A 195-Year Growing Season Relative Humidity Reconstruction Using Tree-Ring Cellulose δ13C in the Upper Tarim River Basin, NW China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Site
2.2. Tree-Ring Stable Carbon Isotopes Chronology Development
2.3. Meteorological Data and Statistical Methods
3. Results
3.1. Characteristics of Tree-Ring δ13C Time Series
3.2. Climatic Responses
3.3. Growing Season Relative Humidity Reconstruction and Verification
- (n = 60, r = −0.78, R2 = 0.6, R2adj = 0.6, F = 86.48, p < 0.0001, D/W = 1.34)
4. Discussion
4.1. Climatic Response of δ13C
4.2. Characteristics of Changes in Reconstructed Relative Humidity
4.3. Comparisons with Other Paleoclimatic Reconstructions
4.4. Possible Factors Affecting Relative Humidity Change
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, Z.; Zhou, P.; Li, X.; Cheng, H.; Sha, Y.; Xie, X.; Liu, H.; Wu, J.; Liu, X. Distinct Holocene precipitation trends over arid Central Asia and linkages to westerlies and Asian monsoon. Quat. Sci. Rev. 2021, 266, 107055. [Google Scholar] [CrossRef]
- Bothe, O.; Fraedrich, K.; Zhu, X. Precipitation climate of Central Asia and the large-scale atmospheric circulation. Theor. Appl. Climatol. 2012, 108, 345–354. [Google Scholar] [CrossRef]
- Chen, F.H.; Chen, J.H.; Holmes, J.; Boomer, I.; Austin, P.; Gates, J.B.; Wang, N.L.; Brooks, S.J.; Zhang, J.W. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quat. Sci. Rev. 2010, 29, 1055–1068. [Google Scholar] [CrossRef]
- Wang, J.; Chen, F.; Jin, L.; Bai, H. Characteristics of the dry/wet trend over arid central Asia over the past 100 years. Clim. Res. 2010, 41, 51–59. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021; in press. [Google Scholar]
- Liu, Y.; Song, H.; An, Z.; Sun, C.; Zeng, X. Recent anthropogenic curtailing of Yellow River runoff and sediment load is unprecedented over the past 500 y. Proc. Natl. Acad. Sci. USA 2020, 117, 201922349. [Google Scholar]
- Cook, E.R.; Anchukaitis, K.J.; Buckley, B.M.; D’Arrigo, R.D.; Jacoby, G.C.; Wright, W.E. Asian monsoon failure and megadrought during the last millennium. Science 2010, 328, 486–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Zhang, R.; Yuan, Y.; Gao, Y.; Wei, W.; Diushen, M.; He, Q.; Shang, H.; Wang, J. Reconstructed precipitation on a centennial timescale from tree rings in the western Tien Shan Mountains, Central Asia. Quat. Int. 2015, 358, 58–67. [Google Scholar] [CrossRef]
- Opała-Owczarek, M.; Niedźwiedź, T. Last 1100 yr of precipitation variability in western central Asia as revealed by tree-ring data from the Pamir-Alay. Quat. Res. 2019, 91, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Yuan, Y.J.; Wei, W.S.; Zhang, T.W.; Shang, H.M.; Zhang, R. Precipitation reconstruction for the southern Altay Mountains (China) from tree rings of Siberian spruce reveals recent wetting trend. Dendrochronologia 2014, 32, 266–272. [Google Scholar] [CrossRef]
- Chen, F.; Yuan, Y.J.; Chen, F.H.; Wei, W.S.; Yu, S.L.; Chen, X.J.; Fan, Z.A.; Zhang, R.B.; Zhang, T.W.; Shang, H.M. A 426-year drought history for Western Tian Shan, Central Asia, inferred from tree rings and linkages to the North Atlantic and Indo–West Pacific Oceans. Holocene 2013, 23, 1095–1104. [Google Scholar] [CrossRef]
- Wang, T.; Bao, A.; Xu, W.; Yu, R.; Zhang, Q.; Jiang, L.; Nzabarinda, V. Tree-ring-based assessments of drought variability during the past 400 years in the Tianshan mountains, arid Central Asia. Ecol. Indic. 2021, 126, 107702. [Google Scholar] [CrossRef]
