Assessment of the Impact of Industry-Related Air Emission of Arsenic in the Soils of Forest Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Object of Study
2.2. The Methods of Research
2.2.1. Soil Properties, Description
2.2.2. Soils
2.2.3. Plants
3. Results and Discussion
3.1. Physico-Chemical Parameters of Soils
3.2. Mineralogical Composition of the Silt Fraction
3.3. Arsenic in Soils
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pirrone, N.; Cinnirella, S.; Feng, X.; Finkelman, R.B.; Friedli, H.R.; Leaner, J.; Mason, R.; Mukherjee, A.B.; Stracher, G.B.; Streets, D.G.; et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos. Chem. Phys. 2010, 10, 5951–5964. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Wang, H.; Luo, J.; Sun, S.; Gong, Y.; She, J.; Chen, Y.; Dandan, Y.; Zhou, J. Spatial distribution and temporal trends of mercury and arsenic in remote timberline coniferous forests, eastern of the Tibet Plateau, China. Environ. Sci. Pollut. Res. 2015, 22, 11658–11668. [Google Scholar] [CrossRef]
- Beni, C.; Diana, G.; Marconi, S. Bovine milk chain in Italian farms. I. Arsenic levels in soil, gravitational and clean water, bovine diet, and milk. Agrochimica 2008, 52, 99–115. [Google Scholar]
- Cui, J.-L.; Zhao, Y.-P.; Li, J.-S.; Beiyuan, J.-Z.; Tsang, D.C.; Poon, C.-S.; Chan, T.-S.; Wang, W.-X.; Li, X.-D. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. Environ. Pollut. 2018, 232, 375–384. [Google Scholar] [CrossRef]
- Dong, H.; Lin, Z.; Wan, X.; Feng, L. Risk assessment for the mercury polluted site near a pesticide plant in Changsha, Hunan, China. Chemosphere 2017, 169, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bao, Z.; Lin, C.-J.; Yuan, W.; Feng, X. Assessment of Global Mercury Deposition through Litterfall. Environ. Sci. Technol. 2016, 50, 8548–8557. [Google Scholar] [CrossRef] [PubMed]
- Bing, H.; Zhou, J.; Wu, Y.; Luo, X.-S.; Xiang, Z.; Sun, H.; Wang, J.; Zhu, H. Barrier effects of remote high mountain on atmospheric metal transport in the eastern Tibetan Plateau. Sci. Total Environ. 2018, 628–629, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Tarvainen, T.; Reichel, S.; Müller, I.; Jordan, I.; Hube, D.; Eurola, M.; Loukola-Ruskeeniemi, K. Arsenic in agro-ecosystems under anthropogenic pressure in Germany and France compared to a geogenic As region in Finland. J. Geochem. Explor. 2020, 217, 106606. [Google Scholar] [CrossRef]
- Ali, W.; Mao, K.; Zhang, H.; Junaid, M.; Xu, N.; Rasool, A.; Feng, X.; Yang, Z. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. J. Hazard. Mater. 2020, 397, 122720. [Google Scholar] [CrossRef]
- Neal, C.; Robson, A.J. A summary of river water quality data collected within the Land-Ocean Interaction Study: Core data for eastern UK rivers draining to the North Sea. Sci. Total Environ. 2000, 251–252, 585–665. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.C. Risk-based assessment of multimetallic soil pollution in the industrialized peri-urban area of Huelva, Spain. Environ. Geochem. Health 2012, 34, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Mulligan, C.N. Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. Sci. Total Environ. 2006, 366, 701–721. [Google Scholar] [CrossRef] [PubMed]
- De Souza Neto, H.F.; da Silveira Pereira, W.V.; Dias, Y.N.; de Souza, E.S.; Teixeira, R.A.; de Lima, M.W.; Ramos, S.J.; do Amarante, C.B.; Fernandes, A.R. Environmental and human health risks of arsenic in gold mining areas in the eastern Amazon. Environ. Pollut. 2020, 265, 114969. [Google Scholar] [CrossRef]
- Huang, J.H. Impact of microorganisms on arsenic biogeochemistry: A review. Water Air Soil Pollut. 2014, 225, 1–25. [Google Scholar] [CrossRef]
- Yamamura, S.; Amachi, S. Microbiology of inorganic arsenic: From metabolism to bioremediation. J. Biosci. Bioeng. 2014, 118, 1–9. [Google Scholar] [CrossRef]
- Wenzel, W.W. Arsenic. In Heavy Metals in Soils. Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Alloway, B.J., Ed.; Springer: Berlin, Germany, 2013; pp. 241–282. [Google Scholar] [CrossRef]
- Campbell, K.M.; Nordstrom, D.K. Arsenic speciation and sorption in natural environments. Rev. Mineral. Geochem. 2014, 79, 185–216. [Google Scholar] [CrossRef]
