Constructing a Forest Color Palette and the Effects of the Color Patch Index on Human Eye Recognition Accuracy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Construction of the Forest Color Palette and Quantification of Forest Color
2.2.1. Selection and Processing of Forest Images
2.2.2. Main Color Extraction from the Forest Color Images
2.2.3. Construction of Forest Color Palette
2.3. Recognition of the Forest Color Palette by the Human Eye
2.3.1. Experimental Design
2.3.2. Participants
2.3.3. Procedure
2.4. Calculation of Forest Color Patch Indices
2.5. Data Analysis
3. Results
3.1. Forest Color Palette
3.2. Forest Color Patch Characteristics
3.3. Recognition of Forest Color Palette by Humans
3.3.1. Accuracy of Forest Color Recognition
3.3.2. Sensitivity of Forest Color Recognition
3.4. Effect of Forest Color Patch Indices on Human Color Recognition Accuracy
4. Discussion
4.1. Forest Color Palette Composition
4.2. Accuracy of Forest Color Recognition by the Human Eyes
4.3. Sensitivity of Forest Color Recognition by the Human Eyes
4.4. Effect of the Color Patch Indices on Human Color Recognition Accuracy
4.5. Limitations and Research Prospects
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Region | No. | National Forest Park | Province | Number of Images | Total |
---|---|---|---|---|---|
North China | 1 | Saihanta National Forest Park | Hebei | 30 | 227 |
2 | Yesanpo National Forest Park | Hebei | 30 | ||
3 | Arshaan National Forest Park | Inner Mongolia | 50 | ||
4 | Hengshan National Forest Park | Shanxi | 30 | ||
5 | Taihang Canyon National Forest Park | Shanxi | 40 | ||
6 | Labagou Origin Forest Park | Beijing | 30 | ||
7 | Jiulongshan National Forest Park | Tianjin | 17 | ||
Northeast China | 1 | Xianglushan National Forest Park | Heilongjiang | 12 | 92 |
2 | Wuying National Forest Park | Heilongjiang | 18 | ||
3 | Lafashan National Forest Park | Jilin | 22 | ||
4 | Daheishan National Forest Park | Liaoning | 26 | ||
5 | Dalian Tianmen Mountain National Forest Park | Liaoning | 14 | ||
East China | 1 | Huangshan National Forest Park | Anhui | 28 | 224 |
2 | Tachuan National Forest Park | Anhui | 30 | ||
3 | Fuzhou National Forest Park | Fujian | 30 | ||
4 | Yangling National Forest Park | Jiangxi | 30 | ||
5 | Taishan National Forest Park | Shandong | 26 | ||
6 | Yandang Mountain National Forest Park | Zhejiang | 16 | ||
7 | Sheshan National Forest Park | Shanghai | 24 | ||
8 | Zijinshan National Forest Park | Jiangsu | 40 | ||
Central China | 1 | Baiyunshan National Forest Park | Henan | 11 | 68 |
2 | Shennongjia National Forest Park | Hubei | 30 | ||
3 | Zhangjiajie Tianmen Mountain National Forest Park | Hunan | 27 | ||
Northwest China | 1 | Tulugou National Forest Park | Gansu | 18 | 165 |
2 | Maiji National Forest Park | Gansu | 30 | ||
3 | Taibaishan National Forest Park | Shaanxi | 30 | ||
4 | Jinsixia National Forest Park | Shaanxi | 30 | ||
5 | Tianshan Grand Canyon National Forest Park | Xinjiang | 30 | ||
6 | Beishan National Forest Park | Qinghai | 27 | ||
Southwest China | 1 | Fenghuangshan National Forest Park | Guizhou | 15 | 101 |
2 | Leigongshan National Forest Park | Guizhou | 10 | ||
3 | Tiantaishan National Forest Park | Sichuan | 20 | ||
4 | Xishuangbanna National Forest Park | Yunnan | 30 | ||
5 | Geleshan National Forest Park | Chongqing | 18 | ||
6 | Segyi La National Forest Park | Tibet | 8 | ||
South China | 1 | Guanyinshan National Forest Park | Guangdong | 26 | 109 |
2 | Wutongshan National Forest Park | Guangdong | 30 | ||
3 | Darongshan National Forest Park | Guangxi | 14 | ||