- Xu, G.; Liu, X.; Trouet, V.; Treydte, K.; Wu, G.; Chen, T.; Sun, W.; An, W.; Wang, W.; Zeng, X. Regional drought shifts (1710–2010) in East Central Asia and linkages with atmospheric circulation recorded in tree-ring δ18O. Clim. Dyn. 2019, 52, 713–727. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Liu, H.; Wu, X.; Wang, H. Tree-ring-based SPEI reconstruction in central Tianshan Mountains of China since A.D. 1820 and links to westerly circulation. Int. J. Climatol. 2016, 37, 2863–2872. [Google Scholar] [CrossRef]
- Li, T.; Liu, Y.; Li, Q.; Song, H.; Cai, Q.; Sun, C.; Cui, L. Impact of the North Atlantic and the Indian Ocean on the summer hydroclimate over East Central Asia: A case study in the central Tianshan Mountains. Glob. Planet. Change 2022, 216, 103924. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, R.; Lu, B.; Mambetov, B.T.; Kelgenbayev, N.; Dosmanbetov, D.; Maisupova, B.; Chen, F.; Yu, S.; Shang, H. tree-ring chronologies development and vegetation index reconstruction for the Alatau Mountains, Central Asia. Geochronometria 2018, 45, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Qin, L.; Shang, H.; Yu, S.; Gou, X.; Mambetov, B.T.; Bolatov, K.; Zheng, W.; Ainur, U.; Bolatova, A. Climatic change in southern Kazakhstan since 1850 C.E. inferred from tree rings. Int. J. Biometeorol. 2020, 64, 841–851. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Q.; Luo, Y.; Shen, Y.; Pan, X.; Li, L.; Li, Z. Ponder on the issues of water resources in the arid region of northwest China. Arid Land Geogr. 2012, 35, 1–9. [Google Scholar]
- Chen, Y.N.; Xu, C.C.; Hao, X.M.; Li, W.H.; Chen, Y.P.; Zhu, C.G.; Ye, Z.X. Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat. Int. 2009, 208, 53–61. [Google Scholar]
- Sun, J.Y.; Liu, Y.; Cai, Q.F.; Park, W.K.; Li, B.S.; Shi, J.F.; Yi, L.; Song, H.M.; Li, Q. Climatic and hydrological change of Ejin, Inner Mongolia, China during the past 233 years recorded in tree rings of Populus euphratica. Quat. Sci. 2006, 26, 799–807. (In Chinese) [Google Scholar]
- Zhang, T.W.; Shang, H.M.; Fan, Y.T.; Yu, S.L.; Zhang, R.B.; Qin, L.; Jiang, S.X. A 475-year tree-ring-width record of streamflow for the Qingshui River originating in the southern slope of the central Tianshan Mountains, China. Geogr. Ann. A 2020, 102, 247–266. [Google Scholar] [CrossRef]
- Zhou, H.H.; Chen, Y.N.; Hao, X.M.; Zhao, Y.; Fang, G.H.; Yang, Y.H. Tree rings: A key ecological indicator for reconstruction of groundwater depth in the lower Tarim River, Northwest China. Ecohydrology 2019, 12, e2142. [Google Scholar] [CrossRef]
- Zhou, H.; Li, W.; Sun, H. Reconstruction of groundwater depth using tree-rings of Populus euphratica in the Lower Tarim River. Sci. Silvae Sin. 2018, 54, 11–16. [Google Scholar]
- Zhao, S.; Wei, Q.; Xu, H.; Guo, H.; Wang, X.; Zhao, X. Response of the tree-ring to ecological environment change of the Tarim River. J. Desert Res. 2017, 37, 594–600. [Google Scholar]
- Deng, X.Y.; Xu, H.L.; Ye, M.; Li, B.L.; Fu, J.Y.; Yang, Z.F. Impact of long-term zero-flow and ecological water conveyance on the radial increment of Populus euphratica in the lower reaches of the Tarim River, Xinjiang, China. Reg. Environ. Change 2015, 15, 13–23. [Google Scholar] [CrossRef]
- Yu, P.J.; Xu, H.L.; Ye, M.; Liu, S.W.; Gong, J.J.; An, H.Y.; Fu, J.Y. Effects of ecological water conveyance on the ring increments of Populus euphratica in the lower reaches of Tarim River. J. For. Res. 2012, 17, 413–420. [Google Scholar] [CrossRef]