- Bolan, N.S.; Mahimairaja, S.; Kunhikrishnan, A.; Choppala, G. Phosphorus–arsenic interactions in variable-charge soils in relation to arsenic mobility and bioavailability. Sci. Total Environ. 2013, 463, 1154–1162. [Google Scholar] [CrossRef]
- Arco-Lázaro, E.; Agudo, I.; Clemente, R.; Bernal, M. Arsenic (V) adsorption-desorption in agricultural and mine soils: Effects of organic matter addition and phosphate competition. Environ. Pollut. 2016, 216, 71–79. [Google Scholar] [CrossRef]
- Lewińska, K.; Karczewska, A.; Siepak, M.; Szopka, K.; Gałka, B.; Iqbal, M. Effects of waterlogging on the solubility of antimony and arsenic in variously treated shooting range soils. Appl. Geochem. 2019, 105, 7–16. [Google Scholar] [CrossRef]
- Linnik, V.G.; Bauer, T.V.; Minkina, T.M.; Mandzhieva, S.S.; Mazarji, M. Spatial distribution of heavy metals in soils of the flood plain of the Seversky Donets River (Russia) based on geostatistical methods. Environ. Geochem. Health 2022, 44, 319–333. [Google Scholar] [CrossRef]
- Hechler, J.; Udachin, V.; Aminov, P.; Beckett, P.J.; Spiers, G.A. Efflorescent sulfate minerals of the Karabash mining/smelting area, Ural mountains, Russia. Mineralogy 2018, 4, 96–101. [Google Scholar]
- Vodyanitskii, Y.; Minkina, T. Determination of the affinity of heavy metals to carrier phases in soils. Environ. Geochem. Health 2022, 44, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Sazykina, M.A.; Minkina, T.M.; Konstantinova, E.Y.; Khmelevtsova, L.E.; Azhogina, T.N.; Antonenko, E.M.; Karchava, S.K.; Klimova, M.V.; Sushkova, S.N.; Polienko, E.A.; et al. Pollution impact on microbial communities composition in natural and anthropogenically modified soils of Southern Russia. Microbiol. Res. 2022, 254, 126913. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.N.; Minkina, T.M.; Kubrin, S.P.; Linnik, V.G. Iron sulphides and their effect on the xrf measurement of the bulk chemical composition of badland soils near the karabash copper smelter, southern urals, Russia. Geochem. Explor. Environ. Anal. 2018, 19, 176–183. [Google Scholar] [CrossRef]
- Bauer, T.V.; Pinskii, D.L.; Minkina, T.M.; Shuvaeva, V.A.; Soldatov, A.V.; Mandzhieva, S.S.; Tsitsuashvili, V.S.; Nevidomskaya, D.G.; Semenkov, I.N. Application of XAFS and XRD methods for describing the copper and zinc adsorption characteristics in hydromorphic soils. Environ. Geochem. Health 2022, 44, 335–347. [Google Scholar] [CrossRef]
- Minkina, T.M.; Linnik, V.G.; Nevidomskaya, D.G.; Bauer, T.V.; Mandzhieva, S.S.; Khoroshavin, V.Y. Forms of Cu (II), Zn (II), and Pb (II) compounds in technogenically transformed soils adjacent to the Karabash med copper smelter. J. Soils Sediment 2018, 18, 2217–2228. [Google Scholar] [CrossRef]
- Gashkina, N.A.; Tatsii, Y.G.; Udachin, V.N.; Aminov, P.G. Biogeochemical indication of environmental contamination: A case study of a large copper smelter. Geochem. Int. 2015, 53, 253–264. [Google Scholar] [CrossRef]
- Weatherarchive.ru. Available online: http://weatherarchive.ru/Pogoda/Karabash (accessed on 14 February 2023).
- ISO 18400-104; Soil quality—Sampling—Part 104. ISO: Geneva, Switzerland, 2018.
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Word Soil Resources Report, No 106; Food and Agriculture Organization: Rome, Italy, 2014; 181p. [Google Scholar]
- ISO 13317–2; Determination of Particle Size Distribution by Gravitational Liquid Sedimentation Methods—Part 2: Fixed Pipette Method. ISO: Geneva, Switzerland, 2001.
- ISO 10390; Soil Quality—Determination of pH. ISO: Geneva, Switzerland, 2005.
- ISO 14235; Soil Quality—Determination of Organic Carbon by Sulfochromic Oxidation. ISO: Geneva, Switzerland, 1998.
- ISO 23470; Soil Quality—Determination of Effective Cation Exchange Capacity (CEC) and Exchangeable Cations. ISO: Geneva, Switzerland, 2011.
- ISO 14254; Soil Quality—Determination of Exchangeable Acidity Using Barium Chloride Solution as Extractant. ISO: Geneva, Switzerland, 2018.
- ISO 14388-3; Soil Quality—Acid-Base Accounting Procedure for Acid Sulfate Soils—Part 3: Suspension Peroxide Oxidation Combined Acidity and Sulfur (SPOCAS) Methodology. ISO: Geneva, Switzerland, 2014.
- ISO 20280; Soil quality—Determination of Arsenic, Antimony and Selenium in Aqua Regia Soil Extracts with Electrothermal or Hydride-Generation Atomic Absorption Spectrometry. ISO: Geneva, Switzerland, 2007.
