Mixed Plantations Induce More Soil Macroaggregate Formation and Facilitate Soil Nitrogen Accumulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site
2.2. Experimental Design
2.3. Litter and Soil Sampling
2.4. Soil Aggregate Separation
2.5. Soil Property Analyses
2.6. Statistical Analysis
3. Results
3.1. Litter and Bulk Soil Properties
3.2. Characteristics of Soil Aggregates
3.3. Aggregate-Associated Nitrogen Content
3.4. Aggregate-Associated Nitrogen Stock
3.5. Relationship between Soil Aggregates and Nitrogen Content
3.6. Relationship between Soil Aggregates and Nitrogen Stock
4. Discussion
4.1. Aggregate-Associated Nitrogen Content
4.2. Aggregate-Associated Nitrogen Stock
4.3. Relationship between Soil Aggregates and Nitrogen Content
4.4. Relationship between Soil Aggregates and Nitrogen Stock
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, S.Q.; Huang, Y.Z.; Ye, S.M. Distribution of organic carbon and nutrients in soil aggregates under different stand types of Cunninghamia lanceolata in southern Guangxi of China. Soil Sci. Plant Nutr. 2021, 67, 427–438. [Google Scholar] [CrossRef]
- Hao, Y.; Xu, Y.L.; Zhang, J.J.; Hu, X.L.; Huang, J.B.; Chang, C.P.; Guo, Y.Q. Relationship between forest resources and economic growth: Empirical evidence from China. J. Clean. Prod. 2018, 214, 848–859. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, S.L.; Feng, Z.W.; Ouyang, Z.Y.; Wang, X.K.; Feng, Z.Z. Changes in soil quality due to introduction of broad-leaf trees into clear-felled Chinese fir forest in the mid-subtropics of China. Soil Use Manage 2004, 20, 418–425. [Google Scholar] [CrossRef]
- Xu, H.D.; Yuan, H.J.; Yu, M.K.; Cheng, X.G. Large macroaggregate properties are sensitive to the conversion of pure plantation to uneven-aged mixed plantations. Catena 2020, 194, 104724. [Google Scholar] [CrossRef]
- Zhou, L.; Sun, Y.J.; Saeed, S.; Zhang, B.; Luo, M. The difference of soil properties between pure and mixed Chinese fir (Cunninghamia lanceolata) plantations depends on tree species. Glob. Ecol. Conserv. 2020, 22, e01009. [Google Scholar] [CrossRef]
- Harpole, W.S.; Ngai, J.T.; Cleland, E.E.; Seabloom, E.W.; Borer, E.T.; Bracken, M.E.S.; Elser, J.J.; Gruner, D.S.; Hillebrand, H.; Shurin, J.B.; et al. Nutrient co-limitation of primary producer communities. Ecol. Lett. 2011, 14, 852–862. [Google Scholar] [CrossRef]
- Li, Z.L.; Zeng, Z.Q.; Tian, D.S.; Wang, J.S.; Wang, B.X.; Chen, H.Y.H.; Quan, Q.; Chen, W.N.; Yang, J.L.; Meng, C.; et al. Global variations and controlling factors of soil nitrogen turnover rate. Earth-Sci. Rev. 2020, 207, 103250. [Google Scholar] [CrossRef]
- Schulten, H.R.; Schnitzer, M. The chemistry of soil organic nitrogen: A review. Biol. Fertil. Soils 1997, 26, 1–15. [Google Scholar] [CrossRef]
- Zhang, Q.C.; Wang, G.H.; Xie, W.X. Soil organic n forms and n supply as affected by fertilization under intensive rice cropping system. Pedosphere 2006, 16, 345–353. [Google Scholar] [CrossRef]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Mineral-organic associations: Formation, properties, and relevance in soil environments. Adv. Agron. 2015, 130, 1–140. [Google Scholar] [CrossRef]
- Lin, J.J.; Tang, Y.J.; Liu, D.; Zhang, S.; Lan, B.; He, L.P.; Yu, Z.G.; Zhou, S.; Chen, X.; Qu, Y.H. Characteristics of organic nitrogen fractions in sediments of the water level fluctuation zone in the tributary of the Yangtze River. Sci. Total Environ. 2019, 653, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Ou, Y.; Wang, L.X.; Liang, A.Z.; Yan, B.X.; Li, Y.X. Dynamic changes in microbial communities and nutrient stoichiometry associated with soil aggregate structure in restored wetlands. Catena 2021, 197, 104984. [Google Scholar] [CrossRef]
