Hydraulic and Economical Traits in Short- and Long-Shoot Leaves of Ginkgo biloba Males and Females
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site and Plant Material
2.2. Leaf Water Potential
2.3. Leaf Gas Exchange and Hydraulic Conductance
2.4. Leaf Vulnerability Curves
2.5. Leaf Morphology and Anatomy
2.6. Statistical Analysis
3. Results
3.1. Leaf Morphoanatomical Traits of Long Shoot and Short Shoot
3.2. Leaf Gas Exchange of Long Shoot and Short Shoot
3.3. Leaf Hydraulics of Long Shoot and Short Shoot
3.4. Trait Coordination
4. Discussion
4.1. Variation in Leaf Functional Traits between Long- and Short-Shoot Leaves
4.2. Variation in Leaf Functional Traits between Males and Females
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SD | stomatal density |
LT | leaf thickness |
VD | vein density |
WUEi | instantaneous water use efficiency |
gs | stomatal conductance |
A | net photosynthesis rate |
Tr | transpiration rate |
SLA | specific leaf area |
LDI | leaf dissection index |
Kleaf | leaf hydraulic conductance |
Ψmd | midday leaf water potential |
Ψpd | predawn leaf water potential |
P50 | water potential of 50% loss in leaf hydraulic conductance |
TN | average tracheid number |
TD | average tracheid diameter |
References
- Nakayama, H.; Sinha, N.R.; Kimura, S. How do plants and phytohormones accomplish heterophylly, leaf phenotypic plasticity, in response to environmental cues. Front. Plant Sci. 2017, 8, 1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kordyum, E.; Klimenko, E. Chloroplast ultrastructure and chlorophyll performance in the leaves of heterophyllous Nuphar lutea (L.) Smith. plants. Aquat. Bot. 2013, 110, 84–91. [Google Scholar] [CrossRef]
- Miyazawa, Y.; Kikuzawa, K. Phenology and photosynthetic traits of short shoots and long shoots in Betula grossa. Tree Physiol. 2004, 24, 631–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leigh, A.; Zwieniecki, M.A.; Rockwell, F.E.; Boyce, C.K.; Nicotra, A.B.; Holbrook, N.M. Structural and hydraulic correlates of heterophylly in Ginkgo biloba. New Phytol. 2011, 189, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.X.; Tanabe, K.; Tamura, F.; Itai, A. Spur characteristics, fruit growth, and carbon partitioning in two late-maturing Japanese pear (Pyrus pyrifolia Nakai) cultivars with contrasting fruit size. J. Am. Soc. Hortic. Sci. 2005, 130, 252–260. [Google Scholar] [CrossRef] [Green Version]
- Meyen, S.V. Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record. Bot. Rev. 1984, 50, 1–111. [Google Scholar] [CrossRef]
- Critchfield, W. Shoot growth and heterophylly in Ginkgo biloba. Bot. Gaz. 1970, 131, 150–162. [Google Scholar] [CrossRef]
- Zwieniecki, M.A.; Boyce, C.K.; Holbrook, N.M. Hydraulic limitations imposed by crown placement determine final size and shape of Quercus rubra L. leaves. Plant Cell Environ. 2004, 27, 357–365. [Google Scholar] [CrossRef]
- Boyce, C.K. Seeing the forest with the leaves—Clues to canopy placement from leaf fossil size and venation characteristics. Geobiology 2009, 7, 192–199. [Google Scholar] [CrossRef]
- Little, S.A.; Jacobs, B.; McKechnie, S.J.; Cooper, R.L.; Christianson, M.L.; Jernstedt, J.A. Branch architecture in Ginkgo biloba: Wood anatomy and long shoot-short shoot interactions. Am. J. Bot. 2013, 100, 1923–1935. [Google Scholar] [CrossRef]
- Sack, L.; Streeter, C.M.; Holbrook, N.M. Hydraulic analysis of water flow through leaves of sugar maple and red oak. Plant Physiol. 2004, 134, 1824–1833. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, Y.J.; Sack, L.; Scoffoni, C.; Ishida, A.; Chen, Y.J.; Cao, K.F. The heterogeneity and spatial patterning of structure and physiology across the leaf surface in giant leaves of Alocasia macrorrhiza. PLoS ONE 2013, 8, e66016. [Google Scholar] [CrossRef] [PubMed]
- Martre, P.; Durand, J.L. Quantitative analysis of vasculature in the leaves of Festuca arundinacea (Poaceae): Implications for axial water transport. Int. J. Plant Sci. 2001, 162, 755–766. [Google Scholar] [CrossRef]
- Nardini, A.; Gortan, E.; Ramani, M.; Salleo, S. Heterogeneity of gas exchange rates over the leaf surface in tobacco: An effect of hydraulic architecture? Plant Cell Environ. 2008, 31, 804–812. [Google Scholar] [CrossRef]