- ASTM D934-08; Standard Practices for Identification of Crystalline Compounds in Water-Formed Deposits by X-ray Diffraction. ASTM: West Conshohocken, PA, USA, 2008.
- Liu, B.; Ai, S.; Zhang, W.; Huang, D.; Zhang, Y. Assessment of the bioavailability, bioaccessibility and transfer of heavy metals in the soil-grain-human systems near a mining and smelting area in NW China. Sci. Total Environ. 2017, 609, 822–829. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.; Zhao, C.; Nan, Z.; Zhao, C. Ecological Safety and Spatial Distribution of Mercury and Arsenic in Qinghai Spruce Ecosystems in Remote Plateau Mountains, Northwest China. Forests 2022, 13, 1269. [Google Scholar] [CrossRef]
- Schaller, M.; Ehlers, T.-A. Vegetation and climate effects on soil production, chemical weathering, and physical erosion rates. Earth Surf. Dyn. Preprint 2021. [Google Scholar] [CrossRef]
- Drohan, P.J.; Raab, T.; Hirsch, F. Distribution of silty mantles in soils of the Northcentral Appalachians, USA. Catena 2020, 194, 104701. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Fu, Y.; Lin, D.; Hou, M.; Li, X.; Hu, D.; Wang, Z. Transformation of soil organic matter subjected to environ-mental disturbance and preservation of organic matter bound to soil minerals: A review. J. Soils Sediments 2023, 23, 1485–1500. [Google Scholar] [CrossRef]
- Cirkel, D.G.; Witte, J.-P.; Bodegom, P.V. The influence of spatiotemporal variability and ad-aptations to hypoxia on empirical relationships between soil acidity and vegetation. Eco-Hydrology 2014, 7, 21–32. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Singh, M.K.; Raj, D.; Verma, S.; Dahiya, G.; Sharma, S.K.; Sharma, M.K. Effect of Tree Leaf Litterfall on available Nutrients and Organic Carbon Pools of Soil. Res. J. Sci. Technol. 2022, 14, 226–232. [Google Scholar] [CrossRef]
- Rakhsh, F.; Golchin, A.; Al Agha, A.B.; Alamdari, P. Effects of exchangeable cations, mineralogy and clay content on the mineralization of plant residue carbon. Geoderma 2017, 307, 150–158. [Google Scholar] [CrossRef]
- Ritschel, T.; Aehnelt, M.; Totsche, K.U. Organic matter governs weathering rates and microstructure evolution during early pedogenesis. Geoderma 2023, 429, 116269. [Google Scholar] [CrossRef]
- Sokolova, T.A. The role of soil biota in the weathering of minerals: A review of literature. Eurasian Soil Sci. 2011, 44, 56–72. [Google Scholar] [CrossRef]
- Sokolova, T.A.; Tolpeshta, I.I.; Topunova, I.V. Biotite weathering in podzolic soil under conditions of a model field experiment. Eurasian Soil Sci. 2010, 43, 1150–1158. [Google Scholar] [CrossRef]
- Sokolova, T.A. Decomposition of clay minerals in model experiments and in soils: Possible mechanisms, rates, and diagnostics (analysis of literature). Eurasian Soil Sci. 2013, 46, 91–105. [Google Scholar] [CrossRef]
- Lee, B.D.; Sears, S.K.; Graham, C.R.; Amrhein, C.; Vali, H. Secondary Mineral Genesis from Chlorite and Serpentine in an Ultramafic Soil Toposequence. Soil Sci. Soc. Am. J. 2003, 67, 1309–1317. [Google Scholar] [CrossRef]
