Simulating SOC Dynamics under Different Temperature Regimes and FYM Addition in Bamboo Species Using RothC-Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Details
2.2. Description of the RothC Model
2.3. RothC Model Simulations
2.4. Evaluation of RothC Model Performance
3. Results
3.1. Measured and Modeled SOC under Prevailing Climatic Conditions
3.2. Effect of Climate Change on SOC
3.3. Maintaining SOC: Addition of Organic Inputs
3.4. Effect of Increase in Temperature and FYM Addition on SOC
4. Discussion
4.1. Measured and Modeled SOC under Prevailing Climatic Conditions
4.2. Scenario for Climate Change and FYM Addition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Keulen, H. Tropical soil organic matter modelling: Problems and prospects. Nutr. Cycl. Agroecosyst. 2001, 61, 33–39. [Google Scholar] [CrossRef]
- Rani, S.; Benbi, D.K.; Rajasekaran, A.; Chauhan, S.K. Litterfall, decomposition and nutrient release patterns of different tree species in TaranTaran district of Punjab, India. J. Appl. Nat. Sci. 2016, 8, 1260–1266. [Google Scholar] [CrossRef] [Green Version]
- Farage, P.K.; Ardö, J.; Olsson, L.; Rienzi, E.A.; Ball, A.S.; Pretty, J.N. The potential for soil carbon sequestration in the tropic dryland farming systems of Africa and Latin America: A modelling approach. Soil Tillage Res. 2007, 94, 457–472. [Google Scholar] [CrossRef]
- Jones, C.; McConnell, C.; Coleman, K.; Cox, P.; Falloon, P.; Jenkinson, D.; Powlson, D. Global climate change and soil carbon stock; predictions from two contrasting models for turnover of organic carbon in soil. Glob. Change Biol. 2005, 11, 154–166. [Google Scholar] [CrossRef]
- Paustian, K.; Andren, O.; Janzen, H.; Lal, R.; Tian, G.; Tiessen, H.; van Noordwijk, M.; Woomer, P. Agricultural soil as a C sink to offset CO2 emission. Soil Use Manag. 1997, 13, 230–244. [Google Scholar] [CrossRef]
- ISFR. Indian State of Forest Report; Forest Survey of India, Ministry of Environment & Forests, Government of India: Dehradun, India, 2017.
- ISFR. Chapter 8 Bamboo resource of country. In Indian State of Forest Report; Forest Survey of India, Ministry of Environment & Forests, Government of India: Dehradun, India, 2019. [Google Scholar]
- Kleinhenz, V.; Midmore, D. Aspects of Bamboo Agronomy. Adv. Agron. 2001, 94, 99–144. [Google Scholar]
- Nath, A.J.; Lal, R.; Das, A.K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv. 2015, 3, 654–663. [Google Scholar] [CrossRef] [Green Version]
- Yuen, J.Q.; Fung, T.; Ziegler, A.D. Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. For. Ecol. Manag. 2017, 393, 113–138. [Google Scholar] [CrossRef]
- Lou, Y.; Li, Y.; Kathler, B.; Giles, H.; Zhou, G. Bamboo and Climate Change Mitigation: Comparative Analysis of Carbon Sequestration; Technical Report No. 32; INBAR: Beijing, China, 2010; pp. 1–20. [Google Scholar]
- Nath, A.J.; Lal, R.; Das, A.K. Ethnopedology and soil properties in bamboo (Bambusa sp.) based agroforestry system in North East India. Catena 2015, 135, 92–99. [Google Scholar] [CrossRef]
- Parr, J.; Sullivan, L.; Chen, B.; Ye, G.; Zheng, W. Carbon bio-sequestration within the phytoliths of economic bamboo species. Glob. Chang. Biol. 2010, 16, 2661–2667. [Google Scholar] [CrossRef]
- Huang, Z.-T.; Li, Y.-F.; Jiang, P.-K.; Chang, S.X.; Song, Z.-L.; Liu, J.; Zhou, G.-M. Long-term intensive management increased carbon occluded in phytolith (PhytOC) in bamboo forest soils. Sci. Rep. 2014, 4, 3602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, B.; Schulz, E.; Rethemeyer, J.; Merbach, I.; Flessa, H. Predictive modelling of C dynamics in the long-term fertilization experiment at Bad Lauchstadt with the Rothamsted Carbon Model. Eur. J. Soil Sci. 2007, 58, 1155–1163. [Google Scholar] [CrossRef] [Green Version]