4 | Debao Red Leaves National Forest Park | Guangxi | 19 | ||
5 | Jianfengling National Forest Park | Hainan | 20 | ||
Total | 986 |
Region | K = 3 | K = 4 | K = 5 | Total | |||
---|---|---|---|---|---|---|---|
Number of Images | Proportion% | Number of Images | Proportion% | Number of Images | Proportion% | ||
North China | 154 | 67.84 | 45 | 19.82 | 28 | 12.33 | 227 |
Northeast China | 63 | 68.48 | 16 | 17.39 | 13 | 14.13 | 92 |
East China | 143 | 63.84 | 41 | 18.3 | 40 | 17.86 | 224 |
Central China | 32 | 47.06 | 21 | 30.88 | 15 | 22.06 | 68 |
Northwest China | 97 | 58.79 | 39 | 23.64 | 29 | 17.58 | 165 |
Southwest China | 57 | 56.44 | 22 | 21.78 | 22 | 21.78 | 101 |
South China | 70 | 64.22 | 25 | 22.94 | 14 | 12.84 | 109 |
Total | 616 | 62.47 | 209 | 21.2 | 161 | 16.33 | 986 |
Image | Color | |
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | ||
11 | ||
12 | ||
13 | ||
14 | ||
15 | ||
16 | ||
17 | ||
18 | ||
19 | ||
20 |
Image | Color | |
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | ||
11 | ||
12 | ||
13 | ||
14 | ||
15 | ||
16 | ||
17 | ||
18 | ||
19 | ||
20 |
No. | Indicators | Formula | Meaning of Parameters |
---|---|---|---|
1 | NP | N is the total number of patches | |
2 | LPI | is the area of patch ij, A is the total landscape area | |
3 | ARP | A is the total landscape area, N is the total number of patches | |
4 | PD | is the number of class i patches, A is the total landscape area | |
5 | C | is the perimeter of class i patches | |
6 | ED | is the perimeter of class i patches, A is the total landscape area | |
7 | FRAC | is the perimeter of the patch ij, is the area of patch ij | |
8 | DIV | is the area of patch ij, A is the total landscape area | |
9 | COH | is the perimeter of the patch ij, is the area of patch ij, A is the total landscape area | |
10 | SPL | is the area of patch ij, A is the total landscape area | |
11 | SIEI | is the proportion of type i patches, m is the number of patch classes | |
12 | SHDI | is the proportion of type i patches |
Index | Interior Forest Landscape | Distant Forest Landscape | ||
---|---|---|---|---|
χ2 | p | χ2 | p | |
NP | 3482.7 | 0.000 ** | 2629.7 | 0.000 ** |
PD | 3965.1 | 0.000 ** | 3395.9 | 0.000 ** |
ARP | 2344.2 | 0.000 ** | 4142.9 | 0.000 ** |
LPI | 2400.2 | 0.000 ** | 2227.1 | 0.000 ** |
C | 2741.7 | 0.000 ** | 4056.9 | 0.000 ** |
ED | 2197.1 | 0.000 ** | 4156.4 | 0.000 ** |
FRAC | 2101.1 | 0.000 ** | 3318.9 | 0.000 ** |
DIV | 2711.8 | 0.000 ** | 2312.2 | 0.000 ** |
SPL | 2711.8 | 0.000 ** | 2312.2 | 0.000 ** |
COH | 1882.7 | 0.000 ** | 3686.8 | 0.000 ** |
SIEI | 1919.5 | 0.000 ** | 2700.5 | 0.000 ** |
SHDI | 3098.1 | 0.000 ** | 2323.6 | 0.000 ** |
Image Type | Participant | Accuracy | Sensitivity | ||||
---|---|---|---|---|---|---|---|
0 | 1 | χ2 | p | χ2 | p | ||
Interior forest landscape | Gender | 0.164 | 0.686 | 0.175 | 0.676 | ||
Male | 7123 | 647 | |||||
Female | 7108 | 662 | |||||
Place | 0.001 | 0.976 | 0.011 | 0.917 | |||
Local | 11,187 | 1028 | |||||
Non-local | 3044 | 281 | |||||
Color | 954.020 | 0.000 ** | 46.457 | 0.192 | |||
Distant forest landscape | Gender | 4.355 | 0.037 ** | 21.258 | 0.000 ** | ||
Male | 7718 | 997 | |||||
Female | 7805 | 910 | |||||
Place | 0.215 | 0.643 | 0.330 | 0.566 | |||
Local | 12,011 | 1466 | |||||
Non-local | 3512 | 441 | |||||
Color | 1083.400 | 0.000 ** | 46.037 | 0.272 |
References
