Europe’s Potential Wood Supply by Harvesting System
Abstract
:1. Introduction
- Quantifying the area of ‘forest available for wood supply’ (FAWS) versus the ‘forest not available for wood supply’ (FNAWS)—The harvestable forest area;
- Delineating the area of and growing stock in FAWS by harvesting system for Europe, European geographic region, and country—Harvestable area and growing stock by harvesting system.
2. Materials and Methods
2.1. Input Data
2.1.1. COPERNICUS Forest
2.1.2. Conservation Areas
2.1.3. Slope
2.1.4. Soil
2.1.5. Road Network
2.1.6. Forest Characteristics and Tree Species
2.2. Harvesting Systems
2.2.1. Terrain Parameters
2.2.2. Road Network
2.2.3. Forest Characteristics
2.3. Forest Available for Wood Supply
2.4. Harvestable Volume by Harvesting System
3. Results
3.1. Forest Area in Europe
The Harvestable Forest Area
3.2. Harvestable Area and Volume by Harvesting System
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
DBH Limit (cm) | |||
---|---|---|---|
ID | Name | Harvester | Processor |
1 | Abies spp. | 40 | 50 |
2 | Alnus spp. | 40 | 50 |
3 | Betula spp. | 40 | 50 |
4 | Carpinus spp. | 30 | 30 |
5 | Castanea spp. | 30 | 30 |
6 | Eucalyptus spp. | 40 | 50 |
7 | Fagus spp. | 30 | 30 |
8 | Fraxinus spp. | 30 | 30 |
9 | Larix spp. | 40 | 50 |
10 | Broadleaved misc | 30 | 30 |
11 | Conifers misc | 40 | 50 |
12 | Pinus misc | 40 | 50 |
13 | Quercus misc | 30 | 30 |
14 | Picea spp. | 40 | 50 |
15 | Pinus pinaster Aiton | 40 | 50 |
16 | Pinus sylvestris L. | 40 | 50 |
17 | Populus spp. | - | - |
18 | Pseudotsuga menziesii (Mirb.) Franco | 40 | 50 |
19 | Quercus robur L. and Quercus petraea (Matt.) Liebl. | 30 | 30 |
20 | Robinia spp. | 30 | 30 |
References
- FOREST EUROPE. State of Europe’s Forests 2020. Available online: https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf (accessed on 15 January 2023).
- European Commission. Directorate-General for Research and Innovation A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment: Updated Bioeconomy Strategy; Publications Office: Luxembourg, 2018. [Google Scholar]
- Eyvindson, K.; Repo, A.; Mönkkönen, M. Mitigating Forest Biodiversity and Ecosystem Service Losses in the Era of Bio-Based Economy. For. Policy Econ. 2018, 92, 119–127. [Google Scholar] [CrossRef]
- European Commission. New EU Forest Strategy for 2030. Available online: https://environment.ec.europa.eu/strategy/forest-strategy_en (accessed on 4 November 2022).
- Alberdi, I.; Michalak, R.; Fischer, C.; Gasparini, P.; Brändli, U.-B.; Tomter, S.M.; Kuliesis, A.; Snorrason, A.; Redmond, J.; Hernández, L.; et al. Towards Harmonized Assessment of European Forest Availability for Wood Supply in Europe. For. Policy Econ. 2016, 70, 20–29. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Biodiversity Strategy for 2030. Available online: https://environment.ec.europa.eu/strategy/biodiversity-strategy-2030_en (accessed on 4 November 2022).