- Dendoncker, N.; Van Wesemael, B.; Smith, P.; Lettens, S.; Roelandt, C.; Rounsevell, M. Assessing scale effects on modelled soil organic carbon contents as a result of land use change in Belgium. Soil Use Manag. 2008, 24, 8–18. [Google Scholar] [CrossRef]
- Falloon, P.; Jones, C.D.; Cerri, C.E.; Al-Adamat, R.; Kamoni, P.; Bhattacharyya, T.; Easter, M.; Paustian, K.; Killian, K.; Coleman, K.; et al. Climate change and its impact on soil and vegetation carbon storage in Kenya, Jordan, India and Brazil. Agric. Ecosyst. Environ. 2007, 122, 114–124. [Google Scholar] [CrossRef]
- Coleman, K.; Jenkinson, D.S.; Crocker, G.J.; Grace, P.R.; Klir, J.; Körschens, M.; Poulton, P.R.; Richter, D.D. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 1997, 81, 29–44. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Meredith, J.; Kinyamario, J.I.; Warren, G.P.; Wong, M.T.; Harkness, D.D.; Bol, R.; Coleman, K. Estimating net primary production from measurements made on soil organic matter. Ecology 1999, 80, 2762–2773. [Google Scholar] [CrossRef]
- Kelly, R.H.; Parton, W.J.; Crocker, G.J.; Graced, P.R.; Klir, J.; Körschens, M.; Poulton, P.R.; Richter, D.D. Simulating trends in soil organic carbon in long-term experiments using the century model. Geoderma 1997, 81, 75–90. [Google Scholar] [CrossRef]
- Smith, P.; Smith, J.U.; Powlson, D.S.; McGill, W.B.; Arah, J.R.; Chertov, O.G.; Coleman, K.; Franko, U.; Frolking, S.; Jenkinson, D.S.; et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 1997, 81, 153–225. [Google Scholar] [CrossRef]
- Falloon, P.; Smith, P.; Coleman, K.; Marshall, S. Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biol. Biochem. 1998, 30, 1207–1211. [Google Scholar] [CrossRef]
- Falloon, P.; Smith, P. Simulating SOC changes in long-term experiments with RothC and CENTURY: Model evaluation for a regional scale application. Soil Use Manag. 2002, 18, 101–111. [Google Scholar] [CrossRef]
- Zimmermann, M.; Leifeld, J.; Schmidt, M.W.; Smith, P.; Fuhrer, J. Measured soil organic matter fractions can be related to pools in the RothC model. Eur. J. Soil Sci. 2006, 58, 658–667. [Google Scholar] [CrossRef]
- Panwar, P.; Chauhan, S.; Das, D.K.; Kaushal, R.; Arora, G.; Chaturvedi, S. Soil organic carbon dynamics in Populus deltoids plantations using RothC-model in the Indo-Gangetic region of India. Curr. Sci. 2021, 121, 1623–1627. [Google Scholar] [CrossRef]
- Pal, S.; Panwar, P.; Yadav, R.P. Modelling dynamics of soil organic carbon under different tillage systems. Agrochimica 2022, 66, 3–14. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Pal, D.K.; Deshmukh, A.S.; Deshmukh, R.R.; Ray, S.K.; Chandran, P.; Mandal, C.; Telpande, B.; Nimje, A.M.; Tiwary, P. Evaluation of RothC model using four Long Term Fertilizer Experiments in blacksoils, India. Agric. Ecosyst. Environ. 2011, 144, 222–234. [Google Scholar] [CrossRef]
- Afzali, S.F.; Azad, B.; Golabi, M.H.; Francaviglia, R. Using RothC Model to Simulate Soil Organic Carbon Stocks under Different Climate Change Scenarios for the Rangelands of the Arid Regions of Southern Iran. Water 2019, 11, 2107. [Google Scholar] [CrossRef] [Green Version]