- Joeckel, R.M.; Wally, K.D.; Clement, B.A.; Hanson, R.P.; Dillon, S.J.; Wilson, K.S. Secondary minerals from extrapedogenic per latus acidic weathering environments at geomorphic edges, Eastern Nebraska, USA. Fuel Energy Abstr. 2011, 85, 253–266. [Google Scholar] [CrossRef] [Green Version]
- Lyons, W.B.; Leslie, L.D.; Gooseff, M. Chemical Weathering in the McMurdo Dry Valleys, Antarctica. Hydrogeology, Chemical Weathering, and Soil Formation. Hydrogeol. Chem. Weather. Soil Form. 2021, 205–216. [Google Scholar] [CrossRef]
- Owador, C.N.; Oboh, I.; Omiojieahior, F.A. Adsorption Isotherms for Naphthalene on Clay and Silt Soil Fractions: A Comparison of Linear and Nonlinear Methods. Adv. Mater. Res. 2011, 367, 359–364. [Google Scholar] [CrossRef]
- Williamson, B.J.; Udachin, V.; Purvis, O.W.; Spiro, B.; Cressey, G.; Jones, G.C. Characterisation of airborne particulate pollution in the Cu smelter and former mining town of Karabash, South Ural Mountains of Russia. Environ. Monit. Assess. 2004, 98, 235–259. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhao, Y.; Hao, R. Arsenic emission and distribution characteristics in the ultra-low emission coal-fired power plant. Environ. Sci. Pollut. Res. 2022, 29, 36814–36823. [Google Scholar] [CrossRef] [PubMed]
- Matzen, S.; Fakra, S.; Nico, P.; Pallud, C. Pteris vittata Arsenic Accumulation Only Partially Explains Soil Arsenic Depletion during Field-Scale Phytoextraction. Soil Syst. 2020, 4, 71. [Google Scholar] [CrossRef]
- Kwon, J.H.; Cho, J.S.; Lee, C.H. Effect of Arsenic Concentrations in Soil on Growth and Arsenic Accumulation of Pteris multifidi. J. People Plants Environ. 2015, 18, 273–280. [Google Scholar] [CrossRef]
- Demirayak, A.; Kutbay, G.; Surmen, B.; Kilic, D.D. Arsenic accumulation in some natural and exotic tree and shrub species in Samsun Provience (Turkey). Anatol. J. Bot. 2019, 3, 13–17. [Google Scholar] [CrossRef]
- Frost, R.R. Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals. Soil Sci. Soc. Am. 1977, 41, 53–57. [Google Scholar] [CrossRef]
- Lindsay, W.L. Chemical Equilibria in Soils; John Wiley & Sons: New York, NY, USA, 1979; p. 449. [Google Scholar] [CrossRef]
- Sadiq, M. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water Air Soil Pollut. 1997, 93, 117–136. [Google Scholar] [CrossRef]
- Karczewska, A.; Lewinska, K.; Siepak, M.; Galka, B.; Drabrach, A.; Szopka, K. Transformation of beech forest litter as a factor that triggers arsenic solubility in soils developed on historical mine dumps. J. Soils Sediments 2018, 18, 2749–2758. [Google Scholar] [CrossRef] [Green Version]
- Qafoku, N.P.; Lawter, A.R.; Gillispie, E.C.; Elroy, E.M.; Smith, F.N.; Sahajpal, R.; Cantrell, K.; Freedman, V. Calcium carbonate minerals as scavengers of metals and radionuclides: Their role in natural attenuation and remediation. Adv. Agron. 2022, 176, 115–152. [Google Scholar] [CrossRef]
- Gathuka, L.W.; Kasai, H.; Kato, T.; Takai, A.; Inui, T.; Katsumi, T. Evaluating the arsenic attenuation of soil amended with calcium–magnesium composites of different particle sizes. Soils Found. 2022, 62, 101130. [Google Scholar] [CrossRef]