- Verkerk, P.J.; Anttila, P.; Eggers, J.; Lindner, M.; Asikainen, A. The Realisable Potential Supply of Woody Biomass from Forests in the European Union. For. Ecol. Manag. 2011, 261, 2007–2015. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Fitzgerald, J.B.; Datta, P.; Dees, M.; Hengeveld, G.M.; Lindner, M.; Zudin, S. Spatial Distribution of the Potential Forest Biomass Availability in Europe. For. Ecosyst. 2019, 6, 5. [Google Scholar] [CrossRef]
- Alberdi, I.; Bender, S.; Riedel, T.; Avitable, V.; Boriaud, O.; Bosela, M.; Camia, A.; Cañellas, I.; Castro Rego, F.; Fischer, C.; et al. Assessing Forest Availability for Wood Supply in Europe. For. Policy Econ. 2020, 111, 102032. [Google Scholar] [CrossRef]
- Nabuurs, G.-J.; Arets, E.J.M.M.; Schelhaas, M.-J. Understanding the Implications of the EU-LULUCF Regulation for the Wood Supply from EU Forests to the EU. Carbon Balance Manag. 2018, 13, 18. [Google Scholar] [CrossRef]
- Payn, T. Future Environmental Challenges and New Zealand’s Planted Forests. N. Z. J. For. 2018, 63, 14–20. [Google Scholar]
- Silversides, C.R. Broadaxe to Flying Shear: The Mechanization of Forest Harvesting East of the Rockies; Transformation Series No. 6; National Museum of Science and Technology: Ottawa, ON, Canada, 1997; ISBN 0660159805. [Google Scholar]
- Samset, I. Winch and Cable Systems; Martinus Nijhoff/Dr. W. Junk Publishers: Dordrecht, The Netherlands, 1985; ISBN 978-94-017-3684-8. [Google Scholar]
- Holzfeind, T.; Visser, R.; Chung, W.; Holzleitner, F.; Erber, G. Development and Benefits of Winch-Assist Harvesting. Curr. For. Reports 2020, 6, 201–209. [Google Scholar] [CrossRef]
- Visser, R.; Harrill, H. Cable Yarding in North America and New Zealand: A Review of Developments and Practices. Croat. J. For. Eng. 2017, 38, 209–217. [Google Scholar]
- Nordfjell, T.; Bacher, M.; Eriksson, L.; Kadlec, J.; Stampfer, K.; Suadicani, K.; Suwala, M.; Talbot, B. Operational Factors Influencing the Efficiency in Conversion. In Norway Spruce Conversion—Options and Consequences, European Forest Institute Research Report, 18; Spiecker, H., Hansen, J., Klimo, E., Skovsgaard, J.P., Sterba, H., Eds.; Brill: Leiden, The Netherlands; Boston, MA, USA, 2004; pp. 197–223. [Google Scholar]
- Mason, W.L.; Diaci, J.; Carvalho, J.; Valkonen, S. Continuous Cover Forestry in Europe: Usage and the Knowledge Gaps and Challenges to Wider Adoption. Forestry 2022, 95, 1–12. [Google Scholar] [CrossRef]
- Purser, P.; Ó’tuama, P.; Vítková, L.; Dhubháin, Á.N. Factors Affecting the Economic Assessment of Continuous Cover Forestry Compared with Rotation Based Management. Irish For. 2015, 72, 150–165. [Google Scholar]
- Bont, L.G.; Fraefel, M.; Frutig, F.; Holm, S.; Ginzler, C.; Fischer, C. Improving Forest Management by Implementing Best Suitable Timber Harvesting Methods. J. Environ. Manag. 2022, 302, 114099. [Google Scholar] [CrossRef] [PubMed]
- Kühmaier, M.; Stampfer, K. Development of a Multi-Attribute Spatial Decision Support System in Selecting Timber Harvesting Systems. Croat. J. For. Eng. 2010, 31, 75–88. [Google Scholar]
- Becker, R.M.; Keefe, R.F.; Anderson, N.M.; Eitel, J.U.H. Use of Lidar-Derived Landscape Parameters to Characterize Alternative Harvest System Options in the Inland Northwest. Int. J. For. Eng. 2018, 29, 179–191. [Google Scholar] [CrossRef]
- Berendt, F.; Fortin, M.; Jaeger, D.; Schweier, J. How Climate Change Will Affect Forest Composition and Forest Operations in Baden-Württemberg—A GIS-Based Case Study Approach. Forests 2017, 8, 298. [Google Scholar] [CrossRef] [Green Version]
- Marčeta, D.; Petković, V.; Ljubojević, D.; Potočnik, I. Harvesting System Suitability as Decision Support in Selection Cutting Forest Management in Northwest Bosnia and Herzegovina. Croat. J. For. Eng. 2020, 41, 251–265. [Google Scholar] [CrossRef]
- Piragnolo, M.; Grigolato, S.; Pirotti, F. Planning Harvesting Operations in Forest Environment: Remote Sensing for Decision Support. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 4, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Gülci, N.; Akay, A.E.; Erdaş, O.; Gülci, S. Üretim Işlerinin Planlanmasında RTK-GPS Tabanlı Sayısal Yükseklik Modelinin Kullanılması. İstanbul Üniv. Orman Fakültesi Derg. 2015, 65, 60. [Google Scholar] [CrossRef]
- Di Fulvio, F.; Forsell, N.; Lindroos, O.; Korosuo, A.; Gusti, M. Spatially Explicit Assessment of Roundwood and Logging Residues Availability and Costs for the EU28. Scand. J. For. Res. 2016, 31, 691–707. [Google Scholar] [CrossRef] [Green Version]
- Kindermann, G.E.; Schörghuber, S.; Linkosalo, T.; Sanchez, A.; Rammer, W.; Seidl, R.; Lexer, M.J. Potential Stocks and Increments of Woody Biomass in the European Union under Different Management and Climate Scenarios. Carbon Balance Manag. 2013, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Pucher, C.; Neumann, M.; Hasenauer, H. An Improved Forest Structure Data Set for Europe. Remote Sens. 2022, 14, 395. [Google Scholar] [CrossRef]
- E.S.R.I. ArcGIS Desktop: Release 10 2011; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.r-project.org/ (accessed on 15 January 2023).