- Lang, P.; Ahlborn, J.; Schaefer, P.; Wommelsdorf, T.; Jeschke, M.; Zhang, X.M.; Thomas, F.M. Growth and water use of Populus euphratica trees and stands with different water supply along the Tarim River, NW China. For. Ecol. Manag. 2016, 380, 139–148. [Google Scholar] [CrossRef]
- Lang, P.; Jeschke, M.; Wommelsdorf, T.; Backes, T.; Lv, C.Y.; Zhang, X.M.; Thomas, F.M. Wood harvest by pollarding exerts long-term effects on Populus euphratica stands in riparian forests at the Tarim River, NW China. For. Ecol. Manag. 2015, 353, 87–96. [Google Scholar] [CrossRef]
- Li, H.; Feng, J.; Bai, L.; Zhang, J. Populus euphratica phenology and its response to climate change in the Upper Tarim River Basin, NW China. Forests 2021, 12, 1315. [Google Scholar] [CrossRef]
- McCarroll, D.; Pawellek, F. Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. Holocene 2001, 11, 517–526. [Google Scholar] [CrossRef]
- McCarroll, D.; Loader, N.J. Stable isotopes in tree rings. Quat. Sci. Rev. 2004, 23, 771–801. [Google Scholar] [CrossRef]
- Bale, R.J.; Robertson, I.; Salzer, M.W.; Loader, N.J.; Leavitt, S.W.; Gagen, M.; Harlan, T.P.; McCarroll, D. An annually resolved bristlecone pine carbon isotope chronology for the last millennium. Quat. Res. 2011, 76, 22–29. [Google Scholar] [CrossRef]
- Young, G.H.F.; Bale, R.J.; Loader, N.J.; McCarroll, D.; Nayling, N.; Vousden, N. Central England temperature since AD 1850: The potential of stable carbon isotopes in British oak trees to reconstruct past summer temperatures. J. Quat. Sci. 2012, 27, 606–614. [Google Scholar] [CrossRef]
- Wang, W.Z.; Liu, X.H.; Shao, X.M.; Leavitt, S.; Xu, G.B.; An, W.L.; Qin, D.H. A 200 year temperature record from tree ring δ13C at the Qaidam Basin of the Tibetan Plateau after identifying the optimum method to correct for changing atmospheric CO2 and δ13C. J. Geophys. Res.-Biogeosci. 2011, 116, 1–12. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Li, Q.; Song, H.; Linderholm, H.W.; Leavitt, S.W.; Wang, R.; An, Z. Tree-ring stable carbon isotope-based May-July temperature reconstruction over Nanwutai, China, for the past century and its record of 20th-century warming. Quat. Sci. Rev. 2014, 93, 67–76. [Google Scholar] [CrossRef]
- Schubert, B.A.; Timmermann, A. Reconstruction of seasonal precipitation in Hawai’i using high-resolution carbon isotope measurements across tree rings. Chem. Geol. 2015, 417, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ma, L.M.; Leavitt, S.W.; Cai, Q.F.; Liu, W.G. A preliminary seasonal precipitation reconstruction from tree-ring stable carbon isotopes at Mt. Helan, China, since AD 1804. Glob. Planet. Change 2004, 41, 229–239. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Z.D.; Leavitt, S.W.; Hughes, M.K. Stable carbon isotope in tree rings from Huangling, China and climatic variation. Sci. China Ser. D-Earth Sci. 1996, 39, 152–161. [Google Scholar]
- Xu, G.; Wu, G.; Liu, X.; Chen, T.; Wang, B.; Hudson, A.; Trouet, V. Age-Related Climate Response of Tree-Ring δ13C and δ18O From Spruce in Northwestern China, with Implications for Relative Humidity Reconstructions. J. Geophys. Res.-Biogeosci. 2020, 125, e2019JG005513. [Google Scholar] [CrossRef]
- Liu, Y.; Ta, W.Y.; Li, Q.; Song, H.M.; Sun, C.F.; Cai, Q.F.; Liu, H.; Wang, L.; Hu, S.L.; Sun, J.Y.; et al. Tree-ring stable carbon isotope-based April-June relative humidity reconstruction since AD 1648 in Mt. Tianmu, China. Clim. Dyn. 2018, 50, 1733–1745. [Google Scholar] [CrossRef]
- Fan, Y.T.; Shang, H.M.; Wu, Y.; Li, Q. Tree-ring width and carbon isotope chronologies track temperature, humidity, and baseflow in the Tianshan Mountains, Central Asia. Forests 2020, 11, 1308. [Google Scholar] [CrossRef]