- Walkley, A.J.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Coleman, K.; Jenkinson, D.S. Rothc-26.3: A Model for the Turnover of Carbon in Soil. Model Description and Windows Users’ Guide; Institute of Arable Crops Research: Rothamsted, UK, 2005. [Google Scholar]
- Jenkinson, D.S.; Harris, H.C.; Ryan, J. Organic matter turnoverin a calcareous clay soil from Syria under a two-course cerealrotation. Soil Biol. Biochem. 1999, 31, 687–693. [Google Scholar] [CrossRef]
- Roberta, F.; Coleman, K.; Whitmore, A.P. Modification of the RothC model for simulations of soil organic C dynamics in dryland regions. Geoderma 2013, 200–201, 18–30. [Google Scholar]
- Chen, C.R.; Xu, Z.H.; Mathers, N.J. Soil carbon pools in adjacent natural and plantation forests of subtropical Australia. Soil Sci. Soc. Am. J. 2004, 68, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Nath, A.; Das, A. Carbon storage and sequestration in bamboo-based smallholder homegardens of Barak Valley, Assam. Curr. Sci. 2011, 100, 229–233. [Google Scholar]
- Kaushal, R.; Subbulaksmi, V.; Tomar, J.M.S.; Alam, N.M.; Jayaprakash, J.; Mehta, H.; Chaturvedi, O.P. Predictive models for biomass and carbon stock estimation in Male bamboo (Dendrocalamus strictus L.) in Doon valley, India. Acta Ecol. Sin. 2016, 36, 469–476. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Koul, D.N.; Panwar, P. Opting different land use for carbon buildup in soils and their bioeconomics in humid subtropics of West Bengal, India. Ann. For. Res. 2012, 55, 253–264. [Google Scholar]
- Kaushal, R.; Singh, I.; Thapliyal, S.D.; Gupta, A.K.; Mandal, D.; Tomar, J.M.S.; Kumar, A.; Alam, N.M.; Kadam, D.; Singh, D.V.; et al. Rooting behavior and soil properties in different bamboo species of Western Himalayan Foothils, India. Sci. Rep. 2020, 10, 4966. [Google Scholar] [CrossRef] [Green Version]
- Sainju, U.M.; Jabro, J.D.; Stevens, W.B. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization. J. Environ. Qual. 2008, 37, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.L.; Zhao, J.; Wu, J.P.; Chen, H.; Lin, Y.B.; Zhou, L.X.; Fu, S.L. Impacts of understory species removal and/or addition on soil respiration in a mixed forest plantation with native species in southern China. For. Ecol. Manag. 2011, 261, 1053–1060. [Google Scholar] [CrossRef]
- Zhou, B.-Z.; Fu, M.-Y.; Xie, J.-Z.; Yang, X.-S.; Li, Z.-C. Ecological functions of bamboo forest: Research and application. J. For. Res. 2005, 16, 143–147. [Google Scholar]
- Sahoo, U.K.; Singh, S.L.; Gogoi, A.; Kenye, A.; Sahoo, S.S. Active and passive soil organic carbon pools as affected by different land use types in Mizoram, Northeast India. PLoS ONE 2019, 14, e0219969. [Google Scholar] [CrossRef] [Green Version]
- Rasse, D.P.; Rumpel, C.; Dignac, M.F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 2005, 269, 341–356. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Singh, K.P. Productivity and nutrient cycling in recently harvested and mature bamboo savannas in the dry tropics. J. Appl. Ecol. 1994, 31, 109–124. [Google Scholar] [CrossRef]
- Singh, A.N.; Singh, J.S. Biomass net primary production and impact of bamboo plantation on soil redevelopment in a dry tropicalregion. For. Ecol. Manag. 1999, 119, 195–207. [Google Scholar] [CrossRef]
- Upadhyaya, K.; Arunachalam, A.; Arunachalam, K. Microbial biomass and physico-chemical properties of soil under the canopy of Bambusa balcooa Roxb. and Bambusa pallida Munro. Indian J. Soil Conserv. 2003, 31, 152–156. [Google Scholar]