- EEA European Union. Copernicus Land Monitoring Service—High Resolution Layer: Forest Type (FTY). 2018. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/forest-type-2018 (accessed on 7 November 2022).
- EEA. Nationally Designated Areas (CDDA) V19. Available online: https://www.eea.europa.eu/data-and-maps/data/nationally-designated-areas-national-cdda-16 (accessed on 18 November 2022).
- Frank, G.; Latham, J.; Declan, L.; Parviainen, J.; Schuck, A.; Vandekerkhove, K.; Little, D.; Parviainen, J.; Schuck, A.; Vandekerkhove, K. Analysis of Protected Forest Areas in Europe—Provisional Results of COST Action E27 PROFOR. In Proceedings of the Natural Forests in the Temperate Zone of Euroope—Values and Utilisation, Mukachevo, Ukraine, 13–17 October 2003; Commarmot, B., Hamor, F.D., Eds.; pp. 377–386. [Google Scholar]
- EEA. European Union, Copernicus Land Monitoring Service—EU-DEM. Available online: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem (accessed on 18 November 2022).
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R Package Version 3.4-13. Available online: https://cran.r-project.org/package=raster (accessed on 15 January 2023).
- Allman, M.; Jankovský, M.; Messingerová, V.; Allmanová, Z. Soil Moisture Content as a Predictor of Soil Disturbance Caused by Wheeled Forest Harvesting Machines on Soils of the Western Carpathians. J. For. Res. 2017, 28, 283–289. [Google Scholar] [CrossRef]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The Impact of Heavy Traffic on Forest Soils: A Review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Goltsev, V.; Lopatin, E. The Impact of Climate Change on the Technical Accessibility of Forests in the Tikhvin District of the Leningrad Region of Russia. Int. J. For. Eng. 2013, 24, 148–160. [Google Scholar] [CrossRef]
- Panagos, P. The European Soil Database. GEO Connex. 2006, 5, 32–33. [Google Scholar]
- Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to European Policy Support and Public Data Requirements. Land Use Policy 2012, 29, 329–338. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Brus, D.J.; Hengeveld, G.M.; Walvoort, D.J.J.; Goedhart, P.W.; Heidema, A.H.; Nabuurs, G.J.; Gunia, K. Statistical Mapping of Tree Species over Europe. Eur. J. For. Res. 2012, 131, 145–157. [Google Scholar] [CrossRef]
- Moreno, A.; Neumann, M.; Hasenauer, H. Optimal Resolution for Linking Remotely Sensed and Forest Inventory Data in Europe. Remote Sens. Environ. 2016, 183, 109–119. [Google Scholar] [CrossRef]
- EEA Biogeographical Regions. Available online: https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3 (accessed on 7 November 2022).
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 7 November 2022).
- Neumann, M.; Moreno, A.; Thurnher, C.; Mues, V.; Härkönen, S.; Mura, M.; Bouriaud, O.; Lang, M.; Cardellini, G.; Thivolle-Cazat, A.; et al. Creating a Regional MODIS Satellite-Driven Net Primary Production Dataset for European Forests. Remote Sens. 2016, 8, 554. [Google Scholar] [CrossRef] [Green Version]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping Forest Canopy Height Globally with Spaceborne Lidar. J. Geophys. Res. 2011, 116, G04021. [Google Scholar] [CrossRef] [Green Version]