- Tong, R.; Zhou, B.Z.; Jiang, L.; Ge, X.G.; Cao, Y.H. The growth of Chinese fir is limited by nitrogen: Evidences from N:P ratio, N or P variability and NuRE based on a regional investigation. For. Ecol. Manag. 2020, 460, 117905. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, P.P.; Sun, H.; Jia, X.X.; Zhang, C.C.; Liu, S.Z.; Shao, M.A. Vertical patterns and controlling factors of soil nitrogen in deep profiles on the Loess Plateau of China. Catena 2022, 215, 106318. [Google Scholar] [CrossRef]
- Xia, Q.; Chen, L.; Xiang, W.H.; Ouyang, S.; Wu, H.L.; Lei, P.F.; Xiao, W.F.; Li, S.G.; Zeng, L.X.; Kuzyakov, Y. Increase of soil nitrogen availability and recycling with stand age of Chinese-fir plantations. For. Ecol. Manag. 2021, 480, 118643. [Google Scholar] [CrossRef]
- Liao, R.K.; Han, Y.G.; Guo, Z.F. Assessing the impact of soil aggregate size on mineralization of nitrogen in different soils, China. Catena 2021, 203, 105358. [Google Scholar] [CrossRef]
- Wen, L.; Lei, P.F.; Xiang, W.H.; Yan, W.D.; Liu, S.G. Soil microbial biomass carbon and nitrogen in pure and mixed stands of Pinus massoniana and Cinnamomum camphora differing in stand age. For. Ecol. Manag. 2014, 328, 150–158. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Adnan, M.; Xu, M.G.; Syed, A.A.S.; Muhammad, M.A.; Sun, N.; Wang, B.R.; Cai, Z.J.; Qudsia, S.; Muhammad, N.; Khalid, M.; et al. Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China. J. Environ. Manag. 2020, 270, 110894. [Google Scholar] [CrossRef]
- Schluter, S.; Sammartino, S.; Koestel, J. Exploring the relationship between soil structure and soil functions via pore-scale imaging. Geoderma 2020, 370, 114370. [Google Scholar] [CrossRef]
- Cao, S.; Zhou, Y.Z.; Zhou, Y.Y.; Zhou, X.; Zhou, W.J. Soil organic carbon and soil aggregate stability associated with aggregate fractions in a chronosequence of citrus orchards plantations. J. Environ. Manag. 2021, 293, 112847. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Wang, J.; Shao, M.A. Application of earthworm cast improves soil aggregation and aggregate-associated carbon stability in typical soils from Loess Plateau. J. Environ. Manag. 2021, 278, 111504. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Q.; Li, T.X.; Zheng, Z.C. Effects of tea plantation age on soil aggregate-associated C- and N-cycling enzyme activities in the hilly areas of Western Sichuan, China. Soil Till. Res. 2018, 180, 91–98. [Google Scholar] [CrossRef]
- Tang, X.; Qiu, J.C.; Xu, Y.Q.; Li, J.H.; Chen, J.H.; Li, B.; Lu, Y. Responses of soil aggregate stability to organic C and total N as controlled by land-use type in a region of south China affected by sheet erosion. Catena 2022, 218, 106543. [Google Scholar] [CrossRef]
- Mao, L.; Tang, L.L.; Ye, S.M.; Wang, S.Q. Soil organic C and total N as well as microbial biomass C and N affect aggregate stability in a chronosequence of Chinese fir plantations. Eur. J. Soil Biol. 2021, 106, 103347. [Google Scholar] [CrossRef]
- Tang, L.L.; Wang, S.Q. Dynamics of soil aggregate-related C-N-P stoichiometric characteristics with stand age and soil depth in Chinese fir plantations. Land Degrad. Dev. 2022, 33, 1290–1306. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B.J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Ming, A.G.; Liu, S.R.; Nong, Y.; Cai, D.X.; Jia, H.Y.; Huang, D.W.; Wang, Q.N.; Nong, Z. Comparison of carbon storage in juvenile monoculture and mixed plantation stands of three common broadleaved tree species in subtropical China. Acta Ecol. Sin. 2015, 35, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Wrb, I.W.G. World reference base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps. World Soil Resour. Rep. 2014, 106, 12–21. [Google Scholar]