- Christanty, L.; Mailly, D.; Kimmins, J.P. ‘Without bamboo, the land dies’: Biomass, litterfall, and soil organic matter dynamics of a Javanese bamboo talun-kebunsystem. For. Ecol. Manag. 1996, 87, 75–88. [Google Scholar] [CrossRef]
- Friggens, N.L.; Hester, A.J.; Mitchell, R.J.; Parker, T.C.; Subke, J.A.; Wookey, P.A. Tree planting in organic soils does not result in net carbon sequestration on decadal timescales. Glob. Change Biol. 2020, 26, 5178–5188. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, D.; Tang, J.; Bouskill, N.; Georgiou, K.; Chacon, S.S.; Riley, W.J. Abiotic and biotic controls on soil organo–mineral interactions: Developing model structures to analyze why soil organic matter persists. Rev. Mineral. Geochem. 2019, 85, 329–348. [Google Scholar] [CrossRef] [Green Version]
- Azad, B.; Afzali, S.F.; Ghanbarian, G.A. Modeling the effect of vegetation conversion and climate change on soil organic carbon stock dynamics in a complex ecosystem. J. Soil Manag. Sustain. 2019, 9, 83–99. [Google Scholar]
- Jebari, A.; Del Prado, A.; Pardo, G.; Martín, J.A.R.; Álvaro-Fuentes, J. Modeling Regional Effects of Climate Change on Soil Organic Carbon in Spain. J. Environ. Qual. 2018, 47, 644–653. [Google Scholar] [CrossRef] [Green Version]
- Mondini, C.; Coleman, K.; Whitmore, A.; Whitmore, A. Spatially explicit modelling of changes in soil organic C in agricultural soils in Italy, 2001–2100: Potential for compost amendment. Agric. Ecosyst. Environ. 2012, 153, 24–32. [Google Scholar] [CrossRef]
- Soleimani, A.; Hosseini, S.M.; Bavani, A.R.M.; Jafari, M.; Francaviglia, R. Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran). Sci. Total Environ. 2017, 599, 1646–1657. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Jordan, A.; Zavala, L.M.; González-Peñaloza, F.A.; De La Rosa, D.; Anaya-Romero, M. Modelling soil organic carbon stocks in global change scenarios: A CarboSOIL application. Biogeosci. Discuss. 2013, 10, 10997–11035. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Rojas, M.; Doro, L.; Ledda, L.; Francaviglia, R. Application of CarboSOIL model to predict the effects of climate change on soil organic carbon stocks in agro-silvo-pastoral Mediterranean management systems. Agric. Ecosyst. Environ. 2015, 202, 8–16. [Google Scholar] [CrossRef]
- Wan, Y.; Lin, E.; Xiong, W.; Li, Y.; Guo, L. Modeling the impact of climate change on soil organic carbon stock in upland soils in the 21st century in China. Agric. Ecosyst. Environ. 2011, 141, 23–31. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Kiely, G. Modeling the change in soil organic carbon of grassland in response to climate change: Effects of measured versus modelled carbon pools for initializing the Rothamsted Carbon model. Agric. Ecosyst. Environ. 2011, 140, 372–381. [Google Scholar] [CrossRef]
- Hobley, E.; Wilson, B.; Wilkie, A.; Gray, J.; Koen, T. Drivers of soil organic carbon storage and vertical distribution in Eastern Australia. Plant Soil 2015, 390, 111–127. [Google Scholar] [CrossRef]
- Longbottom, T.L.; Townsend-Small, A.; Owen, L.A.; Murari, M.K. Climatic and topographic controls on soil organic matter storage and dynamics in the Indian Himalaya: Potential carbon cycle-climate change feedbacks. Catena 2014, 119, 125–135. [Google Scholar] [CrossRef]
- Rabbi, S.M.; Tighe, M.; Delgado-Baquerizo, M.; Cowie, A.; Robertson, F.; Dalal, R.; Page, K.; Crawford, D.; Wilson, B.R.; Schwenke, G.; et al. Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Sci. Rep. 2015, 5, 17866. [Google Scholar] [CrossRef] [Green Version]