- Moreno, A.; Neumann, M.; Hasenauer, H. Forest Structures across Europe. Geosci. Data J. 2017, 4, 17–28. [Google Scholar] [CrossRef]
- Heinimann, H.R. Forest Operations under Mountainous Conditions. In Forests in Sustainable Mountain Development: A State of Knowledge Report for 2000. Task Force on Forests in Sustainable Mountain Development; CABI Publishing: Wallingford, UK, 2000; pp. 224–234. [Google Scholar]
- Visser, R.; Stampfer, K. Expanding Ground-Based Harvesting onto Steep Terrain: A Review. Croat. J. For. Eng. 2015, 36, 321–331. [Google Scholar]
- Enache, A.; Kühmaier, M.; Visser, R.; Stampfer, K. Forestry Operations in the European Mountains: A Study of Current Practices and Efficiency Gaps. Scand. J. For. Res. 2016, 31, 412–427. [Google Scholar] [CrossRef]
- Gebauer, R.; Neruda, J.; Ulrich, R.; Martinkov, M. Soil Compaction—Impact of Harvesters’ and Forwarders’ Passages on Plant Growth. In Sustainable Forest Management—Current Research; InTech: London, UK, 2012. [Google Scholar]
- Erber, G.; Spinelli, R. Timber Extraction by Cable Yarding on Flat and Wet Terrain: A Survey of Cable Yarder Manufacturer’s Experience. Silva Fenn. 2020, 54, 2. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Owende, P.; Ward, S.; Tornero, M. Comparison of Short-Wood Forwarding Systems Used in Iberia. Silva Fenn. 2004, 38, 437. [Google Scholar] [CrossRef] [Green Version]
- Wassermann, C.; Kühmaier, M.; Stampfer, K. Marktübersicht—Europäische Mastseilgeräte. Osterr. Forstztg. 2019, 1–8. [Google Scholar]
- Holzfeind, T.; Stampfer, K.; Holzleitner, F. Productivity, Setup Time and Costs of a Winch-Assisted Forwarder. J. For. Res. 2018, 23, 196–203. [Google Scholar] [CrossRef]
- Holzfeind, T.; Kanzian, C.; Stampfer, K.; Holzleitner, F. Assessing Cable Tensile Forces and Machine Tilt of Winch-Assisted Forwarders on Steep Terrain under Real Working Conditions. Croat. J. For. Eng. 2019, 40, 281–296. [Google Scholar] [CrossRef] [Green Version]
- Leszczyński, N.; Tomczak, A.; Kowalczuk, J.; Zarajczyk, J.; Węgrzyn, A.; Kocira, S.; Depo, K. The Relationship between the Mass of the Harvester Head and Its Maximum Cutting Diameter. J. Res. Appl. Agric. Eng. 2016, 61, 50–54. [Google Scholar]
- Labelle, E.; Breinig, L.; Sycheva, E. Exploring the Use of Harvesters in Large-Diameter Hardwood-Dominated Stands. Forests 2018, 9, 424. [Google Scholar] [CrossRef] [Green Version]
- Mederski, P.S.; Schweier, J.; Đuka, A.; Tsioras, P.; Bont, L.G.; Bembenek, M. Mechanised Harvesting of Broadleaved Tree Species in Europe. Curr. For. Rep. 2022, 8, 1–19. [Google Scholar] [CrossRef]
- Lundbäck, M.; Häggström, C.; Nordfjell, T. Worldwide Trends in Methods for Harvesting and Extracting Industrial Roundwood. Int. J. For. Eng. 2021, 32, 202–215. [Google Scholar] [CrossRef]
- Moskalik, T.; Borz, S.A.; Dvořák, J.; Ferencik, M.; Glushkov, S.; Muiste, P.; Lazdiņš, A.; Styranivsky, O. Timber Harvesting Methods in Eastern European Countries: A Review. Croat. J. For. Eng. 2017, 38, 231–241. [Google Scholar]
- Lundbäck, M.; Persson, H.; Häggström, C.; Nordfjell, T. Global Analysis of the Slope of Forest Land. Forestry 2021, 94, 54–69. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Talbot, B.; Astrup, R. The Effect of Tree and Harvester Size on Productivity and Harvester Investment Decisions. Int. J. For. Eng. 2022, 33, 22–32. [Google Scholar] [CrossRef]