- Marchand, W.; Girardin, M.P.; Hartmann, H.; Depardieu, C.; Isabel, N.; Gauthier, S.; Boucher, E.; Bergeron, Y. Strong overestimation of water-use efficiency responses to rising CO2 in tree-ring studies. Glob. Change Biol. 2020, 26, 4538–4558. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Islam, M.; Gebrekirstos, A.; Brauning, A. Disentangling the effects of atmospheric CO2 and climate on intrinsic water-use efficiency in South Asian tropical moist forest trees. Tree Physiol. 2020, 40, 904–916. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Wang, W.Z.; Xu, G.B.; Zeng, X.M.; Wu, G.J.; Zhang, X.W.; Qin, D.H. Tree growth and intrinsic water-use efficiency of inland riparian forests in northwestern China: Evaluation via δ13C and δ18O analysis of tree rings. Tree Physiol. 2014, 34, 966–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Cook, E.R. A Time Series Analysis Approach to Tree Ring Standardisation; University of Arizona: Tucson, AZ, USA, 1985. [Google Scholar]
- Esper, J.; Frank, D.C.; Battipaglia, G.; Büntgen, U.; Holert, C.; Treydte, K.; Siegwolf, R.; Saurer, M. Low-frequency noise in δ13C and δ18O tree ring data: A case study of Pinus uncinata in the Spanish Pyrenees. Glob. Biogeochem. Cycles 2010, 24, GB4018. [Google Scholar] [CrossRef] [Green Version]
- Leavitt, S.W.; Long, A. Sampling Strategy for Stable Carbon Isotope Analysis of Tree Rings in Pine. Nature 1984, 311, 145–147. [Google Scholar] [CrossRef]
- Coplen, T.B. Discontinuance of SMOW and PDB. Nature 1995, 375, 285. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Widmann, M.; Dymnikov, V.P.; Wallace, J.M.; Bladé, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 1999, 12, 1990–2009. [Google Scholar] [CrossRef]
- Wigley, T.M.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Clim. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Leavitt, S.W. Tree-ring C-H-O isotope variability and sampling. Sci. Total Environ. 2010, 408, 5244–5253. [Google Scholar] [CrossRef]
- McCarroll, D.; Gagen, M.H.; Loader, N.J.; Robertson, I.; Anchukaitis, K.J.; Los, S.; Young, G.H.F.; Jalkanen, R.; Kirchhefer, A.; Waterhouse, J.S. Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim. Cosmochim. Acta 2009, 73, 1539–1547. [Google Scholar] [CrossRef]
- Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar]
- Tu, W.X. The Impact of River Runoff on Radial Growth of Populus euphratica in the Tarim River. Master’s Thesis, Xinjiang Normal University, Urumqi, China, 2014. (In Chinese). [Google Scholar]
- Durbin, J.; Watson, G.S. Testing for serial correlation in least squares regression.III. Biometrika 1971, 58, 1–19. [Google Scholar] [CrossRef]
- Farquhar, G.; O’Leary, M.; Berry, J. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in Leaves. Funct. Plant Biol. 1982, 9, 121–137. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.Y.; Leavitt, S.W.; Song, H.M.; Linderholm, H.W.; Li, Q.; An, Z.S. Individual and pooled tree-ring stable-carbon isotope series in Chinese pine from the Nan Wutai region, China: Common signal and climate relationships. Chem. Geol. 2012, 330, 17–26. [Google Scholar] [CrossRef]
- Hemming, D.L.; Switsur, V.R.; Waterhouse, J.S.; Heaton, T.; Ca Rter, A. Climate variation and the stable carbon isotope composition of tree ring cellulose: An intercomparison of Quercus robur, Fagus sylvatica and Pinus silvestris. Tellus 2010, 50, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.M.; Liu, Y.; Zhao, J.F.; An, Z.S. Response of stable-carbon isotope composition of different tree-ring compounds to climatic change. Acta Ecol. Sin. 2003, 23, 2607–2613. (In Chinese) [Google Scholar]