- Li, S.; Cao, K. Heterogeneity of anatomical structure in giant leaves of Musa balbisiana. Chin. Sci. Bull. 2014, 59, 522–528. [Google Scholar] [CrossRef]
- Pandey, S.; Kumar, S.; Nagar, P.K. Photosynthetic performance of Ginkgo biloba L. grown under high and low irradiance. Photosynthetica 2003, 41, 505–511. [Google Scholar] [CrossRef]
- Kiyomizu, T.; Yamagishi, S.; Kume, A.; Hanba, Y.T. Contrasting photosynthetic responses to ambient air pollution between the urban shrub Rhododendronxpulchrum and urban tall tree Ginkgo biloba in Kyoto city: Stomatal and leaf mesophyll morpho-anatomies are key traits. Trees Struct. Funct. 2019, 33, 63–77. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Wang, S.; Yang, L.; Gu, J. Intraspecific variations of anatomical, morphological and chemical traits in leaves and absorptive roots along climate and soil gradients: A case study with Ginkgo biloba and Eucommia ulmoides. Plant Soil 2021, 469, 73–88. [Google Scholar] [CrossRef]
- Walas, L.; Mandryk, W.; Thomas, P.A.; Tyrala-Wierucka, Z.; Iszkulo, G. Sexual systems in gymnosperms: A review. Basic Appl. Ecol. 2018, 31, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liu, Q.; Yu, L.; Korpelainen, H.; Niinemets, U.; Li, C.Y. Elevated temperature and CO2 interactively modulate sexual competition and ecophysiological responses of dioecious Populus cathayana. For. Ecol. Manag. 2021, 481, 118747. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhang, R.; Xu, X.; Fowler, J.C.; Miller, T.E.X.; Dong, T.F. Effect of summer warming on growth, photosynthesis and water status in female and male Populus cathayana: Implications for sex-specific drought and heat tolerances. Tree Physiol. 2020, 40, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Melnikova, N.V.; Borkhert, E.V.; Snezhkina, A.V.; Kudryavtseva, A.V.; Dmitriev, A.A. Sex-specific response to stress in Populus. Front. Plant Sci. 2017, 8, 1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olano, J.M.; Gonzalez-Munoz, N.; Arzac, A.; Rozas, V.; von Arx, G.; Delzon, S.; Garcia-Cervigon, A.I. Sex determines xylem anatomy in a dioecious conifer: Hydraulic consequences in a drier world. Tree Physiol. 2017, 37, 1493–1502. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.X.; Li, Y.P.; Zhang, X.L.; Korpelainen, H.; Li, C.Y. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO2 and elevated temperature. Tree Physiol. 2012, 32, 1325–1338. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.G.; Shen, J.; Min, D.; Ke, L.X.; Tian, X.; Korpelainen, H.; Li, C.Y. Male Populus cathayana than female shows higher photosynthesis and less cellular injury through ABA-induced manganese transporting inhibition under high manganese condition. Trees Struct. Funct. 2018, 32, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wu, N.; Liu, T.; Tang, M.; Chen, H. Gender-related responses of dioecious plant Populus cathayana to AMF, drought and planting pattern. Sci. Rep. 2020, 10, 11530. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Liang, H.Y.; Chu, Y.B.; Sun, C.C.; Wei, N.; Yang, M.N.; Zheng, C.X. Effects of salt stress on chlorophyll fluorescence and the antioxidant system in Ginkgo biloba L. Seedlings. Hortscience 2019, 54, 2125–2133. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.; Ma, K.B.; Lu, Z.G.; Lu, J.K.; Cui, J.W.; Wang, L.; Jin, B. Physiological, transcriptomic, and metabolic responses of Ginkgo biloba L. to drought, salt, and heat stresses. Biomolecules 2020, 10, 1653. [Google Scholar] [CrossRef]
- Wang, X.M.; Wang, X.K.; Su, Y.B.; Zhang, H.X. Land pavement depresses photosynthesis in urban trees especially under drought stress. Sci. Total Environ. 2019, 653, 120–130. [Google Scholar] [CrossRef]
- He, M.; Shi, D.; Wei, X.; Hu, Y.; Wang, T.; Xie, Y. Gender-related differences in adaptability to drought stress in the dioecious tree Ginkgo biloba. Acta Physiol. Plant. 2016, 38, 124. [Google Scholar] [CrossRef]
- Wang, X.; Du, T.; Huang, J.; Peng, S.; Xiong, D. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. J. Exp. Bot. 2018, 69, 4033–4045. [Google Scholar] [CrossRef] [PubMed]