- Marchi, E.; Chung, W.; Visser, R.; Abbas, D.; Nordfjell, T.; Mederski, P.S.; McEwan, A.; Brink, M.; Laschi, A. Sustainable Forest Operations (SFO): A New Paradigm in a Changing World and Climate. Sci. Total Environ. 2018, 634, 1385–1397. [Google Scholar] [CrossRef] [Green Version]
- Schweier, J.; Magagnotti, N.; Labelle, E.R.; Athanassiadis, D. Sustainability Impact Assessment of Forest Operations: A Review. Curr. For. Rep. 2019, 5, 101–113. [Google Scholar] [CrossRef] [Green Version]
Harvesting System | Technical Limitations | |||||
---|---|---|---|---|---|---|
Slope | Soil | Extraction Distance | Tree Species | DBH | ||
1 | Chainsaw and skidder Harvesting method: tree length Level of mechanization: Partially mechanized | <30% | - | ≤100 m | - | - |
2 | Chainsaw and forwarder Harvesting method: cut-to length method Level of mechanization: Partially mechanized | <30% | Limited | ≤1000 m | - | - |
3 | Harvester and forwarder Harvesting method: cut-to length method Level of mechanization: Fully mechanized | <30% | Limited | ≤1000 m | limited | tree species specific |
4 | Chainsaw and winch-assisted forwarder Harvesting method: cut-to length method Level of mechanization: Partially mechanized | <60% | Limited | ≤300 m | - | - |
5 | Winch-assisted harvester and winch-assisted forwarder Harvesting method: cut-to length method Level of mechanization: Fully mechanized | <60% | Limited | ≤300 m | limited | tree species specific |
6 | Steep terrain harvester and tower yarder Harvesting method: cut-to-length method Level of mechanization: Fully mechanized | <60% | Limited | ≤600 m | limited | tree species specific |
7 | Chainsaw and tower yarder Harvesting method: cut-to-length method Level of mechanization: Partially mechanized | <100% | - | ≤600 m | - | - |
8 | Chainsaw and tower yarder with integrated or excavator-based processor Harvesting method: whole tree method Level of mechanization: Highly mechanized | <100% | - | ≤600 m | limited | tree species specific |
Total | Protected | Lim. Accessibility | FAWS | ||||
---|---|---|---|---|---|---|---|
1000 ha | 1000 ha | % | 1000 ha | % | 1000 ha | % | |
Europe | 183,424.9 | 7864.7 | 4.3 | 38,187.6 | 20.8 | 137,372.6 | 74.9 |
North Europe | 66,724.1 | 4713.5 | 7.1 | 17,226.6 | 25.8 | 44,784.0 | 67.1 |
Denmark | 591.8 | 1.8 | 0.3 | 31.5 | 5.3 | 558.5 | 94.4 |
Estonia | 2256.2 | 71.7 | 3.2 | 1321.2 | 58.6 | 863.3 | 38.3 |
Finland | 21,037.8 | 1562.5 | 7.4 | 3417.3 | 16.2 | 16,058.0 | 76.3 |
Latvia | 3388.2 | 213.5 | 6.3 | 1857.5 | 54.8 | 1317.2 | 38.9 |
Lithuania | 2310.9 | 115.1 | 5.0 | 732.1 | 31.7 | 1463.7 | 63.3 |
Norway | 10,965.6 | 577.6 | 5.3 | 4248.5 | 38.7 | 6139.5 | 56.0 |
Sweden | 26,173.5 | 2171.2 | 8.3 | 5618.4 | 21.5 | 18,383.9 | 70.2 |
Central-West Europe | 38,115.7 | 428.0 | 1.1 | 3390.8 | 8.9 | 34,296.9 | 90.0 |
Austria | 3868.2 | 42.2 | 1.1 | 239.9 | 6.2 | 3586.0 | 92.7 |
Belgium | 768.8 | 1.2 | 0.2 | 50.4 | 6.6 | 717.3 | 93.3 |
France | 17,071.8 | 168.6 | 1.0 | 1576.6 | 9.2 | 15,326.6 | 89.8 |
Germany | 11,398.4 | 132.0 | 1.2 | 599.6 | 5.3 | 10,666.8 | 93.6 |
Ireland | 719.3 | 0.0 | 0.0 | 228.1 | 31.7 | 491.1 | 68.3 |
Lichtenstein | 7.3 | 1.0 | 13.1 | 0.7 | 9.3 | 5.7 | 77.6 |