- Cao, S.K.; Feng, Q.; Si, J.H.; Cang, Z.Q.; Chen, K.L.; Cao, G.C. Relationships of photosynthesis and transpiration of Populus euphratica with their affecting factors. J. Arid Land Resour. Environ. 2012, 26, 155–159. (In Chinese) [Google Scholar]
- Dong, A.X.; Li, Y.H.; Zhang, Y. Characteristics and formation of natural factors of extreme drought in China around 1900. Plateau Meteorol. 2015, 34, 771–776. (In Chinese) [Google Scholar]
- The Fourteenth Division of the Xinjiang Production and Construction Corps History Compilation Committee. The Local Chronicles of the Fourteenth Division of Xinjiang Production and Construction Corps; Xinjiang People’s Publishing House: Urumqi, China, 2000; p. 20. (In Chinese) [Google Scholar]
- Shi, Y.F.; Shen, Y.P.; Hu, R.J. Preliminary study on signal, impact and foreground of climatic shift from Warm-Dry to Warm-Humid in Northwest China. J. Glaciol. Geocryol. 2012, 24, 219–226. (In Chinese) [Google Scholar]
- Shi, Y.F.; Shen, Y.P.; Li, D.L.; Zhang, G.W.; Ding, Y.J.; Hu, R.J.; Kang, E.S. Discussion on the present climate change from Warm-dry to Warm-wet in Northwest China. Quat. Sci. 2003, 23, 152–164. (In Chinese) [Google Scholar]
- Liu, X. History of the Xinjiang Disaster; Xinjiang People’s Publishing House: Urumqi, China, 1999; pp. 205–214. (In Chinese) [Google Scholar]
- Tan, X.W.; Xue, L.Q. Risk Assessment of Drought Warning and Disaster Effects in Tarim Basin; Southeast University Press: Nanjing, China, 2013; pp. 1–2. (In Chinese) [Google Scholar]
- Ahmad, S.; Zhu, L.; Yasmeen, S.; Zhang, Y.; Wang, X. A 424-year tree-ring based PDSI reconstruction of Cedrus deodara D. Don from Chitral Hindukush Range of Pakistan: Linkages to the ocean oscillations. Clim. Past 2020, 16, 783–798. [Google Scholar] [CrossRef]
- Li, J.; Gou, X.; Cook, E.R.; Chen, F. Tree-ring based drought reconstruction for the central Tien Shan area in northwest China. Geophys. Res. Lett. 2006, 33, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.P.; Sun, J.Q.; Fan, K. Possible mechanism for the interdecadal change of Xinjiang summer precipitation. Chin. J. Geophys. 2012, 55, 1844–1851. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H. Impacts of SST warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over Central Asia. Clim. Dyn. 2016, 46, 3223–3238. [Google Scholar] [CrossRef] [Green Version]
- Tao, H.; Mao, W.Y.; Huang, J.L.; Zhai, J.Q. Drought and wetness variability in the Tarim River basin and possible associations with large-scale circulation. Adv. Water Sci. 2014, 25, 45–52. (In Chinese) [Google Scholar]
- Kerr, R.A. A North Atlantic Climate Pacemaker for the Centuries. Science 2000, 288, 1984–1985. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.D.; Jónsson, T.; Wheeler, D. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. J. R. Meteorol. Soc. 1997, 17, 1433–1450. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R. The Pacific Decadal Oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Valdes-Manzanilla, A. Historical floods in Tabasco and Chiapas during sixteenth-twentieth centuries. Nat. Hazards 2016, 80, 1563–1577. [Google Scholar] [CrossRef]
- Maxwell, J.T.; Harley, G.L. Increased tree-ring network density reveals more precise estimations of sub-regional hydroclimate variability and climate dynamics in the Midwest, USA. Clim. Dyn. 2017, 49, 1479–1493. [Google Scholar] [CrossRef]