- Mehmood, T.; Ashraf, A.; Peng, L.; Shaz, M.; Ahmad, S.; Ahmad, S.; Khan, I.; Abid, M.; Gaurav, G.K.; Riaz, U. Modern Aspects of Phytoremediation of Arsenic-Contaminated Soils. In Global Arsenic Hazard. Environmental Science and Engineering; Niazi, N.K., Bibi, I., Aftab, T., Eds.; Springer Nature: Cham, Switzerland, 2023; Chapter 20; pp. 433–457. [Google Scholar] [CrossRef]
- Bei, Q.; Yang, T.; Ren, C.; Guan, E.; Dai, Y.; Shu, D.; He, W.; Tian, H.; Wei, G. Soil pH determines arsenic-related functional gene and bacterial diversity in natural forests on the Taibai Mountain. Environ. Res. 2023, 220, 15181. [Google Scholar] [CrossRef]
- Rudnic, R.L.; Gao, S. Composition of the Continental Crust. Treatise on Geo-Chemistry; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–64. [Google Scholar] [CrossRef]
- SANPIN (Sanitary Rules and Norms). Hygienic Regulations and Requirements to Ensure Safety and (or) Harmlessness for Humans of Environmental Factors; No. 1.2.3685-21; Federal Service for Supervision of Consumer Rights Protection and Human Welfare: Moscow, Russia, 2021. (In Russian)
Soil Type/Soil-Forming Rock | Absolute Height, m | Plant Association | Main Canopy Height, m | Canopy Layer | Shrub Layer | Grass Layer | Moss-Lichen Layer |
---|---|---|---|---|---|---|---|
Mountain forest zone | |||||||
Hyperskeletic Leptosols cambic/Quartzite eluvium | 824 | Fern-raspberry-spruce | 10–15 | Picea obovara L., Abies sibirica | Rubus idaeus | Dryopteris filix-mas, Milium Effusum L., Anemone nemorosa | Hypnum imponens |
Hyperskeletic Leptosols cambic/Quartzite eluvium | 762 | Mountain ash-fern | 8–10 | Picea obovara L., Abies sibirica, Sórbus aucupária, Betula pendula | Rubus idaeus | Dryopteris filix-mas, Milium effusum L. | Hypnum imponens |
Hyperskeletic Leptosols cambic/Quartzite eluvium | 727 | Birch-raspberry | 10–15 | Betula pendula, Abies sibirica, Sórbus aucupária | Rubus idaeus | Dryopteris filix-mas, Milium effusum L.), Oxalis acetosella L. | - |
Hyperskeletic Leptosols cambic/Quartzite eluvium | 670 | Wood sorrel-spruce | 15–20 | Betula pendula, Sórbus aucupária, Abies sibirica | Rubus idaeus | Dryopteris filix-mas, Milium effusum L. | - |
Piedmont area | |||||||
Luvisols Albic/eluvo-deluvium of metamorphic rocks | 479 | Meadow grass mix | - | - | - | Geranium sylvaticum, Poa pratensis, Dactylis glomerata, Filipendula ulmaria, Angelica tomentosa | - |
Horizon | Depth, cm | Fraction Size, mm | ||||||
---|---|---|---|---|---|---|---|---|
1–0.25 | 0.25–0.05 | 0.05–0.01 | 0.01–0.005 | 0.005–0.001 | <0.001 | <0.01 | ||
Fraction Proportion, % | ||||||||
Soil profile 1. Hyperskeletic Leptosols cambic | ||||||||
A | 2–9 | 25.90 ± 0.02 | 43.21 ± 0.05 | 20.30 ± 0.02 | 8.34 ± 0.04 | 2.93 ± 0.01 | 2.82 ± 0.01 | 14.09 ± 0.01 |
B | 9–24 | 24.15 ± 0.03 | 17.05 ± 0.04 | 38.80 ± 0.03 | 3.82 ± 0.01 | 12.65 ± 0.03 | 3.53 ± 0.02 | 20.00 ± 0.02 |
R | 24–40 | 22.45 ± 0.04 | 14.03 ± 0.01 | 34.41 ± 0.04 | 6.74 ± 0.02 | 15.88 ± 0.05 | 6.76 ± 0.01 | 29.38 ± 0.02 |
Soil profile 2. Hyperskeletic Leptosols cambic | ||||||||
A | 7–16 | 25.29 ± 0.02 | 34.19 ± 0.01 | 14.45 ± 0.02 | 8.52 ± 0.02 | 12.26 ± 0.02 | 2.29 ± 0.01 | 23.07 ± 0.02 |
B | 16–31 | 19.12 ± 0.03 | 22.38 ± 0.02 | 38.79 ± 0.05 | 4.12 ± 0.01 | 11.77 ± 0.05 | 3.82 ± 0.01 | 19.71 ± 0.01 |