- Brodribb, T.J.; Skelton, R.P.; McAdam, S.A.M.; Bienaime, D.; Lucani, C.J.; Marmottant, P. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytol. 2016, 209, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Duursma, R.; Choat, B. Fitplc—An R package to fit hydraulic vulnerability curves. J. Plant Hydraul. 2017, 4, 002. [Google Scholar] [CrossRef]
- Li, S.; Hamani, A.K.M.; Zhang, Y.Y.; Liang, Y.P.; Gao, Y.; Duan, A.W. Coordination of leaf hydraulic, anatomical, and economical traits in tomato seedlings acclimation to long-term drought. BMC Plant Biol. 2021, 21, 536. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 2009, 149, 575–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackman, C.J.; Brodribb, T.J.; Jordan, G.J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol. 2010, 188, 1113–1123. [Google Scholar] [CrossRef]
- Sack, L.; Scoffoni, C. Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol. 2013, 198, 983–1000. [Google Scholar] [CrossRef]
- Fonseca, C.R.; Overton, J.M.; Collins, B.; Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 2000, 88, 964–977. [Google Scholar] [CrossRef]
- Shipley, B.; Vu, T.T. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol. 2002, 153, 359–364. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, A.; Su, L.; Guo, J.; Duan, C.; Ying, X.; Gong, X.; Hao, G. Hydraulics and non-structural carbohydrate contents of Ginkgo biloba under different environmental conditions in Shenyang City, China. Chin. J. Appl. Ecol. 2022, 33, 711–719. [Google Scholar] [CrossRef]
- Anderegg, W.R.L. Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation. New Phytol. 2015, 205, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Nardini, A.; Salleo, S. Water stress-induced modifications of leaf hydraulic architecture in sunflower: Co-ordination with gas exchange. J. Exp. Bot. 2005, 56, 3093–3101. [Google Scholar] [CrossRef]
- Sack, L.; Frole, K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 2006, 87, 483–491. [Google Scholar] [CrossRef]
- Xiong, D.; Yu, T.; Zhang, T.; Li, Y.; Peng, S.; Huang, J. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. J. Exp. Bot. 2015, 66, 741–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Z.C.; He, Y.; Zhou, B.; Korpelainen, H.; Li, C.Y. Sex-related responses in rhizosphere processes of dioecious Populus cathayana exposed to drought and low phosphorus stress. Environ. Exp. Bot. 2020, 175, 104049. [Google Scholar] [CrossRef]
- Yu, L.; Huang, Z.D.; Tang, S.L.; Korpelainen, H.; Li, C.Y. Populus euphratica males exhibit stronger drought and salt stress resistance than females. Environ. Exp. Bot. 2023, 205, 105114. [Google Scholar] [CrossRef]
- Correia, O.; Barradas, M.C.D. Ecophysiological differences between male and female plants of Pistacia lentiscus L. Plant Ecol. 2000, 149, 131–142. [Google Scholar] [CrossRef]
- Jin, J.; Jiang, H.; Yu, S.; Zhou, G. Sex-linked photosynthetic physiologic research and the evolutionary ecological analysis in relict plant, Ginkgo biloba L. Acta Ecol. Sin. 2008, 28, 1128–1136. [Google Scholar]
- Shi, D.W.; Wei, X.D.; Chen, G.X.; Xu, Y.L. Changes in Changes in photosynthetic characteristics and antioxidative protection in male and female Ginkgo during natural senescence. J. Am. Soc. Hortic. Sci. 2012, 137, 349–360. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhang, C.; Meng, Y.; Zhang, F.; Huang, N.; Wang, J.; Li, Y. Hydraulic and Economical Traits in Short- and Long-Shoot Leaves of Ginkgo biloba Males and Females. Forests 2023, 14, 535. https://doi.org/10.3390/f14030535
Liu H, Zhang C, Meng Y, Zhang F, Huang N, Wang J, Li Y. Hydraulic and Economical Traits in Short- and Long-Shoot Leaves of Ginkgo biloba Males and Females. Forests. 2023; 14(3):535. https://doi.org/10.3390/f14030535
Chicago/Turabian StyleLiu, Huihui, Cheng Zhang, Yanqiong Meng, Fengyu Zhang, Nuo Huang, Jianan Wang, and Yiyong Li. 2023. "Hydraulic and Economical Traits in Short- and Long-Shoot Leaves of Ginkgo biloba Males and Females" Forests 14, no. 3: 535. https://doi.org/10.3390/f14030535
APA StyleLiu, H., Zhang, C., Meng, Y., Zhang, F., Huang, N., Wang, J., & Li, Y. (2023). Hydraulic and Economical Traits in Short- and Long-Shoot Leaves of Ginkgo biloba Males and Females. Forests, 14(3), 535. https://doi.org/10.3390/f14030535