Mediating Effect of Bio-Organic Fertilizer on the Physiological Characteristics of “Qi-Nan” Agarwood from Aquilaria sinensis (Lour.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Experimental Design
2.3. Sample Collection and Determination
2.3.1. Determination of Growth Index
2.3.2. Determination of Physiological Indices and Leaf Nutrient Content
2.4. Data Analysis and Processing Methods
3. Results
3.1. Effect of Different Bio-Organic Fertilizer Treatments on the Growth of “Qi-Nan” Agarwood Seedlings
3.2. Effect of Different Bio-Organic Fertilizer Treatments on Physiological and Biochemical Indices of “Qi-Nan” Agarwood Seedlings
3.2.1. Effect of Bio-Organic Fertilizer Treatments on the Content of Osmotic Mediating Substances in “Qi-Nan” Agarwood Seedlings
3.2.2. Effect of Bio-Organic Fertilizer Treatments on the Content of Free Proline and Malondialdehyde in “Qi-Nan” Agarwood Seedlings
3.2.3. Effect of Bio-Organic Fertilizer Treatments on Enzyme Activity of “Qi-Nan” Agarwood Seedlings
3.2.4. Effect of Bio-Organic Fertilizer Treatments on Chlorophyll Content of “Qi-Nan” Agarwood Seedlings
3.3. Effect of Bio-Organic Fertilizer Treatments on the Nutrient Content of “Qi-Nan” Agarwood Seedlings
4. Comprehensive Analysis of All the Measured Indices of “Qi-Nan” Agarwood Seedlings
5. Discussion
5.1. Effect of Different Bio-Organic Fertilizer Treatments on the Growth of “Qi-Nan” Agarwood Seedlings
5.2. Effect of Different Bio-Organic Fertilizer Treatments on the Physiology of “Qi-Nan” Seedlings
5.3. Effect of Different Bio-Organic Fertilizer Treatments on the Nutrient Accumulation of “Qi-Nan” Agarwood Seedlings
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ng, L.T. A review on agar (gaharu) producing Aquilaria species. Tropic. Forest Prod. 1997, 2, 272–285. [Google Scholar]
- Barden, A.; Anak, N.A.; Mulliken, T.; Song, M. Heart of the matter: Agarwood use and trade and CITES implementation for Aquilaria malaccensis. Traffic Int. Camb. UK 2000, 39, 937–950. [Google Scholar]
- Persoon, G.A.; van Beek, H.H. Growing ‘the wood of the gods’: Agarwood production in southeast Asia. Smallhold. Tree Grow. Rural. Dev. Environ. Services. Springer Dordr. 2008, 2, 245–262. [Google Scholar]
- Snelder, D.J.; Rodel, D.L. Smallholder Tree Growing for Rural Development and Environmental Services: Lessons from Asia; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 5. [Google Scholar]
- Yamagata, E.; Yoneda, K. Pharmacognostical studies on the crude drug of agarwood (VI): On “Kanankoh”. Shoyakugaku Zasshi 1987, 41, 142–146. [Google Scholar]
- Nakanishi, T.; Inada, A.; Nishi, M.; Yamagata, E.; Yoneda, K. A new and a known derivatives of 2-(2-phenylethyl) chromone from a kind of agarwood (“Kanankoh”, in Japanese) originating from Aquilaria agallocha. J. Nat. Prod. 1986, 49, 1106–1108. [Google Scholar] [CrossRef]
- Azren, P.D.; Lee, S.Y.; Emang, D.; Mohamed, R. History and perspectives of induction technology for agarwood production from cultivated Aquilaria in Asia: A review. J. For. Res. 2019, 30, 1–11. [Google Scholar] [CrossRef]
- Naef, R. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: A review. Flavour Fragr. J. 2011, 26, 73–87. [Google Scholar] [CrossRef]
- Liu, J.; Yang, J.; Jiang, C.; Zhou, J.; Zhao, Y.; Huang, L. Volatile organic compound and endogenous phytohormone characteristics during callus browning in Aquilaria sinensis. Ind. Crops Prod. 2021, 168, 113605. [Google Scholar] [CrossRef]
- Convention on Internal Trade in Endangered Species of Wild Fauna and Flora. Available online: https://checklist.cites.org (accessed on 8 April 2021).
