Individuals’ Behaviors of Cone Production in Longleaf Pine Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodges, A.W. The naval stores industry. In The Longleaf Pine Ecosystem: Ecology, Silviculture, and Restoration; Jose, S., Jokela, E.J., Miller, D.L., Eds.; Springer: New York, NY, USA, 2006; pp. 43–48. [Google Scholar]
- Jose, S.; Jokela, E.J.; Miller, D.L. The Longleaf Pine Ecosystem: An overview. In The Longleaf Pine Ecosystem: Ecology, Silviculture, and Restoration; Jose, S., Jokela, E.J., Miller, D.L., Eds.; Springer: New York, NY, USA, 2006; pp. 3–8. [Google Scholar]
- Frost, C.C. History and future of the longleaf pine ecosystem. In The Longleaf Pine Ecosystem: Ecology, Silviculture, and Restoration; Jose, S., Jokela, E.J., Miller, D.L., Eds.; Springer: New York, NY, USA, 2006; pp. 9–42. [Google Scholar]
- Outcalt, K.W.; Sheffield, R.M. The Longleaf Pine Forest: Trends and Current Conditions; Resource Bulletin SRS-9; USDA Forest Service, Southern Research Station: Asheville, NC, USA, 1996.
- Carter, M.C.; Kellison, R.C.; Wallinger, R.S. Forestry in the US South: A History; Louisiana State University Press: Baton Rouge, LA, USA, 2015. [Google Scholar]
- Matthews, J.M.; Hinchee, J.; Guldin, J.M. Restoration of Longleaf Pine in the Southern Region of the US Forest Service: An Overview of the Million-Acre Challenge; e–Gen. Tech. Rep. SRS–253; US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2020; Volume 253, pp. 112–119.
- Noss, R.F.; LaRoe, E.T.; Scott, J.M. Endangered Ecosystems of the United States: A Preliminary Assessment of Loss and Degradation; Biological Report; USDI National Biological Service: Washington, DC, USA, 1995; Volume 28.
- McIntyre, R.K.; McCall, B.B.; Wear, D.N. The social and economic drivers of the southeastern forest landscape. In The Longleaf Pine Ecosystem: Ecology, Silviculture, and Restoration; Jose, S., Jokela, E.J., Miller, D.L., Eds.; Springer: New York, NY, USA, 2006; pp. 49–67. [Google Scholar]
- Peet, R.K.; Wentworth, T.R.; White, P.S. A flexible, multipurpose method for recording vegetation composition and structure. Castanea 1998, 63, 262–274. [Google Scholar]
- Natural Resource Conservation Service (NRCS); USDA. Longleaf Pine Ecosystem Restoration; FY20-24 Implementation Strategy; USDA: Washington, DC, USA, 2020.
- Samuelson, L.J.; Stokes, T.A.; Butnor, J.R.; Johnsen, K.H.; Gonzalez-Benecke, C.A.; Martin, T.A.; Cropper, W.P., Jr.; Anderson, P.H.; Ramirez, M.R.; Lewis, J.C. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests. Ecol. Appl. 2017, 27, 244–259. [Google Scholar] [CrossRef] [PubMed]
- Boyer, W.D. Pinus palustris Mill. Longleaf pine. In Silvics of North America; Conifers. Agriculture Handbook; Burns, R.M., Honkala, B.H., Eds.; USDA, Forest Service: Washington, DC, USA, 1990; Volume 1, pp. 405–412. Available online: https://www.srs.fs.usda.gov/pubs/misc/ag_654_vol1.pdf (accessed on 6 January 2023).