- Li, F.; Orsolini, Y.J.; Wang, H.; Gao, Y.; He, S. Modulation of the Aleutian–Icelandic low seesaw and its surface impacts by the Atlantic multidecadal oscillation. Adv. Atmos. Sci. 2018, 35, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Li, J.X.; Li, J.B.; Li, T.; Au, T.F. 351-year tree ring reconstruction of the Gongga Mountains winter minimum temperature and its relationship with the Atlantic Multidecadal Oscillation. Clim. Change 2021, 165, 49. [Google Scholar] [CrossRef]
- Li, T.; Li, J.B. A 564-year annual minimum temperature reconstruction for the east central Tibetan Plateau from tree rings. Glob. Planet. Change 2017, 157, 165–173. [Google Scholar] [CrossRef]
- Liang, H.X.; Lyu, L.X.; Wahab, M. A 382-year reconstruction of August mean minimum temperature from tree-ring maximum latewood density on the southeastern Tibetan Plateau, China. Dendrochronologia 2016, 37, 1–8. [Google Scholar] [CrossRef]
- Wang, J.L.; Yang, B.; Qin, C.; Kang, S.Y.; He, M.H.; Wang, Z.Y. Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic Multidecadal Oscillation. Clim. Dyn. 2014, 43, 627–640. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y.; Li, Q.; Song, H.; Li, X.; Sun, C.; Cai, Q.; Song, Y. Seasonal Palmer drought severity index reconstruction using tree-ring widths from multiple sites over the central-western Da Hinggan Mountains, China since 1825 AD. Clim. Dyn. 2019, 53, 3661–3674. [Google Scholar] [CrossRef]
- Wang, X.C.; Brown, P.M.; Zhang, Y.N.; Song, L.P. Imprint of the Atlantic Multidecadal Oscillation on tree-ring widths in Northeastern Asia since 1568. PLoS ONE 2011, 6, e22740. [Google Scholar] [CrossRef]
- O’Reilly, C.; Woollings, T.; Zanna, L. The dynamical influence of the Atlantic Multidecadal Oscillation on continental climate. In Proceedings of the Egu General Assembly Conference, Vienna, Austria, 23–28 April 2017. [Google Scholar]
- D’Arrigo, R.; Anchukaitis, K.J.; Buckley, B.; Cook, E.; Wilson, R. Regional climatic and North Atlantic Oscillation signatures in West Virginia red cedar over the past millennium. Glob. Planet. Change 2012, 84–85, 8–13. [Google Scholar] [CrossRef]
- Laanelaid, A.; Helama, S.; Kull, A.; Timonen, M.; Jaagus, J. Common growth signal and spatial synchrony of the chronologies of tree-rings from pines in the Baltic Sea region over the last nine centuries. Dendrochronologia 2012, 30, 147–155. [Google Scholar] [CrossRef]
- Ling, H.B.; Deng, X.Y.; Long, A.H.; Gao, H.F. The multi-time-scale correlations for drought-flood index to runoff and North Atlantic Oscillation in the headstreams of Tarim River, Xinjiang, China. Hydrol. Res. 2017, 48, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Ling, H.; Xu, H.; Wei, S.; Zhang, Q. Regional climate change and its effects on the runoff of Manas River, Xinjiang, China. Environ. Earth Sci. 2011, 64, 2203–2213. [Google Scholar] [CrossRef]
- Hongjun, L.I.; Zhihong, J.; Qing, Y. Association of North Atlantic Oscillations with Aksu River run off in China. J. Geogr. Sci. 2009, 19, 12–24. [Google Scholar]
- Thompson, D.W.; Wallace, J.M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.X.; Li, J.P.; Zhou, T.J.; Lu, R.Y.; Yu, Y.Q.; Zhu, J.; MU, M.; Duan, A.M.; Ren, R.C.; Ding, Y.H.; et al. The key region affecting the short-term climate variations in China: The joining area of Asia and the Indian-Pacific Ocean. Adv. Earth Sci. 2006, 21, 1109–1118. (In Chinese) [Google Scholar]
- Yang, M.L.; Li, X.; Zhang, G.Y. Some advances and problems in some advances and problems in the study of heavy rain in Xinjiang. Clim. Environ. Res. 2011, 16, 188–198. (In Chinese) [Google Scholar]