- Zhang, P.; Li, X.; Cui, Z.; Xu, D. Morphological, physiological, biochemical and molecular analyses reveal wounding-induced agarwood formation mechanism in two types of Aquilaria sinensis (Lour.) Spreng. Ind. Crops Prod. 2022, 178, 114603. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Wang, H.; Wang, L.; Mei, W.; Dai, H.; Wang, J. GC-MS Analysis of Chemical Constituents of Volatile Oil from Four Kinds of Agarwood Tree Leaves. Chin. J. Trop. Crop 2022, 43, 196. [Google Scholar]
- Wang, Y.G.; Wang, J.; Yang, J.L.; Cai, C.H.; Gai, C.J.; Mei, W.L.; Dai, H.F. Bud Grafting for Propagation of Aquilaria sinensis ‘Reke2’. Chin. J. Trop. Agri. 2020, 40, 79–88. [Google Scholar]
- Yu, M.; Liu, Y.; Feng, J.; Chen, D.; Yang, Y.; Liu, P.; Wei, J. Remarkable Phytochemical Characteristics of Chi-Nan Agarwood Induced from New-Found Chi-Nan Germplasm of Aquilaria sinensis Compared with Ordinary Agarwood. Int. J. Anal. Chem. 2021, 33, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.N.; Whang, L.M.; Zeng, L.M.; Liu, D.Q. Agarwood planting promotes rural revitalization in hainan Province. J. Agric. Catastrophol. 2021, 11, 143–144. [Google Scholar]
- Liu, X.J.; Xu, D.P. Characteristics of resource distribution, industry status and development proposal of precious tree species in Guangdong. Guangdong Agric. Sci. 2021, 48, 57–65. [Google Scholar]
- Fan, H.Y.; Huang, Y.; Deng, Q.H.; Song, S.Q. Agarwood family. Life World 2021, 380, 12–17. [Google Scholar]
- Zhu, Y.; Dumroese, R.K.; Pinto, J.R.; Li, G.L.; Liu, Y. Fall fertilization enhanced nitrogen storage and translocation in Larix olgensis seedlings. New For. 2013, 44, 849–861. [Google Scholar] [CrossRef]
- Savci, S. An agricultural pollutant: Chemical fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, P.B.; Beneduzi, A.; de Souza, R.; Schoenfeld, R.; Vargas, L.K.; Passaglia, L.M. The effects of different fertilization conditions on bacterial plant growth promoting traits: Guidelines for directed bacterial prospection and testing. Plant Soil 2013, 368, 267–280. [Google Scholar] [CrossRef]
- Wu, H.S.; Yang, X.N.; Fan, J.Q.; Miao, W.G.; Ling, N.; Xu, Y.C.; Shen, Q. Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl 2009, 54, 287–300. [Google Scholar] [CrossRef]
- Kwon, Y.; Kim, M.; Kwack, Y.B.; Kwak, Y.S. First report of Nigrospora sp. causing kiwifruit postharvest black rot. N. Z. J. Crop Hortic. Sci. 2017, 45, 75–79. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, Y.; Yin, J.; Li, D.; Wang, B.; Zhang, K.; Liu, Y. Productivity and quality of banana in response to chemical fertilizer reduction with bio-organic fertilizer: Insight into soil properties and microbial ecology. Agric. Ecosyst. Environ. 2021, 322, 107659. [Google Scholar] [CrossRef]
- Ansari, R.A.; Mahmood, I. Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci. Hortic. 2017, 226, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Ma, Y.; Jiang, G.; Mei, X.; Li, X.; Dong, C. WGCNA analysis revealing molecular mechanism that bio-organic fertilizer improves pear fruit quality by increasing sucrose accumulation and reducing citric acid metabolism. Front. Plant Sci. 2022, 13, 1039671. [Google Scholar] [CrossRef]
- Li, C.; Yan, K.; Tang, L.; Jia, Z.; Li, Y. Change in deep soil microbial communities due to long-term fertilization. Soil Biol. Biochem. 2014, 75, 264–272. [Google Scholar] [CrossRef]