- Ming, A.G.; Yang, Y.J.; Liu, S.R.; Nong, Y.; Li, H.; Tao, Y.; Sun, D.J.; Lei, L.Q.; Zeng, J.; An, N. The impact of near natural forest management on the carbon stock and sequestration potential of Pinus massoniana (Lamb.) and Cunninghamia lanceolata (Lamb.) Hook. Plantations. Forests 2019, 10, 626. [Google Scholar] [CrossRef] [Green Version]
- Kemper, W.D.; Chepil, W.S. Size distribution of aggregation. In Part 1; Black, C.A., Evans, D.D., White, J.L., Ensminger, L.E., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 499–510. [Google Scholar]
- Lu, R.K. Analytical Methods of Soil Agrochemistry; China Agricultural Science and Technology Publishing House: Beijing, China, 1999; pp. 18–99. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Part 3; Sparks, D.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen-total. In Part 3; Sparks, D.L., Ed.; American Society of Agronomy: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Lan, J.C.; Hu, N.; Fu, W.L. Soil carbon-nitrogen coupled accumulation following the natural vegetation restoration of abandoned farmlands in a karst rocky desertification region. Ecol. Eng. 2020, 158, 106033. [Google Scholar] [CrossRef]
- Zhang, Y.; E, S.Z.; Wang, Y.N.; Su, S.M.; Bai, L.Y.; Wu, C.X.; Zeng, X.B. Long-term manure application enhances the stability of aggregates and aggregate-associated carbon by regulating soil physicochemical characteristics. Catena 2021, 203, 105342. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhang, Z.; Ye, S.M. Response of soil fertility characteristics in water-stable aggregates to tea cultivation aggregates to tea cultivation age in hilly region of southern Guangxi, China. Catena 2020, 191, 104578. [Google Scholar] [CrossRef]
- Egan, G.; Crawley, M.J.; Fornara, D.A. Effects of long-term grassland management on the carbon and nitrogen pools of different soil aggregate fractions. Sci. Total Environ. 2018, 614, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Giardina, C.P.; Ryan, M.G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 2000, 404, 858–861. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.J.; Zhang, X.F.; Yang, W.L.; Xin, X.L.; Zhu, A.N.; Huang, S.M. Soil nutrients and aggregate composition of four soils with contrasting textures in a long-term experiment. Eurasian Soil Sci. 2021, 54, 1746–1755. [Google Scholar] [CrossRef]
- Wang, S.S.; Wang, Z.Q.; Fan, B.; Mao, X.H.; Luo, H.; Jiang, F.Y.; Liang, C.F.; Chen, J.H.; Qin, H.; Xu, Q.F.; et al. Litter inputs control the pattern of soil aggregate-associated organic carbon and enzyme activities in three typical subtropical forests. Forests 2022, 13, 1210. [Google Scholar] [CrossRef]
- Hong, H.L.; Chen, S.L.; Fang, Q.; Algeo, T.J.; Zhao, L.L. Adsorption of organic matter on clay minerals in the Dajiuhu peat soil chronosequence, South China. Appl. Clay Sci. 2019, 178, 105125. [Google Scholar] [CrossRef]
- Ma, Y.; Cheng, X.Q.; Kang, F.F.; Han, H.R. Dynamic characteristics of soil aggregate stability and related carbon and nitrogen pools at different developmental stages of plantations in northern China. J. Environ. Manag. 2022, 316, 115283. [Google Scholar] [CrossRef]