Luxembourg | 92.6 | 41.6 | 44.9 | 1.8 | 1.9 | 49.2 | 53.2 |
The Netherlands | 350.4 | 35.2 | 10.0 | 90.9 | 25.9 | 224.4 | 64.0 |
Switzerland | 1363.1 | 6.2 | 0.5 | 154.7 | 11.4 | 1202.1 | 88.2 |
United Kingdom | 2475.9 | 0.0 | 0.0 | 448.1 | 18.1 | 2027.8 | 81.9 |
Central-East Europe | 26,575.7 | 652.5 | 2.5 | 5375.7 | 20.2 | 20,547.5 | 77.3 |
Czech Republic | 3009.9 | 74.5 | 2.5 | 42.5 | 1.4 | 2892.8 | 96.1 |
Hungary | 2228.2 | 75.4 | 3.4 | 364.0 | 16.3 | 1788.8 | 80.3 |
Poland | 10,685.7 | 141.5 | 1.3 | 1156.8 | 10.8 | 9387.4 | 87.8 |
Romania | 8375.8 | 266.5 | 3.2 | 3572.6 | 42.7 | 4536.8 | 54.2 |
Slovakia | 2276.2 | 94.6 | 4.2 | 239.8 | 10.5 | 1941.8 | 85.3 |
South-West Europe | 29,312.6 | 1411.4 | 4.8 | 4281.7 | 14.6 | 23,619.5 | 80.6 |
Italy | 10,894.9 | 859.4 | 7.9 | 1016.4 | 9.3 | 9019.1 | 82.8 |
Portugal | 2867.1 | 10.8 | 0.4 | 341.2 | 11.9 | 2515.0 | 87.7 |
Spain | 15,550.7 | 541.2 | 3.5 | 2924.1 | 18.8 | 12,085.4 | 77.7 |
South-East Europe | 22,696.8 | 659.4 | 2.9 | 7912.8 | 34.9 | 14,124.7 | 62.2 |
Albania | 1063.2 | 119.5 | 11.2 | 449.6 | 42.3 | 494.1 | 46.5 |
Bosnia and Herzegovina | 2939.4 | 49.2 | 1.7 | 1231.5 | 41.9 | 1658.6 | 56.4 |
Bulgaria | 4755.0 | 125.3 | 2.6 | 1933.4 | 40.7 | 2696.3 | 56.7 |
Croatia | 2401.3 | 0.1 | 0.0 | 582.3 | 24.2 | 1818.9 | 75.7 |
Greece | 4525.9 | 53.2 | 1.2 | 1006.9 | 22.2 | 3465.9 | 76.6 |
Montenegro | 752.2 | 41.3 | 5.5 | 246.2 | 32.7 | 464.7 | 61.8 |
North Macedonia | 1213.0 | 67.5 | 5.6 | 698.8 | 57.6 | 446.8 | 36.8 |
Serbia | 3760.6 | 149.2 | 4.0 | 1672.7 | 44.5 | 1938.7 | 51.6 |
Slovenia | 1286.1 | 53.9 | 4.2 | 91.5 | 7.1 | 1140.7 | 88.7 |
Europe | North Europe | Central-West Europe | Central-East Europe | South-West Europe | South-East Europe | |
---|---|---|---|---|---|---|
FAWS (million ha) | 137.4 | 44.8 | 34.3 | 20.5 | 23.6 | 14.1 |
Average road density (m/ha) | 17.9 | 9.0 | 30.2 | 17.7 | 19.5 | 11.0 |
% within region | ||||||
Dominated by coniferous tree species | 62.1 | 85.6 | 55.8 | 73.0 | 43.3 | 18.6 |
Dominated by broad-leaved tree species | 34.9 | 7.3 | 43.2 | 26.6 | 55.0 | 80.4 |
Dominated by undefined tree species | 3.0 | 7.1 | 1.0 | 0.4 | 1.7 | 1.0 |
Slope class 0–30% | 78.1 | 96.8 | 74.9 | 82.5 | 58.2 | 53.7 |
Slope class 30–60% | 17.6 | 2.6 | 18.4 | 16.1 | 32.9 | 40.0 |
Slope class 60–100% | 4.2 | 0.6 | 6.7 | 1.5 | 8.8 | 6.2 |
Road within 100 m | 34.0 | 22.3 | 52.1 | 35.8 | 33.9 | 25.2 |
Road within 100 m and 300 m | 34.0 | 32.4 | 34.0 | 35.6 | 36.2 | 33.4 |
Road within 300 m and 600 m | 23.9 | 30.2 | 12.5 | 22.6 | 24.2 | 32.6 |
Road within 1000 m | 8.1 | 15.1 | 1.5 | 6.0 | 5.7 | 8.8 |
Soil affected by groundwater | 2.9 | 1.6 | 5.9 | 4.0 | 0.8 | 1.5 |
Distribution among Harvesting Systems | |||||||||
---|---|---|---|---|---|---|---|---|---|
FAWS | CSK | CFW | HFW | CWF | WHWF | SHTY | CTY | CTYP | |
1000 ha | % | % | % | % | % | % | % | % | |
Europe | 137,372.6 | 2.6 | 4.7 | 70.8 | 1.0 | 11.7 | 4.2 | 0.6 | 4.3 |
North Europe | 44,784.0 | 1.7 | 0.4 | 94.7 | 0.0 | 1.4 | 1.2 | 0.0 | 0.7 |