- Silva Araujo, J.K.; de Souza Junior, V.S.; Marques, F.A.; Voroney, P.; da Silva Souza, R.A. Assessment of carbon storage under rainforests in Humic Hapludox along a climosequence extending from the Atlantic coast to the highlands of northeastern Brazil. Sci. Total Environ. 2016, 568, 339–349. [Google Scholar] [CrossRef]
- McSherry, M.E.; Ritchie, M.E. Effects of grazing on grassland soil carbon: A global review. Glob. Change Biol. 2013, 19, 1347–1357. [Google Scholar] [CrossRef]
- González-Molina, L.; Etchevers-Barra, J.D.; Paz-Pellat, F. Performance of the rothc-26.3 model in short-term experiments in Mexican sites and systems. J. Agric. Sci. 2011, 149, 415–425. [Google Scholar] [CrossRef]
- Barančíková, G.; Halas, J.; Guttekova, M.; Makovnikova, J.; Novakova, M.; Skalský, R.; Tarasovičová, Z. Application of RothC model to predict soil organic carbon stock on agricultural soils of Slovakia. Soil Water Res. 2010, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
Average monthly temperature a | J (12.4), F (15.5), M (19.1), A (24.5), M (28.1), J (28.9), J (27.9), A (27.6), S (26.9), O (22.6), N (19.2), D (13.6); Average yearly temp. 22.2 °C |
Average monthly temperature (1 °C increase) b | J (13.0), F (16.3), M (20.1), A (25.7), M (29.5), J (30.3), J (29.3), A (29.0), S (28.3), O (23.7), N (20.1), D (14.3); Average yearly temp. 23.3 °C |
Average monthly temperature (2 °C increase) b | J (13.5), F (16.9), M (20.8), A (26.7), M (30.6), J (31.5), J (30.4), A (30.1), S (29.3), O (24.6), N (20.9), D (17.8); Average yearly temp. 24.2 °C |
Precipitation (mm) a | J (23.8), F (17.3), M (21.6), A (38.6), M (27.3), J (161.2), J (536.9), A (463.6), S (255.6), O (4.8), N (7.9), D (7.5) |
Open pan evaporation (mm) a | J (43.8), F (46.8), M (105.0), A (147.2), M (197.1), J (130.2), J (73.4), A (68.2), S (74.5), O (71.1), N (51.4), D (34.4) |
Soil depth (cm) | 30 |
Clay content (%) | 23% |
DPM/RPM c | 0.67 |
Treatments | RMSE * | EF $ |
---|---|---|
Bambusa nutans | 1.63 | 0.18 |
Bambusa balcooa | 2.43 | −0.04 |
Bambusa bambos | 0.74 | 0.88 |
Bambusa vulgaris | 3.20 | −20.32 |
Dendrocalamus hamiltonii | 2.81 | −0.21 |
Dendrocalamus stocksii | 0.91 | 0.94 |
Dendrocalamus strictus | 1.34 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaushal, R.; Panwar, P.; Durai, J.; Tomar, J.M.S.; Mandal, D.; Dogra, P.; Gupta, A.; Reza, S.; Singh, C.; Madhu, M. Simulating SOC Dynamics under Different Temperature Regimes and FYM Addition in Bamboo Species Using RothC-Model. Forests 2023, 14, 722. https://doi.org/10.3390/f14040722
Kaushal R, Panwar P, Durai J, Tomar JMS, Mandal D, Dogra P, Gupta A, Reza S, Singh C, Madhu M. Simulating SOC Dynamics under Different Temperature Regimes and FYM Addition in Bamboo Species Using RothC-Model. Forests. 2023; 14(4):722. https://doi.org/10.3390/f14040722
Chicago/Turabian StyleKaushal, Rajesh, Pankaj Panwar, Jayaraman Durai, Jag Mohan Singh Tomar, Debashis Mandal, Pradeep Dogra, Anand Gupta, Selim Reza, Charan Singh, and Made Madhu. 2023. "Simulating SOC Dynamics under Different Temperature Regimes and FYM Addition in Bamboo Species Using RothC-Model" Forests 14, no. 4: 722. https://doi.org/10.3390/f14040722
APA StyleKaushal, R., Panwar, P., Durai, J., Tomar, J. M. S., Mandal, D., Dogra, P., Gupta, A., Reza, S., Singh, C., & Madhu, M. (2023). Simulating SOC Dynamics under Different Temperature Regimes and FYM Addition in Bamboo Species Using RothC-Model. Forests, 14(4), 722. https://doi.org/10.3390/f14040722