- Liu, R.; Yang, Q. Calculation and analysis of water vapor transportation and its net come in Xinjiang. J. Desert Res. 2010, 30, 1221–1228. (In Chinese) [Google Scholar]
- Apurv, T.; Xu, Y.P.; Wang, Z.; Cai, X.M. Multidecadal Changes in Meteorological Drought Severity and Their Drivers in Mainland China. J. Geophys. Res.-Atmos. 2019, 124, 12937–12952. [Google Scholar] [CrossRef]
- Wu, Y.P.; Shen, Y.P.; Li, B.L. Possible physical mechanism of water vapor transport over Tarim River Basin. Ecol. Complex. 2012, 9, 63–70. [Google Scholar] [CrossRef]
- Yao, J.Q.; Tuoliewubieke, D.; Chen, J.; Huo, W.; Hu, W.F. Identification of Drought Events and Correlations with Large-Scale Ocean-Atmospheric Patterns of Variability: A Case Study in Xinjiang, China. Atmosphere 2019, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.Y. The Impact of Climate Change on Atmospheric Water Cycle over the Tarim River Basin and Its Mechanism. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2011. (In Chinese). [Google Scholar]
ALE-03A | ALE-15A | ALE-26B | ALE-54B | |
---|---|---|---|---|
ALE-15A | 0.55, 247/217 | |||
ALE-26B | 0.67, 243/214 | 0.56, 244/178 | ||
ALE-54B | 0.61, 249/245 | 0.55, 246/238 | 0.53, 242/192 | |
ALE_com | 0.86, 251/228 | 0.78, 248/196 | 0.84, 244/194 | 0.83, 250/244 |
Statistical Parameters | ALE-03A | ALE-15A | ALE-26B | ALE-54B | ALE_com |
---|---|---|---|---|---|
Minimum (‰) | −27.56 | −26.2 | −27.36 | −27.39 | −26.75 |
Maximum (‰) | −22.49 | −21.93 | −22.69 | −22.84 | −22.83 |
Mean (‰) | −24.71 | −23.78 | −25.07 | −24.90 | −24.60 |
Standard deviation (‰) | 0.79 | 0.64 | 0.78 | 0.81 | 0.64 |
Variance | 0.63 | 0.41 | 0.61 | 0.65 | 0.41 |
Skewness | −1.06 | −0.66 | −0.24 | −0.65 | −0.63 |
Kurtosis | 2.12 | 2.11 | 0.80 | 0.74 | 1.58 |
AR1 | −0.16 | −0.4 | −0.39 | −0.04 | −0.29 |
Controlled Variable | Δ13C vs. Mean TAS | Δ13C vs. Mean PAS | Δ13C vs. Mean RHAS |
---|---|---|---|
mean TAS | 0.15 | 0.76 * | |
PAS | −0.09 | 0.77 * | |
RHAS | 0.18 | −0.25 |
Statistical Items | Jackknife | Bootstrap (100 Iterations) |
---|---|---|
Mean (Range) | Mean (Range) | |
r | −0.78 (−0.79–0.76) | −0.77 (−0.89–0.65) |
R2 | 0.6 (0.57–0.63) | 0.61 (0.4–0.77) |
R2adj | 0.6 (0.57–0.62) | 0.6 (0.39–0.77) |
SE | 2.59 (2.5–2.61) | 2.52 (2.1–2.97) |
F | 85.05 (75.15–93.96) | 93.29 (38.16–193.43) |
p | 1 × 10−12 (1 × 10−13–6 × 10−12) | 1 × 10−9 (6 × 10−20–7 × 10−8) |
D/W | 1.34 (1.21–1.41) | 1.97 (1.2–2.49) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; Liu, Y.; Li, Q.; Ren, M.; Cai, Q.; Sun, C.; Song, H.; Li, T.; Ye, M.; Zhang, T. A 195-Year Growing Season Relative Humidity Reconstruction Using Tree-Ring Cellulose δ13C in the Upper Tarim River Basin, NW China. Forests 2023, 14, 682. https://doi.org/10.3390/f14040682
Ye Y, Liu Y, Li Q, Ren M, Cai Q, Sun C, Song H, Li T, Ye M, Zhang T. A 195-Year Growing Season Relative Humidity Reconstruction Using Tree-Ring Cellulose δ13C in the Upper Tarim River Basin, NW China. Forests. 2023; 14(4):682. https://doi.org/10.3390/f14040682
Chicago/Turabian StyleYe, Yuanda, Yu Liu, Qiang Li, Meng Ren, Qiufang Cai, Changfeng Sun, Huiming Song, Teng Li, Mao Ye, and Tongwen Zhang. 2023. "A 195-Year Growing Season Relative Humidity Reconstruction Using Tree-Ring Cellulose δ13C in the Upper Tarim River Basin, NW China" Forests 14, no. 4: 682. https://doi.org/10.3390/f14040682
APA StyleYe, Y., Liu, Y., Li, Q., Ren, M., Cai, Q., Sun, C., Song, H., Li, T., Ye, M., & Zhang, T. (2023). A 195-Year Growing Season Relative Humidity Reconstruction Using Tree-Ring Cellulose δ13C in the Upper Tarim River Basin, NW China. Forests, 14(4), 682. https://doi.org/10.3390/f14040682