Denmark | 558.5 | 3.4 | 13.2 | 83.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Estonia | 863.3 | 28.4 | 0.0 | 71.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Finland | 16,058.0 | 0.3 | 0.4 | 99.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Latvia | 1317.2 | 18.3 | 0.0 | 81.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lithuania | 1463.7 | 9.4 | 2.1 | 88.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Norway | 6139.5 | 0.6 | 0.0 | 77.1 | 0.0 | 9.3 | 8.0 | 0.0 | 5.0 |
Sweden | 18,383.9 | 0.1 | 0.1 | 99.4 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 |
Central-West Europe | 34,296.9 | 5.2 | 8.0 | 61.7 | 1.3 | 14.3 | 2.1 | 0.6 | 6.8 |
Austria | 3586.0 | 5.3 | 2.1 | 24.1 | 1.9 | 35.6 | 1.9 | 1.7 | 27.4 |
Belgium | 717.3 | 7.6 | 18.4 | 70.9 | 0.3 | 2.6 | 0.1 | 0.0 | 0.1 |
France | 15,326.6 | 3.8 | 6.9 | 64.9 | 0.8 | 14.5 | 3.6 | 0.6 | 5.0 |
Germany | 10,666.8 | 5.8 | 12.0 | 69.8 | 1.8 | 8.9 | 0.2 | 0.1 | 1.3 |
Ireland | 491.1 | 13.2 | 1.0 | 81.3 | 0.1 | 3.2 | 0.8 | 0.0 | 0.4 |
Lichtenstein | 5.7 | 1.0 | 3.1 | 8.0 | 22.0 | 4.7 | 0.0 | 57.0 | 4.2 |
Luxembourg | 49.2 | 8.0 | 4.3 | 76.3 | 2.3 | 8.0 | 0.3 | 0.3 | 0.5 |
The Netherlands | 224.4 | 51.1 | 1.0 | 47.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Switzerland | 1202.1 | 2.9 | 1.9 | 24.8 | 3.4 | 25.7 | 2.2 | 3.4 | 35.7 |
United Kingdom | 2027.8 | 6.6 | 8.6 | 75.6 | 0.3 | 5.5 | 2.1 | 0.1 | 1.2 |
Central-East Europe | 20,547.5 | 3.7 | 4.1 | 74.7 | 1.5 | 9.1 | 4.2 | 1.1 | 1.6 |
Czech Republic | 2892.8 | 0.8 | 3.1 | 84.0 | 0.4 | 10.2 | 1.1 | 0.1 | 0.3 |
Hungary | 1788.8 | 9.4 | 3.3 | 81.4 | 0.0 | 4.6 | 0.8 | 0.0 | 0.6 |
Poland | 9387.4 | 5.2 | 3.2 | 88.4 | 0.4 | 1.9 | 0.6 | 0.2 | 0.0 |
Romania | 4536.8 | 0.9 | 5.1 | 52.7 | 3.4 | 15.9 | 13.1 | 3.7 | 5.1 |
Slovakia | 1941.8 | 1.6 | 8.6 | 39.7 | 5.0 | 30.9 | 8.8 | 1.7 | 3.7 |
South-West Europe | 23,619.5 | 0.6 | 7.1 | 50.5 | 1.2 | 23.4 | 7.8 | 0.8 | 8.7 |
Italy | 9019.1 | 1.3 | 1.9 | 36.8 | 1.4 | 32.0 | 8.7 | 1.0 | 17.0 |
Portugal | 2515.0 | 0.9 | 14.6 | 67.8 | 0.6 | 12.1 | 3.3 | 0.2 | 0.5 |
Spain | 12,085.4 | 0.1 | 9.4 | 57.2 | 1.1 | 19.2 | 8.0 | 0.7 | 4.2 |
South-East Europe | 14,124.7 | 1.1 | 6.8 | 45.8 | 2.2 | 22.9 | 13.2 | 1.9 | 6.1 |
Albania | 494.1 | 0.7 | 2.5 | 23.2 | 3.4 | 30.0 | 23.0 | 4.5 | 12.7 |
Bosnia and Herzegovina | 1658.6 | 0.2 | 6.5 | 52.0 | 1.0 | 19.1 | 15.0 | 1.0 | 5.3 |
Bulgaria | 2696.3 | 1.2 | 6.7 | 51.9 | 2.3 | 18.4 | 13.0 | 2.4 | 4.1 |
Croatia | 1818.9 | 3.9 | 12.1 | 61.3 | 2.1 | 11.8 | 6.2 | 1.2 | 1.4 |
Greece | 3465.9 | 0.0 | 3.4 | 36.7 | 1.6 | 33.1 | 14.5 | 1.1 | 9.6 |
Montenegro | 464.7 | 0.0 | 2.1 | 38.6 | 1.8 | 27.7 | 17.4 | 2.2 | 10.2 |
North Macedonia | 446.8 | 0.0 | 6.6 | 36.5 | 3.6 | 22.4 | 21.1 | 4.5 | 5.2 |
Serbia | 1938.7 | 1.5 | 9.8 | 47.6 | 2.5 | 18.3 | 15.1 | 2.3 | 2.9 |
Slovenia | 1140.7 | 1.6 | 8.4 | 38.3 | 4.8 | 28.3 | 5.8 | 2.6 | 10.2 |
Distribution among Harvesting Systems | |||||||||
---|---|---|---|---|---|---|---|---|---|
FAWS | CSK | CFW | HFW | CWF | WHWF | SHTY | CTY | CTYP | |
Million m3 | % | % | % | % | % | % | % | % | |
Europe | 25,119.0 | 3.2 | 6.1 | 66.7 | 1.7 | 12.2 | 3.9 | 1.1 | 5.1 |
North Europe | 6307.9 | 2.4 | 0.8 | 94.5 | 0.0 | 1.0 | 0.9 | 0.0 | 0.5 |
Denmark | 117.7 | 3.5 | 22.0 | 74.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Estonia | 183.6 | 29.7 | 0.0 | 70.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Finland | 1991.8 | 0.3 | 0.4 | 99.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Latvia | 261.7 | 18.4 | 0.0 | 81.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Lithuania | 301.8 | 9.9 | 1.6 | 88.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Norway | 662.0 | 0.8 | 0.1 | 78.0 | 0.0 | 9.1 | 7.3 | 0.0 | 4.6 |