R | >31 | 20.03 ± 0.01 | 36.47 ± 0.03 | 9.39 ± 0.01 | 20.88 ± 0.02 | 8.82 ± 0.01 | 4.41 ± 0.02 | 34.11 ± 0.03 |
Soil profile 3. Hyperskeletic Leptosols cambic | ||||||||
A | 7–16 | 38.69 ± 0.02 | 26.31 ± 0.04 | 10.42 ± 0.05 | 7.65 ± 0.01 | 3.82 ± 0.01 | 10.47 ± 0.02 | 21.94 ± 0.01 |
B | 16–30 | 23.20 ± 0.01 | 19.18 ± 0.01 | 28.23 ± 0.02 | 10.00 ± 0.05 | 12.35 ± 0.05 | 7.04 ± 0.01 | 29.39 ± 0.05 |
R | >30 | 26.10 ± 0.02 | 19.46 ± 0.02 | 24.12 ± 0.01 | 12.94 ± 0.01 | 11.17 ± 0.03 | 8.24 ± 0.01 | 32.35 ± 0.04 |
Soil profile 4. Hyperskeletic Leptosols cambic | ||||||||
A | 3–19 | 22.50 ± 0.03 | 15.10 ± 0.01 | 21.22 ± 0.02 | 12.06 ± 0.03 | 21.24 ± 0.04 | 7.88 ± 0.02 | 41.18 ± 0.02 |
B | 19–32 | 18.72 ± 0.01 | 21.87 ± 0.02 | 25.29 ± 0.03 | 11.76 ± 0.04 | 11.77 ± 0.02 | 10.59 ± 0.01 | 34.12 ± 0.01 |
R | 32–50 | 22.52 ± 0.04 | 21.01 ± 0.06 | 25.35 ± 0.04 | 10.53 ± 0.02 | 16.47 ± 0.02 | 4.12 ± 0.01 | 31.12 ± 0.04 |
Soil profile 5. Luvisols albic | ||||||||
A | 3–23 | 33.58 ± 0.02 | 23.42 ± 0.04 | 12.35 ± 0.01 | 4.12 ± 0.01 | 13.59 ± 0.02 | 12.94 ± 0.03 | 30.65 ± 0.04 |
E | 23–28 | 30.04 ± 0.01 | 24.67 ± 0.02 | 14.70 ± 0.03 | 2.36 ± 0.02 | 15.88 ± 0.01 | 12.35 ± 0.02 | 30.59 ± 0.05 |
B | 28–48 | 25.45 ± 0.01 | 13.37 ± 0.02 | 13.53 ± 0.04 | 7.65 ± 0.03 | 14.71 ± 0.02 | 25.29 ± 0.02 | 47.65 ± 0.04 |
B | 48–60 | 20.44 ± 0.02 | 55.44 ± 0.05 | 1.18 ± 0.01 | 0.59 ± 0.01 | 1.17 ± 0.01 | 21.18 ± 0.01 | 22.94 ± 0.03 |
Horizon | Depth, cm | pHKCl | pHH2O | C Organic Matter, % | Hг | Ca2+ | Mg2+ | H+ | Al3+ |
---|---|---|---|---|---|---|---|---|---|
mg-eq Per 100 g of Soil | |||||||||
Soil profile 1. Hyperskeletic Leptosols cambic | |||||||||
O | 0–2 | - | - | 8.21 ± 0.04 | 84.50 ± 0.02 | 7.35 ± 0.06 | 12.76 ± 0.06 | - | - |
A | 2–9 | 3.26 ± 0.01 | 3.95 ± 0.02 | 7.98 ± 0.04 | 22.10 ± 0.10 | 2.60 ± 0.05 | 0.80 ± 0.02 | 0.85 ± 0.01 | 3.75 ± 0.02 |
B | 9–24 | 3.61 ± 0.02 | 4.35 ± 0.01 | 7.31 ± 0.05 | 14.74 ± 0.12 | 2.18 ± 0.02 | 0.83 ± 0.02 | 0.64 ± 0.02 | 2.93 ± 0.02 |
R | 24–40 | 3.75 ± 0.02 | 4.45 ± 0.02 | 6.11 ± 0.06 | 13.28 ± 0.11 | 2.05 ± 0.01 | 0.82 ± 0.01 | 0.52 ± 0.01 | 3.22 ± 0.02 |
Soil profile 2. Hyperskeletic Leptosols cambic | |||||||||
O | 0–7 | - | - | 10.55 ± 0.07 | 58.30 ± 0.13 | 8.58 ± 0.04 | 6.09 ± 0.03 | - | - |
A | 7–16 | 3.51 ± 0.01 | 4.69 ± 0.02 | 5.54 ± 0.06 | 13.13 ± 0.08 | 4.85 ± 0.04 | 0.99 ± 0.01 | 0.50 ± 0.01 | 5.33 ± 0.02 |
B | 16–31 | 3.55 ± 0.02 | 5.08 ± 0.04 | 5.23 ± 0.05 | 11.23 ± 0.09 | 3.51 ± 0.03 | 2.60 ± 0.04 | 0.38 ± 0.02 | 4.56 ± 0.01 |
R | >31 | 3.66 ± 0.03 | 4.89 ± 0.02 | 3.11 ± 0.04 | 11.67 ± 0.09 | 3.70 ± 0.02 | 0.57 ± 0.01 | 0.15 ± 0.01 | 5.25 ± 0.02 |
Soil profile 3. Hyperskeletic Leptosols cambic | |||||||||
O | 0–7 | - | - | 6.00 ± 0.07 | 37.90 ± 0.15 | 12.90 ± 0.06 | 4.82 ± 0.04 | - | - |
A | 7–16 | 3.71 ± 0.03 | 4.87 ± 0.03 | 4.20 ± 0.05 | 12.29 ± 0.08 | 4.41 ± 0.02 | 1.11 ± 0.02 | 0.30 ± 0.02 | 2.83 ± 0.02 |
B | 16–30 | 3.77 ± 0.02 | 5.00 ± 0.01 | 3.79 ± 0.02 | 10.65 ± 0.09 | 3.20 ± 0.01 | 1.12 ± 0.02 | 0.23 ± 0.01 | 3.08 ± 0.01 |
R | >30 | 3.81 ± 0.01 | 5.06 ± 0.03 | 2.44 ± 0.01 | 10.75 ± 0.08 | 3.69 ± 0.03 | 1.20 ± 0.01 | 0.58 ± 0.01 | 2.48 ± 0.01 |