- Wang, Z.; Geng, Y.; Liang, T. Optimization of reduced chemical fertilizer use in tea gardens based on the assessment of related environmental and economic benefits. Sci. Total Environ. 2020, 713, 136439. [Google Scholar] [CrossRef]
- Ren, H.; Wang, H.; Yu, Z.; Zhang, S.; Qi, X.; Sun, L.; Li, B. Effect of two kinds of fertilizers on growth and rhizosphere soil properties of bayberry with decline disease. Plants 2021, 10, 2386. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.W.; Zhou, B.Y.; Ma, F.M.; Ni, H.W. Effects of Bio-organic fertilizer on the soil micro-ecology of Pine Koraiensis seedlings. J. Northeast. For. Univ. 2005, 33, 49–50. [Google Scholar]
- Pang, S.J.; Zhang, P.; Yang, B.G.; Liu, S.L.; Feng, C.L. Effects of suitable ratio of biological fertilizer and chemical fertilizer on growth of Aquilaria sinensis and soil nutrients. Soil Fertil. Sci. China 2020, 3, 6. [Google Scholar]
- Arunakumara, K.; Walpola, B.; Karunatunga, C. Assessment of the early growth of agarwood (Aquilaria crassna) seedlings under different sources of nutrients. J. For. Sci. 2022, 68, 1–7. [Google Scholar] [CrossRef]
- Wang, R.; He, Q.; Ding, X.G.; Li, J.Y.; Zhang, F.Q.; Zhu, B.Z.; Su, Y. Effects of exponential fertilization on seedling growth and photosynthesis of Aquilarias spp. J. Beijing For. Univ. 2011, 33, 7. [Google Scholar]
- Li, J.Y.; Zhang, F.Q. Nutrient characteristic and fertilization effect of Aquilaria seedlings. J. Beijing For. Univ. 2011, 13, 163–172. [Google Scholar]
- Shu, W.; Ming, A.; Zhang, J.; Li, H.; Min, H.; Ma, J.; Tao, Y. Effects of close-to-nature transformation on soil enzyme activities and organic carbon fractions in Cuninghamia lanceolata and Pinus massoniana plantations. Forests 2022, 13, 872. [Google Scholar] [CrossRef]
- Zhang, X.; Sa, R.; Gao, J.; Wang, C.; Liu, D.; Zhang, Y. Preventive effect of vermicompost against cucumber Fusarium wilt and improvement of cucumber growth and soil properties. Int. J. Agric. Biol. 2020, 23, 515–521. [Google Scholar]
- Mahmoodabadi, M.R.; Ronaghi, A.M.; Khayyat, M.; Amirabadi, Z. Effects of sheep manure on vegetative and reproductive growth and nutrient concentrations of soybean plants under leaching and non-leaching conditions. J. Plant Nutr. 2011, 34, 1593–1601. [Google Scholar] [CrossRef]
- Ding, M.; Shang, N.; Huang, Y.; Liu, L.; Fan, W.; Peng, L.; Zhou, Z. Isolation of plant growth promoting rhizobacteria and selection of microbial organic fertilizer carriers. Int. J. Agric. Biol. 2019, 21, 77–84. [Google Scholar]
- Baldwin, M.; Kellogg, C.E.; Thorp, J. Soil classification. Soils and men. In The United States Department. Agricultural. Yearbook; The United States Government, Print Office: Washington, DC, USA, 1938; pp. 979–1001. [Google Scholar]
- Marbut, C.F. Soils of the United States. In Atlas of American Agriculture; Baker, O.E., Ed.; USDA Bureau of Chemistry and Soils; The United States Government, Print Office: Washington, DC, USA, 1935; pp. 1–98. [Google Scholar]
- Yang, X.Q. Nitrogen, Phosphorus Nutrition and Water Stress Tolenrance of Aquilaria sinensis Seedlings; Chinese Academy of Forestry Sciences: Beijing, China, 2013. [Google Scholar]
- Yang, M.W. Study on Rapid Determination of Chlorophyll Content of Leaves. Chin. J. Spectrosc. Lab. 2002, 19, 478–481. [Google Scholar]