- Platt, W.J.; Evans, G.W.; Rathbun, S.L. The population dynamics of a long-lived conifer (Pinus palustris). Am. Nat. 1988, 131, 491–525. [Google Scholar] [CrossRef]
- Brockway, D.G.; Outcalt, K.W.; Boyer, W.D. Longleaf pine regeneration ecology and methods. In The Longleaf Pine Ecosystem: Ecology, Silviculture, and Restoration; Jose, S., Jokela, E.J., Miller, D.L., Eds.; Springer: New York, NY, USA, 2006; pp. 95–133. [Google Scholar]
- Chen, X.; Willis, J.L.; Bowman, K.A. Assessing the influence of climate on cone production of longleaf pine forests. Trees For. People 2022, 9, 100297. [Google Scholar] [CrossRef]
- Wahlenberg, W.G. Longleaf Pine; Charles Lathrop Pack Forestry Foundation in Cooperation with U.S. Department of Agriculture: Washington, DC, USA, 1946. [Google Scholar]
- Maki, T.E. Local longleaf seed years. J. For. 1952, 50, 321–322. [Google Scholar]
- Guo, Q.; Zarnoch, S.J.; Chen, X.; Brockway, D.G. Life cycle and masting of a recovering keystone indicator species under climate change. Ecosyst. Health Sustain. 2016, 2, e01226. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Guo, Q.; Brockway, D.G. Power laws in cone production of longleaf pine across its native range in the United States. Sust. Agri. Res. 2017, 4, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Kerkhoff, A.J.; Ballantyne, I.V. The scaling of reproductive variability in trees. Ecol. Lett. 2003, 6, 850–856. [Google Scholar] [CrossRef]
- Koenig, W.D.; Knops, J.M.H. Patterns of annual seed production by northern hemisphere trees: A global perspective. Am. Nat. 2000, 155, 59–69. [Google Scholar] [CrossRef]
- Chen, X.; Li, B.-L.; Collins, S. Multiscale monitoring of a multispecies case study: Two grass species at Sevilleta. Plant Ecol. 2005, 179, 149–154. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Q.; Brockway, D.G. Analyzing the complexity of cone production in longleaf pine by multiscale entropy. J. Sust. For. 2016, 35, 172–182. [Google Scholar] [CrossRef]
- Chen, X.; Brockway, D.G.; Guo, Q. Entropy dynamics in cone production of longleaf forests in the southeastern United States. Math. Comp. For. Nat. Res. Sci. 2016, 8, 11–15. [Google Scholar]
- Pearse, I.S.; Koenig, W.D.; Kelly, D. Mechanisms of mast seeding: Resources, weather, cues, and selection. New Phytol. 2016, 212, 546–562. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.; Sork, V.L. Mast seeding in perennial plants: Why, how, where? Ann. Rev. Ecol. Syst. 2002, 33, 427–447. [Google Scholar] [CrossRef] [Green Version]
- Monks, A.; Kelly, D. Testing the resource-matching hypothesis in the mast seeding tree Nothofagus truncata (Fagaceae). Austral Ecol. 2006, 31, 366–375. [Google Scholar] [CrossRef]
- Barringer, B.C.; Koenig, W.D.; Knops, J.M.H. Interrelationships among life history traits in three California oaks. Oecologia 2013, 171, 129–139. [Google Scholar] [CrossRef]
- Chen, X.; Brockway, D.G.; Guo, Q. Characterizing the dynamics of cone production for longleaf pine forests in the southeastern United States. For. Ecol. Manage 2018, 429, 1–6. [Google Scholar] [CrossRef]
- Sork, V.L.; Bramble, J.; Sexton, O. Ecology of mast-fruiting in three species of North American deciduous oaks. Ecology 1993, 74, 528–541. [Google Scholar] [CrossRef] [Green Version]
- Koenig, W.D.; Mumme, R.L.; Carmen, W.J.; Stanback, M.T. Acorn production by oaks in central coastal California: Variation within and among years. Ecology 1994, 75, 99–109. [Google Scholar] [CrossRef]