- Sarnowski, A.; Podgórski, Z.; Brykała, D. Planning a greenway based on an evaluation of visual landscape attractiveness. Morav. Geogr. Rep. 2016, 24, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Nassauer, J.I. Placing Nature: Culture and Landscape Ecology; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Park, S.S. Handbook of Vitreo-Retinal Disorder Management: A Practical Reference Guide; World Scientific: Singapore, 2015. [Google Scholar]
- Qin, Y.; Fang, L.; Zhang, L.; Shi, J.; Wang, B. Aesthetic Effects of Individual Variation of Three Forest Color Elements. J. Chin. Urban For. 2016, 14, 26–32. [Google Scholar] [CrossRef]
- Rahkar Farshi, T. Color image quantization with peak-picking and color space. Multimed. Syst. 2020, 26, 703–714. [Google Scholar] [CrossRef]
- Ueda, Y.; Koga, T.; Suetake, N.; Uchino, E. Color quantization method based on principal component analysis and linear discriminant analysis for palette-based image generation. Opt. Rev. 2017, 24, 741–756. [Google Scholar] [CrossRef]
- Rasouli, A.; Tsotsos, J.K. The Effect of Color Space Selection on Detectability and Discriminability of Colored. arXiv 2017, arXiv:1702.05421. [Google Scholar]
- Han, S.; Cui, Z.; Li, D.; Li, F. Extraction and measure of the colored target image based on threshold value. Autom. Instrum. 2010, 79–82. [Google Scholar]
- Yang, J.; Chen, Z. Analysis and research of globally matching color transfer algorithms in different color spaces. Comput. Eng. Appl. 2007, 42, 80–82+158. [Google Scholar] [CrossRef]
- Burdescu, D.D.; Brezovan, M.; Ganea, E.; Stanescu, L. A New Method for Segmentation of Images Represented in a HSV Color Space. In Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems, Bordeaux, France, 28 September–2 October 2009; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Cao, Y.; Xu, C.; Ren, Y.; Li, X. Selection of Color Pattern Indices of Scenic Forest Based on Sensitivity Ranks. Sci. Silvae Sin. 2021, 57, 1–12. [Google Scholar] [CrossRef]
- Mu, Y.; Lin, W.; Diao, X.; Zhang, Z.; Wang, J.; Lu, Z.; Guo, W.; Wang, Y.; Hu, C.; Zhao, C. Implementation of the visual aesthetic quality of slope forest autumn color change into the configuration of tree species. Sci. Rep. 2022, 12, 1034. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Z.; Jiang, L.; Zhong, Q. Fruit Identification Research for Humanoid Robot Based on GMM Model Algorithm. J. Anhui Agric. Sci. 2014, 42, 4889–4891. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, B.; Meng, Q.; Wen, L.; Wu, W. Method of image enhancement in coal mine based on improved retex fusion algorithm in HSV space. J. China Coal Soc. 2020, 45, 532–540. [Google Scholar] [CrossRef]
- Shen, X.; Wang, Z. A Color Quantization Algorithm Based on Human Visual Perception. Pattern Recognit. Artif. Intell. 2007, 20, 821–826. [Google Scholar] [CrossRef]
- Zhang, Z.; Qie, G.; Wang, C.; Jiang, S.; Li, X.; Li, M. Relationship between Forest Color Characteristics and Scenic Beauty: Case Study Analyzing Pictures of Mountainous Forests at Sloped Positions in Jiuzhai Valley, China. Forests 2017, 8, 63. [Google Scholar] [CrossRef]
- Shen, S.; Li, C.; Su, L. Research Progress in Plant Colorscape Based on Visual Perception. World For. Res. 2021, 34, 1–6. [Google Scholar]
- Hu, Y.; Su, B. Accelerated k-means clustering algorithm for colour image quantization. Imaging Sci. J. 2008, 56, 29–40. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, F.; Xu, Y.; Han, X. Background dominant colors extraction method based on color image quick fuzzy c-means clustering algorithm. Def. Technol. 2021, 17, 1782–1790. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, J.; Liang, H.; Li, Z. Intelligent recognition of dominant colors for Chinese traditional costumes based on a mean shift clustering method. J. Text. Inst. 2018, 109, 1304–1314. [Google Scholar] [CrossRef]