Soil profile 4. Hyperskeletic Leptosols cambic | |||||||||
O | 0–3 | - | - | 7.25 ± 0.06 | 37.15 ± 0.10 | 10.45 ± 0.05 | 12.47 ± 0.06 | - | - |
A | 3–19 | 3.96 ± 0.02 | 5.19 ± 0.03 | 5.78 ± 0.02 | 11.24 ± 0.11 | 4.74 ± 0.04 | 3.51 ± 0.05 | 0.90 ± 0.04 | 1.15 ± 0.01 |
B | 19–32 | 3.76 ± 0.02 | 5.02 ± 0.03 | 3.87 ± 0.06 | 14.65 ± 0.08 | 3.34 ± 0.01 | 0.86 ± 0.01 | 0.28 ± 0.01 | 2.68 ± 0.02 |
R | 32–50 | 3.83 ± 0.01 | 5.04 ± 0.03 | 2.59 ± 0.01 | 11.53 ± 0.08 | 1.32 ± 0.01 | 2.19 ± 0.05 | 0.38 ± 0.03 | 3.18 ± 0.01 |
Soil profile 5. Luvisols albic | |||||||||
O | 0–3 | - | - | 9.50 ± 0.02 | 11.75 ± 0.11 | 13.65 ± 0.07 | 6.10 ± 0.06 | - | - |
A | 3–23 | 4.05 ± 0.03 | 5.24 ± 0.02 | 5.60 ± 0.03 | 12.11 ± 0.09 | 3.80 ± 0.02 | 9.50 ± 0.04 | 0.75 ± 0.04 | 0.72 ± 0.01 |
E | 23–28 | 4.06 ± 0.02 | 5.60 ± 0.01 | 2.30 ± 0.06 | 8.43 ± 0.05 | 3.80 ± 0.03 | 3.80 ± 0.05 | 0.55 ± 0.02 | 0.55 ± 0.02 |
B | 28–48 | 4.01 ± 0.02 | 5.38 ± 0.02 | 0.93 ± 0.04 | 6.12 ± 0.05 | 3.51 ± 0.02 | 4.29 ± 0.04 | 0.83 ± 0.01 | 0.48 ± 0.02 |
B | 48–60 | 3.93 ± 0.01 | 5.25 ± 0.02 | 0.06 ± 0.04 | 6.12 ± 0.07 | 2.70 ± 0.02 | 6.50 ± 0.02 | 0.48 ± 0.02 | 1.13 ± 0.03 |
Horizon | Depth of Sampling, cm | Quartz SiO2 | Calcite | Rutile TiO2 | Muscovite KAl[AlSi3O10](OH)2 | Lizardite Mg5[(OH)8|Si4O10] | Clinochor Mg6[Si4O10](OH)8 | Vertumnite Ca4Al4Si4O6(OH)24 3H2O |
---|---|---|---|---|---|---|---|---|
Soil profile 1. Hyperskeletic Leptosols cambic | ||||||||
O | 0–2 | - | - | - | - | - | - | - |
A | 2–9 | 40.40 ± 0.21 | - | - | 54.20 ± 0.32 | - | 5.35 ± 0.21 | - |
B | 9–24 | 47.90 ± 0.32 | - | - | 47.2 ± 0.45 | - | 4.76 ± 0.12 | - |
R | 24–40 | 45.10 ± 0.50 | - | - | 44.4 ± 0.21 | - | 10.90 ± 0.32 | - |
Soil profile 2. Hyperskeletic Leptosols cambic | ||||||||
O | 0–7 | - | - | - | - | - | - | - |
A | 7–16 | 38.90 ± 0.42 | 2.06 ± 0.12 | 0.73 ± 0.11 | 45.30 ± 0.21 | - | 12.90 ± 0.14 | - |
B | 16–31 | 41.00 ± 0.41 | - | - | 44.00 ± 0.24 | - | 14.90 ± 0.14 | - |
R | ˃31 | 42.00 ± 0.55 | - | 0.39 ± 0.10 | 45.00 ± 0.12 | - | 12.50 ± 0.13 | - |
Soil profile 3. Hyperskeletic Leptosols cambic | ||||||||
O | 0–7 | - | - | - | - | - | - | - |
A | 7–16 | 44.00 ± 0.61 | - | 0.83 ± 0.10 | 43.30 ± 0.32 | - | 11.60 ± 0.24 | - |
B | 16–30 | 40.30 ± 0.55 | - | 0.76 ± 0.05 | 46.80 ± 0.14 | - | 12.00 ± 0.25 | - |
R | ˃30 | 43.10 ± 0.45 | - | - | 42.50 ± 0.24 | - | 14.20 ± 0.12 | - |
Soil profile 4. Hyperskeletic Leptosols cambic | ||||||||
O | 0–3 | - | - | - | - | - | - | - |
A | 3–19 | 39.20 ± 0.12 | - | - | 49.10 ± 0.21 | - | 11.60 ± 0.12 | - |
B | 19–32 | 39.90 ± 0.21 | - | 0.37 ± 0.04 | 46.40 ± 0.24 | - | 13.20 ± 0.14 | - |
R | 32–50 | 37.70 ± 0.23 | - | 0.35 ± 0.02 | 50.60 ± 0.12 | - | 11.20 ± 0.15 | - |
Soil profile 5. Luvisols albic | ||||||||
O | 0–3 | - | - | - | - | - | - | - |
A | 3–23 | 30.20 ± 0.32 | - | 0.56 ± 0.06 | 43.20 ± 0.32 | 25.90 ± 0.24 | - | - |
E | 23–28 | 30.20 ± 0.32 | - | 0.56 ± 0.04 | 43.20 ± 0.15 | 25.90 ± 0.32 | - | - |
B | 28–48 | 7.08 ± 0.12 | - | - | 38.70 ± 0.16 | 43.40 ± 0.14 | - | 10.60 ± 0.21 |
B | 48–60 | 6.38 ± 0.11 | - | - | 42.80 ± 0.32 | 44.00 ± 0.31 | - | 6.73 ± 0.21 |