- Koenig, W.D.; Alejano, R.; Carbonero, M.D.; Fernández-Rebollo, P.; Knops, J.M.H.; Marañón, T.; Padilla-Díaz, C.M.; Pearse, I.S.; Pérez-Ramos, I.M.; Vázquez-Piqué, J.; et al. Is the relationship between mast-seeding and weather in oaks related to their life-history or phylogeny? Ecology 2016, 97, 2603–2615. [Google Scholar] [CrossRef] [Green Version]
- Patterson, T.W.; Knapp, P.A. Stand dynamics influence masting/radial growth relationships in Pinus palustris Mill. Castanea 2016, 81, 314–322. [Google Scholar] [CrossRef]
- Taylor, L.R. Aggregation, variance and the mean. Nature 1961, 189, 732–735. [Google Scholar] [CrossRef]
- Patterson, T.W. Longleaf pine cone production and the influence of super-producing trees. South. Geogr. 2020, 60, 332–344. [Google Scholar] [CrossRef]
- Morand, S.; Krasnov, B. Why apply ecological laws to epidemiology? Trends Parasitol. 2008, 24, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.E.; Xu, M.; Schuster, W.S.F. Stochastic multiplicative population growth predicts and interprets Taylor’s power law of fluctuation scaling. Proc. R. Soc. Lond. B 2013, 280, 20122955. [Google Scholar] [CrossRef] [Green Version]
- Lagrue, C.; Poulin, R.; Cohen, J.E. Parasitism alters three power laws of scaling in a metazoan community: Taylor’s law, density-mass allometry, and variance-mass allometry. Proc. Nat. Acad. Sci. USA 2015, 112, 1791–1796. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, B.-L. Testing the allometric scaling relationships with seedlings of two species. Acta Oecologica 2003, 24, 125–129. [Google Scholar] [CrossRef]
- Chen, X.; Brockway, D.G. Height-diameter relationships in longleaf pine and four swamp tree species. J. Plant Stud. 2017, 6, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Bowman, K.A.; Willis, J.L. Critical slowing down in cone production of longleaf pine trees. For. Trees Livelihoods 2023, 32, 55–61. [Google Scholar] [CrossRef]
- Peltier, D.M.P.; Anderegg, W.R.L.; Guo, J.S.; Ogle, K. Contemporary tree growth shows altered climate memory. Ecol. Lett. 2022, 25, 2663–2674. [Google Scholar] [CrossRef]
- Bose, A.K.; Rigling, A.; Gessler, A.; Hagedorn, F.; Brunner, I.; Feichtinger, L.; Bigler, C.; Egli, S.; Etzold, S.; Gossner, M.M.; et al. Lessons learned from a long-term irrigation experiment in a dry scots pine forest: Impacts on traits and functioning. Ecol. Monogr. 2022, 92, e1507. [Google Scholar] [CrossRef]
- Ogle, K.; Barber, J.J.; Barron-Gafford, G.A.; Bentley, L.P.; Cable, J.M.; Huxman, T.E.; Loik, M.E.; Tissue, D.T. Quantifying ecological memory in plant and ecosystem processes. Ecol. Lett. 2015, 18, 221–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leon, P.; Sheen, J. Sugar and hormone connections. Trends Plant Sci. 2003, 8, 110–116. [Google Scholar] [CrossRef] [PubMed]
Sites | Included Time | Average DBH at the Start of Analysis (cm) |
---|---|---|
Escambia | 2002–2019 | 43 |
Blackwater | 2005–2019 | 41 |
Eglin | 1999–2019 | 39 |
Jones Center | 2005–2019 | 45 |
Bladen | 1996–2018 | 34 |
Sandhills | 1996–2019 | 38 |
Kisatchie | 2000–2022 | 52 |
Tree ID | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10 |
---|---|---|---|---|---|---|---|---|---|---|
#1 | Yes | Yes | No | Yes | No | Yes | No | Yes | Yes | |