- Sammouda, R.; El-Zaart, A.; Ahmed, M.K.; Khalil, A.M. An Optimized Approach for Prostate Image Segmentation Using K-Means Clustering Algorithm with Elbow Method. Comput. Intell. Neurosci. 2021, 2021, 4553832. [Google Scholar] [CrossRef] [PubMed]
- Carro-Calvo, L.; Salcedo-Sanz, S.; Ortiz-García, E.G.; Portilla-Figueras, A. An incremental-encoding evolutionary algorithm for colorreduction in images. Integr. Comput.-Aided Eng. 2010, 17, 261–269. [Google Scholar] [CrossRef]
- Witzel, C.; Jraissati, Y.; Jraissati, Y. Misconceptions about Colour Categories. Rev. Philos. Psychol. 2018, 10, 499–540. [Google Scholar] [CrossRef] [Green Version]
- Horiuchi, M.; Endo, J.; Takayama, N.; Murase, K.; Nishiyama, N.; Saito, H.; Fujiwara, A. Impact of Viewing vs. Not Viewing a Real Forest on Physiological and Psychological Responses in the Same Setting. Int. J. Environ. Res. Public Health 2014, 11, 10883–10901. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Ikei, H.; Miyazaki, Y. Physiological Effects of Visual Stimulation with Forest Imagery. Int. J. Environ. Res. Public Health 2018, 15, 213. [Google Scholar] [CrossRef] [Green Version]
- Linhares, J.M.; Pinto, P.D.; Nascimento, S.M. The number of discernible colors in natural scenes. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2008, 25, 2918–2924. [Google Scholar] [CrossRef]
- Schwiegerling, J. Visual optics. OPTI 2013, 435, 535. [Google Scholar]
- Kane, P.S. Assessing landscape attractiveness: A comparative test of two new methods. Appl. Geogr. 1981, 1, 77–96. [Google Scholar] [CrossRef]
- Zeng, W.; Xu, H.; Wang, Z.; Ronnier Luo, M. Investigation of Color Discrimination Threshold Characteristics Under Different Chromatic Backgrounds. Acta Opt. Sin. 2011, 31, 295–300. [Google Scholar]
- Witzel, C.; Gegenfurtner, K.R. Categorical sensitivity to color differences. J. Vis. 2013, 13, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, S.E.; Schloss, K.B. Aesthetic response to color combinations: Preference, harmony, and similarity. Atten. Percept. Psychophys. 2011, 73, 551–571. [Google Scholar]
- Jia, N.; Shi, J.; Qin, Y.; Ge Rile, T.; Zhang, L. Influence of Forest Color Landscape Pattern Indices and Color Attribute Indicators on Ornamental Effect. Sci. Silvae Sin. 2021, 57, 12–21. [Google Scholar] [CrossRef]
- Lin, W.; Mu, Y.; Zhang, Z.; Wang, J.; Diao, X.; Lu, Z.; Guo, W.; Wang, Y.; Xu, B. Research on cognitive evaluation of forest color based on visual behavior experiments and landscape preference. PLoS ONE 2022, 17, e0276677. [Google Scholar] [CrossRef]
- Vlasuyk, I.V.; Potashnikov, A.M.; Romanov, S.G.; Balobanov, A.V. Synthesis of the Perceptionally Linear Color Space Using Machine Learning Methods. In Proceedings of the 2019 Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, Russia, 20–21 March 2019. [Google Scholar]
- Hu, Y.; Zhang, Q. Discussion on the Theoretical Problems of Forest Parks—Also on the Relationship Among Nature Reserves, Scenery Spots and Forest Sites, and Forest Parks. J. Beijing For. Univ. 1998, 20, 52–60. [Google Scholar]
- Han, X.; Sun, T.; Cao, T. Study on landscape quality assessment of urban forest parks: Take Nanjing Zijinshan National forest Park as an example. Ecol. Indic. 2021, 120, 106902. [Google Scholar] [CrossRef]
- Daniel, T.; Boster, R. Measuring Landscape Esthetics: The Scenic Beauty Estimation Method; USDA Forest Service Research Paper RM; USAD: Washington, DC, USA, 1976. [Google Scholar]