Horizon | Depth of Sampling, cm | As in Soil, mg/kg | As mg/Silt Weight | BCF |
---|---|---|---|---|
Soil profile 1. Hyperskeletic Leptosols cambic | ||||
O | 0–2 | 64.40 ± 0.25 | - | 3.12 |
A | 2–9 | 20.60 ± 0.24 | 1.81 ± 0.05 | |
B | 9–24 | 3.19 ± 0.12 | 1.15 ± 0.06 | |
R | 24–40 | 2.81 ± 0.11 | 0.19 ± 0.02 | |
Soil profile 2. Hyperskeletic Leptosols cambic | ||||
O | 0–7 | 36.85 ± 0.13 | - | 1.45 |
A | 7–16 | 25.30 ± 0.15 | 4.40 ± 0.04 | |
B | 16–31 | 6.77 ± 0.11 | 0.87 ± 0.01 | |
R | ˃31 | 5.35 ± 0.18 | 1.27 ± 0.02 | |
Soil profile 3. Hyperskeletic Leptosols cambic | ||||
O | 0–7 | 17.20 ± 0.21 | - | 0.81 |
A | 7–16 | 21.40 ± 0.14 | 6.28 ± 0.03 | |
B | 16–30 | 5.45 ± 0.21 | 2.93 ± 0.02 | |
R | ˃30 | 4.32 ± 0.14 | 1.81 ± 0.01 | |
Soil profile 4. Hyperskeletic Leptosols cambic | ||||
O | 0–3 | 49.75 ± 0.13 | - | 2.64 |
A | 3–19 | 18.80 ± 0.11 | 5.72 ± 0.06 | |
B | 19–32 | 6.31 ± 0.08 | 2.72 ± 0.03 | |
R | 32–50 | 5.29 ± 0.09 | 1.26 ± 0.04 | |
Soil profile 5. Luvisols albic | ||||
O | 0–3 | 13.50 ± 0.14 | - | 0.65 |
A | 3–23 | 20.60 ± 0.15 | 18.71 ± 0.04 | |
E | 23–28 | 7.56 ± 0.11 | 3.84 ± 0.02 | |
B | 28–48 | 12.56 ± 0.11 | 1.51 ± 0.01 | |
B | 48–60 | 11.77 ± 0.08 | 0.00 |
pHH2O | pHKCl | C Organic Matter | Ca2+ | Mg2+ | Fraction Size, <0.001 mm | |
---|---|---|---|---|---|---|
Soil profile 1 | −0.99 | −0.97 | 0.73 | 0.98 | 0.96 | −0.65 |
Soil profile 2 | −0.84 | −0.75 | 0.89 | 0.92 | 0.70 | −0.98 |
Soil profile 3 | −0.97 | −0.94 | 0.68 | 0.49 | 0.39 | 0.91 |
Soil profile 4 | 0.98 | 0.91 | 0.91 | 0.98 | 0.99 | 0.16 |
Soil profile 5 | −0.76 | 0.13 | 0.42 | 0.05 | 0.91 | −0.14 |
n | M | Max | Min | σ | V | D | |
---|---|---|---|---|---|---|---|
pHH2O | 16 | 4.94 | 5.60 | 3.95 | 0.41 | 8.38% | 0.17 |
pHKCl | 16 | 3.76 | 4.06 | 3.26 | 0.22 | 5.76% | 0.05 |
Ca2+ | 21 | 5.06 | 13.65 | 1.32 | 3.49 | 68.93% | 12.18 |
Mg2+ | 21 | 3.95 | 12.76 | 0.57 | 3.78 | 95.68% | 14.28 |
As in soil | 21 | 17.13 | 64.40 | 2.81 | 16.06 | 93.73% | 257.84 |
As in silt | 11 | 6.49 ** | 12.56 | 2.81 | 3.15 | 48.47% | 9.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shabanov, M.V.; Marichev, M.S.; Minkina, T.M.; Mandzhieva, S.S.; Nevidomskaya, D.G. Assessment of the Impact of Industry-Related Air Emission of Arsenic in the Soils of Forest Ecosystems. Forests 2023, 14, 632. https://doi.org/10.3390/f14030632
Shabanov MV, Marichev MS, Minkina TM, Mandzhieva SS, Nevidomskaya DG. Assessment of the Impact of Industry-Related Air Emission of Arsenic in the Soils of Forest Ecosystems. Forests. 2023; 14(3):632. https://doi.org/10.3390/f14030632
Chicago/Turabian StyleShabanov, Mikhail V., Maksim S. Marichev, Tatiana M. Minkina, Saglara S. Mandzhieva, and Dina G. Nevidomskaya. 2023. "Assessment of the Impact of Industry-Related Air Emission of Arsenic in the Soils of Forest Ecosystems" Forests 14, no. 3: 632. https://doi.org/10.3390/f14030632
APA StyleShabanov, M. V., Marichev, M. S., Minkina, T. M., Mandzhieva, S. S., & Nevidomskaya, D. G. (2023). Assessment of the Impact of Industry-Related Air Emission of Arsenic in the Soils of Forest Ecosystems. Forests, 14(3), 632. https://doi.org/10.3390/f14030632