#2 | Yes | No | No | No | Yes | No | No | Yes | ||
#3 | No | Yes | No | No | No | Yes | No | |||
#4 | No | No | No | No | No | No | ||||
#5 | No | Yes | No | No | Yes | |||||
#6 | No | No | No | No | ||||||
#7 | No | No | Yes | |||||||
#8 | No | No | ||||||||
#9 | No |
Trees | Escambia | Blackwater | Jones Center | Kisatchie | Eglin |
---|---|---|---|---|---|
#1 | y = 1.773x + 0.556 | y = 1.643x + 0.762 | y = 0.699x + 2.034 | y = 1.82x + 0.374 | y = 1.499x + 0.577 |
R2 = 0.895, p < 0.01 | R2 = 0.391, p > 0.05 | R2 = 0.595, p < 0.05 | R2 = 0.636, p < 0.05 | R2 = 0.896, p < 0.01 | |
#2 | y = 1.805x + 0.308 | y = 2.658x − 0.538 | y = 1.499x + 0.521 | y = 1.684x + 0.267 | y = 2.926x − 0.61 |
R2 = 0.613, p < 0.05 | R2 = 0.902, p < 0.01 | R2 = 0.555, p > 0.05 | R2 = 0.347, p > 0.05 | R2 = 0.758, p < 0.05 | |
#3 | y = 2.007x + 0.303 | y = 3.138x − 0.605 | y = 2.459x + 0.061 | y = 3.294x − 0.629 | y = 1.699x + 0.351 |
R2 = 0.93, p < 0.01 | R2 = 0.464, p > 0.05 | R2 = 0.601, p < 0.05 | R2 = 0.907, p < 0.05 | R2 = 0.969, p < 0.01 | |
#4 | y = 2.003x + 0.492 | y = −0.410x + 2.164 | y = −3.746x + 9.268 | y = 2.04x + 0.207 | y = 2.949x − 0.387 |
R2 = 0.901, p < 0.01 | R2 = 0.205, p > 0.05 | R2 = 0.725, p < 0.05 | R2 = 0.603, p < 0.05 | R2 = 0.836, p < 0.05 | |
#5 | y = 2.069x + 0.284 | y = −0.213x + 2.162 | y = 2.353x − 0.225 | y = 2.702x − 0.614 | y = 2.211x + 0.043 |
R2 = 0.952, p < 0.01 | R2 = 0.064, p > 0.05 | R2 = 0.316, p > 0.05 | R2 = 0.979, p < 0.01 | R2 = 0.964, p < 0.01 | |
#6 | y = 2.51x + 0.024 | y = 0.692x + 1.257 | y = 0.875x + 1.209 | y = 7 × 10−5x + 1.337 | y = −1.069x + 4.799 |
R2 = 0.955, p < 0.01 | R2 = 0.253, p > 0.05 | R2 = 0.823, p < 0.05 | R2 = 0.697, p < 0.05 | R2 = 0.196, p > 0.05 | |
#7 | y = 1.905x + 0.538 | y = 0.303x − 0.291 | y = 0.585x + 1.716 | y = 3.188x − 1.528 | y = 2.022x + 0.111 |
R2 = 0.802, p < 0.05 | R2 = 0.994, p < 0.01 | R2 = 0.189, p > 0.05 | R2 = 0.982, p < 0.01 | R2 = 0.477, p > 0.05 | |
#8 | y = 2.542x − 0.297 | y = 3.663x − 2.109 | y = 1.779x + 0.414 | y = 0.797x + 1.131 | y = -2.289x + 5.064 |
R2 = 0.924, p < 0.01 | R2 = 0.619, p < 0.05 | R2 = 0.824, p < 0.05 | R2 = 0.788, p < 0.05 | R2 = 0.343, p > 0.05 | |
#9 | y = 2.267x − 0.021 | y = 2.338x − 0.272 | y = 0.286x − 0.255 | y = 1.924x + 0.441 | y = 1.675x + 0.568 |
R2 = 0.963, p < 0.01 | R2 = 0.927, p < 0.01 | R2 = 0.997, p < 0.01 | R2 = 0.949, p < 0.01 | R2 = 0.984, p < 0.01 | |
#10 | y = 2.069x + 0.451 | y = 2.234x − 0.126 | y = 2.471x + 0.077 | y = 5.336x − 3.299 | y = 1.483x + 1.091 |
R2 = 0.961x, p < 0.01 | R2 = 0.849, p < 0.01 | R2 = 0.939, p < 0.01 | R2 = 0.946, p < 0.01 | R2 = 0.772, p < 0.05 | |
Percentage of trees following Taylor’s law (%) | 100 | 50 | 70 | 90 | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Willis, J.L. Individuals’ Behaviors of Cone Production in Longleaf Pine Trees. Forests 2023, 14, 494. https://doi.org/10.3390/f14030494
Chen X, Willis JL. Individuals’ Behaviors of Cone Production in Longleaf Pine Trees. Forests. 2023; 14(3):494. https://doi.org/10.3390/f14030494
Chicago/Turabian StyleChen, Xiongwen, and John L. Willis. 2023. "Individuals’ Behaviors of Cone Production in Longleaf Pine Trees" Forests 14, no. 3: 494. https://doi.org/10.3390/f14030494
APA StyleChen, X., & Willis, J. L. (2023). Individuals’ Behaviors of Cone Production in Longleaf Pine Trees. Forests, 14(3), 494. https://doi.org/10.3390/f14030494