- Cai, Y.P. Plant Physiology Experiment Instruction; China Agricultural University Press: Beijing, China, 2014; pp. 166–170. [Google Scholar]
- Hao, Z.B.; Cang, J.; Xu, Z. Plant Physiology Experiment; Harbin Institute of Technology Press: Harbin, China, 2004. [Google Scholar]
- Li, Z.F.; Wu, X.D. Experimental Design Scheme for the Effect of Drought Stress on Content of Malondialdehyde of Indoor Ornamental Plants. Tianjin Agric. Sci. 2016, 22, 3. [Google Scholar]
- Zhang, Z.A.; Chen, Z.Y. Experimental Techniques in Plant Physiology; Liaoning Science and Technology Press: Shenyang, China, 2008. [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000; pp. 245–270. [Google Scholar]
- Yokozawa, M.; Hara, T. A canopy photosynthesis model for the dynamics of size structure and self-thinning in plant populations. Ann. Bot. 1992, 70, 305–316. [Google Scholar] [CrossRef]
- Mazeh, M.; Almadi, L.; Paoletti, A.; Cinosi, N.; Daher, E.; Tucci, M. Use of an Organic Fertilizer Also Having a Biostimulant Action to Promote the Growth of Young Olive Trees. Agricultrure 2021, 11, 593. [Google Scholar] [CrossRef]
- Kazeminasab, A.; Yarnia, M.; Lebaschy, M.H.; Mirshekari, B.; Rejali, F. The effect of vermicompost and PGPR on physiological traits of lemon balm (Melissa officinalis L.) plant under drought stress. J. Med. Plants By-Prod. 2016, 5, 135–144. [Google Scholar]
- Bayram, C.A.; Buyuk, G.; Armagan, K. Effects of Farm Manure, Vermicompost and plant growth regulators on yield and fruit quality in watermelon. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Derg. 2021, 24, 64–69. [Google Scholar]
- Kaur, A.; Pati, P.K.; Ohri, P.; Kaur, A. Effects of Vermicompost and vermicompost leachate on the biochemical and physiological response of Withania somnifera (L.) Dunal. J. Soil Sci. Plant Nutr. 2022, 22, 3228–3242. [Google Scholar] [CrossRef]
- Kujur, E.; Dash, D.; Gupta, S.B. Effect of Azotobacter and phosphorus solubilizing bacteria on growth and yield of okra. Indian Acad. Hortic. Sci. 2020, 77, 503–508. [Google Scholar] [CrossRef]
- Davis, B. Earthworms: Their ecology and relationships with soils and land use. Environ. Pollut. 1985, 42, 94. [Google Scholar] [CrossRef]
- Jongmans, A.G.; Pulleman, M.M.; Balabane, M.; Van Oort, F.; Marinissen, J.C.Y. Soil structure and characteristics of organic matter in two orchards differing in earthworm activity. Appl. Soil Ecol. 2003, 24, 219–232. [Google Scholar] [CrossRef]
- Wood, C.W.; Reeves, D.W.; Himelrick, D.G. Relationships between chlorophyll meter readings and leaf chlorophyll concentration, N status, and crop yield: A review. Proc. Agron. Soc. N. Z. 1993, 23, 1–9. [Google Scholar]
- Shi, Y.W.; Wang, Y.L.; Li, W.B.; Gao, S.M.; Li, X. Effects of water stress on soluble protein, soluble sugar and proline content in Tamarix hispida. J. Xinjiang Agric. Univ. 2007, 30, 5–8. [Google Scholar]
- Lu, S.; He, J.; Yi, S.; Liao, Y.; Li, C.; Yang, S.; Yin, J. Establishment and application of a comprehensive assessment system for cold resistance in Denphal-group Dendrobium cultivars. Eur. J. Hortic. Sci. 2021, 86, 289–299. [Google Scholar] [CrossRef]
- Liao, X.; Liao, X.; Zhou, W. Effects of Combined of Nitrogen, Phosphorus, and Potassium Fertilization on Soluble Sugar and Soluble Protein of Erythrophleum fordii. Guangxi For. Sci. 2018, 47, 3. [Google Scholar]
- Zhang, M.Y.; Huang, X.L.; Zhu, L.Q. Effects of Different Fertilization Proportions on Growth of Podocarpus macrophyllus seedlings. Guangxi For. Sci. 2018, 47, 39–43. [Google Scholar]