- WorthS, S. The use of the photograph as an environment perception medium in landscape studies. J. Environ. Manag. 1980, 11, 66–67. [Google Scholar]
- Ling, H.; Miao, Y.; Zhang, W.; Zhou, M.; Wu, J. Multimedia sentiment analysis on microblog based on multi-feature fusion. Appl. Res. Comput. 2020, 37, 1935–1939+1951. [Google Scholar] [CrossRef]
- Kumar, M.; Bindal, A.; Gautam, R.; Bhatia, R. Keyword query based focused Web crawler. Procedia Comput. Sci. 2018, 125, 584–590. [Google Scholar] [CrossRef]
- Deng, K.; Chen, S.; Deng, J. On optimisation of web crawler system on Scrapy framework. Int. J. Wirel. Mob. Comput. 2020, 18, 332–338. [Google Scholar]
- Zhao, H.; Yin, Y. Study on the construction of the Miao’s costume color system. J. Zhejiang Univ. Sci. Ed. 2020, 47, 660–668. [Google Scholar] [CrossRef]
- Chiu, Y.-S.; Cheng, F.-C.; Huang, S.-C. Efficient Contrast Enhancement Using Adaptive Gamma Correction and Cumulative Intensity Distribution. In Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Anchorage, AK, USA, 9–12 October 2011; pp. 2946–2950. [Google Scholar]
- Huang, S.; Cheng, F.; Chiu, Y. Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 2013, 22, 1032–1041. [Google Scholar] [CrossRef]
- Rizzi, A.; Gatta, C.; Marini, D. A new algorithm for unsupervised global and local color correction. Pattern Recognit. Lett. 2003, 24, 1663–1677. [Google Scholar] [CrossRef]
- Ghezelbash, R.; Maghsoudi, A.; Carranza, E.J.M. Optimization of geochemical anomaly detection using a novel genetic K-means clustering (GKMC) algorithm. Comput. Geosci. 2020, 134, 104335. [Google Scholar] [CrossRef]
- Feng, Z.; Yuan, W.; Fu, C.; Lei, J.; Song, M. Finding intrinsic color themes in images with human visual perception. Neurocomputing 2018, 273, 395–402. [Google Scholar] [CrossRef]
- Chang, H.; Fried, O.; Liu, Y.; DiVerdi, S.; Finkelstein, A. Palette-based photo recoloring. ACM Trans. Graph. 2015, 34, 1–11. [Google Scholar] [CrossRef]
- Sun, C.; Su, X.; Zhao, Z.; Hang, H.; Li, T.; Wang, C.; Ma, S. Partial discharge development stage division based on multi-classifier fusion. IOP Conf. Ser. Mater. Sci. Eng. 2019, 677, 52086. [Google Scholar] [CrossRef]
- Zhang, C.; Han, W.; Wang, C. Effects of Urban Riparian Plants’ Color on Visual Fatigue. J. Chin. Urban For. 2021, 19, 8–14. [Google Scholar] [CrossRef]
- Pei, H.; Huang, X.; Ding, M. Image visualization: Dynamic and static images generate users’ visual cognitive experience using eye-tracking technology. Displays 2022, 73, 102175. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.; Li, X.; Wang, X.; Dai, Z.; Duan, M.; Xu, R.; Zhao, S.; Liu, X.; Li, J.; et al. Relationships between the Visual Quality and Color Patterns: Study in Peri-Urban Forests Dominated by Cotinus coggygria var. cinerea Engl. in Autumn in Beijing, China. Forests 2022, 13, 1996. [Google Scholar] [CrossRef]
- Volařík, D.; Svátek, M.; Šenfeldr, M.; Kučera, A.; Šrámek, M.; Dreslerová, J.; Matula, R. Variation in canopy openness among main structural types of woody vegetation in a traditionally managed landscape. Folia Geobot. 2017, 52, 15–32. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Xu, S. Mutual Information Reliability for Latent Class Analysis. Appl. Psychol. Meas. 2018, 42, 460–477. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.; Sun, Y.; Ouyang, X.; Ning, J.; Feng, R.; Wang, Q. Study on carbon density in Pinus massoniana forest ecosystem based on different spatial models. Acta Ecol. Sin. 2020, 40, 5230–5238. Available online: http://www.ecologica.cn/stxb/ch/html/2020/15/stxb201907151491.htm (accessed on 17 February 2023).
