 31.1 | 20 | 45.67 | 37.66 | 28.3 | 37.21 | 0.55 |
J. regia 201 | 31.7 | 17.2 | 31.1 | 20 | 45.67 | 37.66 | 28.3 | 37.21 | 0.55 |
J. regia 202 | 31.7 | 17.2 | 31.1 | 20 | 45.68 | 37.65 | 28.3 | 37.21 | 0.55 |
J. mandshurica | 31.7 | 17.5 | 30.3 | 20.5 | 46.57 | 38.59 | 28.71 | 37.95 | 0.55 |
J. hopeiensis | 31.9 | 17.5 | 30 | 20.6 | 46.6 | 38.71 | 28.84 | 38.05 | 0.55 |
P. stenoptera | 31.8 | 17.2 | 31 | 20 | 45.57 | 37.7 | 28.32 | 37.2 | 0.55 |
P. macroptera | 31.8 | 17.5 | 30.1 | 20.5 | 46.54 | 38.49 | 28.8 | 37.94 | 0.55 |
P. hupehensis | 31.8 | 17.5 | 30.2 | 20.5 | 46.49 | 38.44 | 28.96 | 37.96 | 0.55 |
P. tonkinensis | 31.6 | 17.7 | 30 | 20.7 | 47 | 38.78 | 29.35 | 38.38 | 0.55 |
E. hainanensis | 31.7 | 17.2 | 31.1 | 20 | 45.43 | 37.62 | 28.22 | 37.09 | 0.55 |
E. roxburghiana | 31.7 | 17.2 | 31.2 | 19.9 | 45.46 | 37.59 | 28.25 | 37.1 | 0.54 |
nnamocarya sinensis | 31.6 | 17.3 | 31 | 20.1 | 45.81 | 37.84 | 28.59 | 37.42 | 0.54 |
C. paliurus | 31.9 | 17.4 | 30.2 | 20.5 | 46.49 | 38.5 | 28.8 | 37.93 | 0.54 |
C. kweichowensis | 31.5 | 17.3 | 31 | 20.1 | 46.07 | 37.65 | 28.55 | 37.43 | 0.55 |
C. hunanensis | 32 | 17.6 | 30 | 20.5 | 46.36 | 38.58 | 29.19 | 38.04 | 0.55 |
C. illinoensis | 32 | 17.6 | 30 | 20.5 | 46.41 | 38.57 | 29.26 | 38.08 | 0.54 |
C. cathayensis | 31.8 | 17.2 | 30.9 | 20.1 | 45.62 | 37.76 | 28.49 | 37.29 | 0.54 |
C. tonkinensis | 31.7 | 17.5 | 30.4 | 20.4 | 46.45 | 38.41 | 28.86 | 37.91 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Shen, L.; Chen, S.; Qu, S.; Hou, N. Codon Usage Profiling of Chloroplast Genome in Juglandaceae. Forests 2023, 14, 378. https://doi.org/10.3390/f14020378
Zeng Y, Shen L, Chen S, Qu S, Hou N. Codon Usage Profiling of Chloroplast Genome in Juglandaceae. Forests. 2023; 14(2):378. https://doi.org/10.3390/f14020378
Chicago/Turabian StyleZeng, Yajun, Lianwen Shen, Shengqun Chen, Shuang Qu, and Na Hou. 2023. "Codon Usage Profiling of Chloroplast Genome in Juglandaceae" Forests 14, no. 2: 378. https://doi.org/10.3390/f14020378
APA StyleZeng, Y., Shen, L., Chen, S., Qu, S., & Hou, N. (2023). Codon Usage Profiling of Chloroplast Genome in Juglandaceae. Forests, 14(2), 378. https://doi.org/10.3390/f14020378