- Zhong, S.-T.; Shen, Z.-Z.; Sun, Y.-F.; Lyu, N.-N.; Ruan, Y.-Z.; LI, R.; Shen, Q.-R. Effects of continuous application of bio-organic fertilizer on banana production and cultural microflora of bulk soil in orchard with serious disease incidence. Yingyong Shengtai Xuebao 2015, 26, 481–489. [Google Scholar] [PubMed]
- Salehi, A.; Tasdighi, H.; Gholamhoseini, M. Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pac. J. Trop. Biomed. 2016, 6, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.B.; Liu, C.H.; Pan, X.; Guo, J.N.; Ma, F.W. Changes of MDA and proline contents in grape root stocks under NaCl stress. J. Henan Agric. Sci. 2006, 4, 84–86. [Google Scholar]
- Papageorgiou, G. Chlorophyll fluorescence: An intrinsic probe of photosynthesis. Bioenerg. Photosynth 1975, 15, 319–371. [Google Scholar]
- Fallahi, H.R.; Mahmoodi, S. Impact of water availability and fertilization management on saffron (Crocus sativus L.) biomass allocation. J. Hortic. Postharvest Res. 2018, 1, 131–146. [Google Scholar]
- Farooq, N.; Iqbal, M.; Farooq, M.; Zahir, Z.A. Interactive effects of synthetic fertilizer and organic residue inputs on soil fertility and wheat crop under various moisture regimes. Int. J. Agric. Biol. 2018, 21, 244–250. [Google Scholar]
- Ruan, S.; Wu, F.; Lai, R.; Tang, X.; Luo, H.; He, L. Preliminary application of vermicompost in rice production: Effects of nursery raising with vermicompost on fragrant rice performances. Agronomy 2021, 11, 1253. [Google Scholar] [CrossRef]
- Wan, S.; Ling, Q.; Yu, T. Effect of Water Stress on POD SOD Activity and iso-POD SOD in Chinese Chestnut seedlings Leaves. J. Beijing Agric. Coll. 1997, 12, 20–25. [Google Scholar]
- Njogu, R.N.; Kariuki, D.K.; Kamau, D.N.; Wachira, F.N. Relationship between tea (Camellia sinensis) leaf uptake of major nutrients, nitrogen, phosphorous and Potassium (npk) and leaf anatomy of different varieties grown in the Kenyan highlands. Univ. Nairobi 2014, 2, 95–102. [Google Scholar]
- Li, S.; Liang, X.; Wei, B. Effects of organic fertilizer on soil and the yield and quality of sugarcane under the condition of smashing ridge tillage. Guihaia 2021, 41, 1509–1515. [Google Scholar]
- Haitao, Z.; Tianpeng, L.; Yuhua, S.; Ke, F.; Zhijun, Y.; Qiande, X. Cow manure disposal using an earthworm bio-bed and the development of a vermicompost-based substrate for Capsicum seedlings. Compost. Sci. Util. 2018, 26, 165–176. [Google Scholar] [CrossRef]
- Bademkiran, F.; Cig, A.; Turkoglu, N.; Bademkiran, F.; Cig, A.; Turkoglu, N. The effects of solid and liquid earthword fertilizer dosed on the nutrient content of Narcissus cv. royal connections of sirt province. Turkey 2019, 28, 7234–7241. [Google Scholar]
- Atiyeh, R.M.; Arancon, N.Q.; Edwards, C.A.; Metzger, J.D. The influence of earthworm-processed pig manure on the growth and productivity of marigolds. Bioresour. Technol. 2022, 81, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Dalorima, T.; Sakimin, S.Z.; Shah, R.M. Utilization of organic fertilisers a potential approaches for agronomic crops: A review. Plant Sci. Today 2021, 8, 190–198. [Google Scholar] [CrossRef]