- Wang, Z.; Li, M.; Zhang, X.; Song, L. Modeling the scenic beauty of autumnal tree color at the landscape scale: A case study of Purple Mountain, Nanjing, China. Urban For. Urban Green. 2020, 47, 126526. [Google Scholar] [CrossRef]
- Zhang, X. Pattern Recognition, 3rd ed.; Tsinghua University Press: Beijing, China, 2010. [Google Scholar]
- Hu, Y.; Lee, M. K-means-based color palette design scheme with the use of stable flags. J. Electron. Imaging 2007, 16, 33003–330011. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, C.; Cui, Y.; Yue, Y.; Ren, Y. Effects of viewing distance and light conditions on the color of Cotinus coggygria var. cinerea forest landscape. J. Cent. South Univ. For. Technol. 2019, 39, 22–29+48. [Google Scholar]
- Xu, P.; Mao, H.; Zhang, Y.; Gu, B.; Zhang, Y. Study on analysis method for color composition of ethnic costumes. J. Silk 2019, 56, 24–29. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, M.; Kou, Q. Color Image Retrieval Algorithm Fusing Color and Principal Curvatures Information. IEEE Access 2020, 8, 184945–184954. [Google Scholar] [CrossRef]
- Cheng, D.; Zhang, H.; Jiang, M.; Kou, Q. Color Image Retrieval Method Fusing Principal Curvature and Color Information. J. Comput.-Aided Des. Comput. Graph. 2021, 33, 223–231. [Google Scholar] [CrossRef]
- Chen, X.; Jia, K. Application of Three-dimensional Quantised Colour Histogram in Color Image Retrieval. Comput. Appl. Softw. 2012, 29, 31–32+40. [Google Scholar] [CrossRef]
- Yang, C.; Liang, S.; Zhang, Q. The Research of Observation Methods and Influencing Factors of Urban Color. Light Light. 2011, 35, 1–5+13. [Google Scholar] [CrossRef]
- Sun, M.; Zhu, J.; Bi, Y.; Yuan, Y.; Zhang, S.; Zhang, W. Color Matching and Real-Time Color Temperature Control in Laser Display. Chin. J. Lasers 2020, 47, 352–359. [Google Scholar] [CrossRef]
- Jiang, Y.; Xia, M.; Wu, Z. FM-100 Hue Text Measurement for Color Discrimination in Normals. Ophthalmol. Res. 1987, 02, 101–106. [Google Scholar]
- Emery, K.J.; Webster, M.A. Individual differences and their implications for color perception. Curr. Opin. Behav. Sci. 2019, 30, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Men, D. Study on the Product Packaging Color Identification of Elder Men and Elder Women; Springer International Publishing: Cham, Switzerland, 2017; pp. 284–303. [Google Scholar]
- Zhao, X.; Teng, P.; Zong, J. Study of Human Eye Visual Discrimination to Color-difference. Electron. Sci. Technol. 2014, 1, 303–307. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, X.; Gu, K. Color Science; Science Press: Beijing, China, 2004. [Google Scholar]
- Hu, W.; Tang, S.; Zhu, Z. Principles and Applications of Modern Color Technology; Beijing Institute of Technology Press: Beijing, China, 2007. [Google Scholar]
- Qian, J. New medical knowledge: Research progress of blue light injury and its protection. Chin. J. Opt. Technol. 2020, 66–69. [Google Scholar]
- Lai, C.; Zhuang, Q.; Hu, Y.; Liu, S. Research on Lighting Sources of High Photometric-Colorimetric Properties LEDs. Laser Optoelectron. Prog. 2017, 54, 249–257. [Google Scholar]