Sweden | 2789.3 | 0.1 | 0.3 | 99.3 | 0.0 | 0.2 | 0.2 | 0.0 | 0.0 |
Central-West Europe | 7979.3 | 5.2 | 9.9 | 58.3 | 1.7 | 15.1 | 1.5 | 0.7 | 7.7 |
Austria | 1124.9 | 5.5 | 2.1 | 23.3 | 1.9 | 35.7 | 1.9 | 1.8 | 27.9 |
Belgium | 211.1 | 6.0 | 17.7 | 73.1 | 0.3 | 2.8 | 0.1 | 0.0 | 0.0 |
France | 2200.5 | 3.8 | 8.8 | 61.0 | 1.1 | 15.5 | 3.3 | 0.8 | 5.7 |
Germany | 3619.6 | 5.2 | 13.3 | 67.8 | 2.0 | 9.8 | 0.2 | 0.1 | 1.6 |
Ireland | 89.3 | 13.9 | 1.9 | 79.3 | 0.1 | 3.3 | 0.9 | 0.0 | 0.5 |
Lichtenstein | 1.2 | 1.5 | 4.4 | 11.7 | 18.1 | 7.1 | 0.0 | 51.2 | 6.0 |
Luxembourg | 14.2 | 7.1 | 5.8 | 74.9 | 3.2 | 7.9 | 0.4 | 0.4 | 0.5 |
The Netherlands | 45.6 | 49.9 | 1.1 | 49.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Switzerland | 312.6 | 2.6 | 2.7 | 23.2 | 4.6 | 24.7 | 2.1 | 4.6 | 35.5 |
United Kingdom | 360.3 | 6.6 | 11.6 | 72.6 | 0.5 | 5.1 | 2.0 | 0.2 | 1.3 |
Central-East Europe | 5713.5 | 3.3 | 5.5 | 70.8 | 2.3 | 9.7 | 4.7 | 1.8 | 1.8 |
Czech Republic | 856.2 | 0.8 | 3.8 | 82.1 | 0.6 | 11.0 | 1.3 | 0.1 | 0.3 |
Hungary | 466.8 | 9.2 | 3.3 | 81.0 | 0.0 | 5.0 | 0.9 | 0.0 | 0.6 |
Poland | 2474.4 | 5.0 | 4.4 | 86.7 | 0.6 | 2.2 | 0.7 | 0.3 | 0.1 |
Romania | 1403.0 | 0.7 | 7.1 | 45.1 | 5.4 | 16.4 | 13.8 | 6.0 | 5.5 |
Slovakia | 513.1 | 1.5 | 11.1 | 36.2 | 7.2 | 29.2 | 8.5 | 2.4 | 3.8 |
South-West Europe | 2211.0 | 0.7 | 3.0 | 38.6 | 2.0 | 29.5 | 8.3 | 1.6 | 16.3 |
Italy | 1282.3 | 1.1 | 2.2 | 27.2 | 2.3 | 32.7 | 8.2 | 2.0 | 24.2 |
Portugal | 150.8 | 0.4 | 5.5 | 69.8 | 0.6 | 18.5 | 4.4 | 0.2 | 0.6 |
Spain | 777.9 | 0.1 | 3.8 | 51.3 | 1.8 | 26.3 | 9.3 | 1.1 | 6.4 |
South-East Europe | 2907.5 | 1.4 | 10.7 | 42.7 | 3.6 | 20.9 | 12.3 | 3.0 | 5.6 |
Albania | 43.6 | 0.5 | 5.7 | 18.3 | 7.9 | 26.4 | 18.7 | 10.0 | 12.6 |
Bosnia and Herzegovina | 404.1 | 0.1 | 9.9 | 47.8 | 1.8 | 19.1 | 14.8 | 1.6 | 5.0 |
Bulgaria | 695.4 | 1.2 | 9.2 | 46.5 | 3.4 | 18.7 | 13.3 | 3.5 | 4.3 |
Croatia | 407.0 | 4.5 | 17.8 | 53.8 | 3.6 | 11.5 | 5.6 | 2.0 | 1.2 |
Greece | 314.0 | 0.0 | 5.1 | 30.5 | 2.8 | 34.1 | 14.3 | 2.5 | 10.7 |
Montenegro | 76.2 | 0.0 | 3.8 | 31.5 | 3.5 | 29.4 | 17.9 | 4.0 | 9.9 |
North Macedonia | 95.8 | 0.0 | 8.5 | 33.0 | 5.9 | 21.4 | 19.8 | 7.1 | 4.3 |
Serbia | 511.4 | 1.3 | 13.8 | 42.3 | 3.6 | 18.1 | 14.8 | 3.3 | 2.7 |
Slovenia | 360.0 | 1.6 | 9.4 | 36.1 | 5.3 | 27.5 | 5.5 | 2.9 | 11.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pucher, C.; Erber, G.; Hasenauer, H. Europe’s Potential Wood Supply by Harvesting System. Forests 2023, 14, 398. https://doi.org/10.3390/f14020398
Pucher C, Erber G, Hasenauer H. Europe’s Potential Wood Supply by Harvesting System. Forests. 2023; 14(2):398. https://doi.org/10.3390/f14020398
Chicago/Turabian StylePucher, Christoph, Gernot Erber, and Hubert Hasenauer. 2023. "Europe’s Potential Wood Supply by Harvesting System" Forests 14, no. 2: 398. https://doi.org/10.3390/f14020398
APA StylePucher, C., Erber, G., & Hasenauer, H. (2023). Europe’s Potential Wood Supply by Harvesting System. Forests, 14(2), 398. https://doi.org/10.3390/f14020398