- Wu, K.; Fang, Z.; Wang, L.; Yuan, S.; Guo, R.; Shen, B.; Shen, Q. Biological potential of bioorganic fertilizer fortified with bacterial antagonist for the control of tomato bacterial wilt and the promotion of crop yields. J. Microbiol. Biotechnol. 2016, 26, 1755–1764. [Google Scholar] [CrossRef] [Green Version]
Fertilizer | Total N | Total P | Total K | Total Amount of Nutrients | Organic Matter | Moisture Content | pH Value |
---|---|---|---|---|---|---|---|
% | |||||||
CK | -- | -- | -- | -- | -- | -- | -- |
VC | 2.11 | 1.57 | 1.84 | 5.52 | ≥45 | 51.79 | 6.70 |
SM | 1.53 | 1.12 | 1.09 | 3.74 | ≥45 | 60.06 | 8.40 |
MOF | 1.62 | 1.86 | 1.95 | 5.43 | ≥45 | 53.54 | 5.50 |
Parameters | Organic Matter | Total N | Total P | Total K | pH Value |
---|---|---|---|---|---|
g·kg−1 | |||||
values | 16.13 | 1.02 | 0.30 | 1.15 | 4.97 |
The Nutrient Contents | Treatment | December 2021 | February 2022 | May 2022 |
---|---|---|---|---|
Total nitrogen content in leaves (TN, g/kg) | VC | 17.69 ± 0.93 aB | 19.86 ± 1.69 aB | 23.63 ± 1.25 aA |
SM | 12.27 ± 2.23 bcB | 14.36 ± 0.88 abB | 18.83 ± 1.69 bA | |
MOF | 14.43 ± 0.61 abA | 14.52 ± 1.70 abA | 17.27 ± 0.69 bA | |
CK | 9.20 ± 0.28 cB | 10.55 ± 0.99 bB | 13.30 ± 0.64 cA | |
Total phosphorus content in leaves (TP, g/kg) | VC | 0.047 ± 0.02 aA | 0.019 ± 0.01 bC | 0.040 ± 0.01 aB |
SM | 0.048 ± 0.01 aA | 0.021 ± 0.01 bC | 0.034 ± 0.01 bB | |
MOF | 0.041 ± 0.01 aA | 0.023 ± 0.01 aB | 0.036 ± 0.01 bB | |
CK | 0.029 ± 0.01 bA | 0.012 ± 0.01 cC | 0.019 ± 0.01 cB | |
Total potassium content in leaves (TK, g/kg) | VC | 7.85 ± 0.15 aC | 9.06 ± 0.66 aB | 14.91 ± 0.26 aA |
SM | 6.45 ± 0.13 bB | 7.20 ± 0.20 bAB | 8.14 ± 0.90 cA | |
MOF | 5.75 ± 0.69 bC | 7.93 ± 0.98 bB | 10.84 ± 0.64 bA | |
CK | 5.81 ± 0.06 bB | 6.15 ± 1.17 cB | 6.87 ± 0.48 dA |
Index | VC | SM | MOF | CK |
---|---|---|---|---|
Plant height | 1.00 | 0.63 | 0.57 | 0.00 |
Ground diameter | 1.00 | 0.55 | 0.38 | 0.00 |
Soluble protein | 0.46 | 1.00 | 0.64 | 0.00 |
Soluble sugar | 0.43 | 0.07 | 1.00 | 0.00 |
Free proline | 0.00 | 0.46 | 0.55 | 1.00 |
SOD | 0.10 | 0.30 | 1.00 | 0.00 |
POD | 0.63 | 1.00 | 0.19 | 0.00 |
MDA | 0.41 | 0.47 | 0.00 | 1.00 |
Chlorophyll | 1.00 | 0.57 | 0.55 | 0.00 |
TN | 1.00 | 0.59 | 0.43 | 0.00 |
TP | 0.81 | 0.71 | 1.00 | 0.00 |
TK | 1.00 | 0.16 | 0.49 | 0.00 |
Mean value | 0.65 | 0.54 | 0.57 | 0.17 |
Final priorities | 1 | 3 | 2 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhao, Z.; Bai, T.; Xiong, J.; Li, Y.; Wei, P.; Fu, Y. Mediating Effect of Bio-Organic Fertilizer on the Physiological Characteristics of “Qi-Nan” Agarwood from Aquilaria sinensis (Lour.). Forests 2023, 14, 666. https://doi.org/10.3390/f14040666
Huang J, Zhao Z, Bai T, Xiong J, Li Y, Wei P, Fu Y. Mediating Effect of Bio-Organic Fertilizer on the Physiological Characteristics of “Qi-Nan” Agarwood from Aquilaria sinensis (Lour.). Forests. 2023; 14(4):666. https://doi.org/10.3390/f14040666
Chicago/Turabian StyleHuang, Jingyue, Zhang Zhao, Tiandao Bai, Junfei Xiong, Yingjian Li, Penglian Wei, and Yunlin Fu. 2023. "Mediating Effect of Bio-Organic Fertilizer on the Physiological Characteristics of “Qi-Nan” Agarwood from Aquilaria sinensis (Lour.)" Forests 14, no. 4: 666. https://doi.org/10.3390/f14040666
APA StyleHuang, J., Zhao, Z., Bai, T., Xiong, J., Li, Y., Wei, P., & Fu, Y. (2023). Mediating Effect of Bio-Organic Fertilizer on the Physiological Characteristics of “Qi-Nan” Agarwood from Aquilaria sinensis (Lour.). Forests, 14(4), 666. https://doi.org/10.3390/f14040666