- Hsieh, S.; Lin, Y. The boundary condition for observing compensatory responses by the elderly in a flanker-task paradigm. Biol. Psychol. 2014, 103, 69–82. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Liu, M. Motive Mechanism and Future Development Direction of Forest Culture. J. Beijing For. Univ. Soc. Sci. 2011, 10, 17–21. [Google Scholar] [CrossRef]
- Zhou, T. Comparison of Gender and Grade Differences in Personality Characteristics of Normal College Students. Chin. J. Tissue Eng. Res. 2006, 06, 16–19. [Google Scholar]
- Sivagurunathan, M.; MacDermid, J.; Chuang, J.C.Y.; Kaplan, A.; Lupton, S.; McDermid, D. Exploring the role of gender and gendered pain expectation in physiotherapy students. Can. J. Pain 2019, 3, 128–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGuinness, D.; Lewis, I. Sex differences in visual persistence: Experiments on the Ganzfeld and afterimages. Perception 1976, 5, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Bernick, N. The Development of Children’s Preferences for Social Objects as Evidenced by Their Pupil Responses. Ph.D. Thesis, University of Chicago, Chicago, IL, USA, 1966. Unpublished. [Google Scholar]
- Hu, H.; Xiao, L.; Zhang, W.; Liu, J.; Dong, K.; Li, X. Correlations between landscape pattern and plant community structure in Xiamen urban parks. Chin. J. Ecol. 2010, 29, 2229–2234. [Google Scholar] [CrossRef]
- Kang, N.; Chen, Z. Image Steganography Algorithm Based on Visual Attention and Local Complexity. Pattern Recognit. Artif. Intell. 2013, 26, 504–512. [Google Scholar] [CrossRef]
- Li, P.; Mao, B.; Xu, L.; Wu, J.; Liu, H.; Xu, C. Effects of density, shrub-herb coverage and trunk shape on the in-forest patch index of planted Pinus tabuliformis forests. J. Beijing For. Univ. 2018, 40, 115–122. [Google Scholar] [CrossRef]
- Gao, R.; Wang, X. Research on Children’s Outdoor Activity Space Design Based on Color Landscape. Art Educ. Res. 2020, 224, 94–95. [Google Scholar]
- Liang, J.; Chen, W.; Li, J.; Dong, M.; Zhou, T.; Pan, S. Spatiotemporal patterns of landscape fragmentation and causes in the Yellow River Basin. Acta Ecol. Sin. 2022, 42, 1993–2009. [Google Scholar]
- Feng, Y.; Deng, S.; Wei, M. Image Deraining for UAV Using Split Attention Based Recursive Network. Trans. Nanjing Univ. Aeronaut. Astronaut. 2020, 37, 539–549. [Google Scholar] [CrossRef]
- Li, M.; Zhao, J.; Jiang, N.; Pan, N.; Zhang, M.; Shu, C. Characteristics of plant community structure and its relationship with landscape pattern in Shenzhen offshore parks. Acta Ecol. Sin. 2021, 41, 8732–8745. [Google Scholar]
- Chong, X. The Color Collocation of Product Packaging and the Upgrade of Brand Culture. In Proceedings of the 4th International Conference on Management Science, Education Technology, Arts, Social Science and Economics, Jinan, China, 15–16 October 2016; Atlantis Press: Dordrecht, The Netherlands, 2016; Volume 85, pp. 297–301. Available online: http://creativecommons.org/licenses/by-nc/4.0/ (accessed on 17 February 2023).
- Yang, M. Investigating seasonal color change in the environment by color analysis and information visualization. Color Res. Appl. 2020, 45, 503–511. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Li, Q.; Liu, J.; Tao, J. Color quantification and evaluation of landscape aesthetic quality for autumn landscape forest based on visual characteristics in subalpine region of western Sichuan, China. Chin. J. Appl. Ecol. 2020, 31, 45–54. [Google Scholar]
Type | Indicators | Abbreviations |
---|---|---|
Area | Number of color patches | NP |
Largest color patch proportion index | LPI | |
The mean area proportion of color patch | ARP | |
Color patch density | PD | |
Edge | The mean circumference of color patch | C |
Edge density of color patch | ED | |
Shape | Fractal dimension of color patch | FRAC |
Aggregation | Division index of color patch | DIV |
Cohesion of color patch | COH | |
Splitting index of color patch | SPL | |
Diversity | Simpson’s evenness index of color patch | SIEI |
Shannon’s diversity index of color patch | SHDI |
Image Type | Index | Exp(coef) | 95% CI | p |
---|---|---|---|---|
Interior forest landscape | (Intercept) | 0.07436 | (0.032, 0.175) | 0.000 ** |
NP | 0.99963 | (0.999, 1.000) | 0.000 ** | |
PD | 0.99954 | (0.999, 1.000) | 0.000 ** | |
ARP | 1.00047 | (1.000, 1.001) | 0.037 * | |
DIV | - | - | - | |
C | 0.99894 | (0.996, 1.002) | 0.426 | |
ED | 0.91135 | (0.815, 1.021) | 0.106 | |
FRAC | 1.63493 | (1.142, 2.303) | 0.006 ** | |
SPL | 1.00086 | (1.000, 1.002) | 0.15 | |
COH | - | - | - | |
SIEI | 0.57600 | (0.282, 1.192) | 0.133 | |
SHDI | 1.07155 | (0.992, 1.159) | 0.082 | |
McFadden’s Pseudo R2(i) = 0.578 | ||||
Distant forest landscape | (Intercept) | 1.74127 | (0.575, 5.205) | 0.323 |
NP | 0.99978 | (1.000, 1.000) | 0.000 ** | |
PD | 1.00042 | (1.000, 1.001) | 0.000 ** | |
ARP | 0.99987 | (1.000, 1.000) | 0.473 | |
DIV | 0.35019 | (0.171, 0.722) | 0.004 ** | |
C | 1.00177 | (1.000, 1.004) | 0.097 | |
ED | 0.83288 | (0.698, 0.992) | 0.042 * | |
FRAC | 0.94441 | (0.577, 1.540) | 0.819 | |
SPL | 1.00004 | (0.999, 1.001) | 0.913 | |
COH | 0.96898 | (0.952, 0.986) | 0.000 ** | |
SIEI | - | - | - | |
SHDI | 1.09751 | (1.009, 1.194) | 0.031 * | |
McFadden’s Pseudo R2(d) = 0.433 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, W.; Zhang, C.; Wang, C.; Yin, L. Constructing a Forest Color Palette and the Effects of the Color Patch Index on Human Eye Recognition Accuracy. Forests 2023, 14, 627. https://doi.org/10.3390/f14030627
Han W, Zhang C, Wang C, Yin L. Constructing a Forest Color Palette and the Effects of the Color Patch Index on Human Eye Recognition Accuracy. Forests. 2023; 14(3):627. https://doi.org/10.3390/f14030627
Chicago/Turabian StyleHan, Wenjing, Chang Zhang, Cheng Wang, and Luqin Yin. 2023. "Constructing a Forest Color Palette and the Effects of the Color Patch Index on Human Eye Recognition Accuracy" Forests 14, no. 3: 627. https://doi.org/10.3390/f14030627
APA StyleHan, W., Zhang, C., Wang, C., & Yin, L. (2023). Constructing a Forest Color Palette and the Effects of the Color Patch Index on Human Eye Recognition Accuracy. Forests, 14(3), 627. https://doi.org/10.3390/f14030627