- Ge, N.N.; Wei, X.R.; Wang, X.; Liu, X.T.; Shao, M.G.; Jia, X.X.; Li, X.Z.; Zhang, Q.Y. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. Catena 2019, 172, 148–157. [Google Scholar] [CrossRef]
- Guo, J.H.; Feng, H.L.; McNie, P.; Wang, W.F.; Peng, C.H.; Feng, L.; Sun, J.J.; Pan, C.; Yu, Y.C. The effect of the conversion from natural broadleaved forests into Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations on soil microbial communities and nitrogen functional genes. Forests 2022, 13, 158. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, Z.k.; Pan, X.; Chen, X.Y.; Derrien, D.; Hu, F.; Liu, M.Q.; Hättenschwiler, S. Carbon and nitrogen transfer from litter to soil is higher in slow than rapid decomposing plant litter: A synthesis of stable isotope studies. Soil Biol. Biochem. 2021, 156, 108196. [Google Scholar] [CrossRef]
- Kerdraon, D.; Drewer, J.; Chung, A.Y.C.; Majalap, N.; Slade, E.M.; Brechet, L.; Wallwork, A.; Castro, T.B.; Sayer, E.J. Litter inputs, but not litter diversity, maintain soil processes in degraded tropical forests-across-continental comparison. Front. For. Glob. Chang. 2020, 2. [Google Scholar] [CrossRef] [Green Version]
- Sayer, E.J.; Rodtassana, C.; Sheldrake, M.; Brechet, L.M.; Ashford, O.S.; Sangil, L.L.; Byrne, D.K.; Castro, B.; Turner, B.L.; Wright, S.J.; et al. Chapter five-revisiting nutrient cycling by litterfall-insights from 15 years of litter manipulation in old-growth lowland tropical forest. Adv. Ecol. Res. 2020, 62, 173–223. [Google Scholar] [CrossRef]
- Cooper, J.; Greenberg, I.; Ludwig, B.; Hippich, L.; Fischer, D.; Glaser, B.; Kaiser, M. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agric. Ecosyst. Environ. 2020, 295, 106882. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Wang, S.Q.; Ye, S.M. Effects of Cunninghamia lanceolata stand types on the changes of aggregate-related organic carbon and nutrients in surface soil. Chin. J. Appl. Ecol. 2020, 31, 2857–2865. [Google Scholar] [CrossRef]
- Ran, Y.G.; Zhu, K.; Wu, S.J.; Zhou, Y.; Li, W.J.; Ma, M.H.; Huang, P. Conservative agriculture facilitates soil carbon, nitrogen accumulation, and aggregate stabilization under periodic flooding regimes. Catena 2022, 209, 105783. [Google Scholar] [CrossRef]
- Tang, L.L.; Mao, L.; Wang, Z.Y.; Ye, S.M.; Wang, S.Q. Mixed with broadleaf tree species improved soil aggregate stability in Chinese Fir (Cunninghamia lanceolata) plantations: Based on the Le Bissonnais method. J. Soil Sci. Plant Nutr. 2023, 1–12. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Shangguan, Z.P.; Deng, L. Variations in soil aggregate stability due to land use changes from agricultural land on the Loess Plateau, China. Catena 2021, 200, 105181. [Google Scholar] [CrossRef]
- Ma, L.N.; Gao, X.L.; Liu, G.F.; Xu, X.F.; Lu, X.P.; Xin, X.P.; Lu, Y.X.; Zhang, C.X.; Zhang, L.H.; Wang, R.Z. The retention dynamics of N input within the soil-microbe-plant system in a temperate grassland. Geoderma 2020, 368, 114290. [Google Scholar] [CrossRef]
- Li, W.Q.; Shen, F.X.; Liu, Y.J.; Li, Z.W.; Jiang, J.F.; Li, Q.; Zheng, H.; Wang, X.; Wu, J. Soil depth determine the ecological stoichiometry of soil aggregates after returning ancient rice terraces to forest. Catena 2022, 219, 106587. [Google Scholar] [CrossRef]
- You, Y.M.; Xu, H.C.; Wu, X.P.; Zhou, X.G.; Tan, X.M.; Li, M.; Wen, Y.G.; Zhu, H.G.; Cai, D.X.; Huang, X.M. Native broadleaf tree species stimulate topsoil nutrient transformation by changing microbial community composition and physiological function, but not biomass in subtropical plantations with low P status-ScienceDirect. For. Ecol. Manag. 2020, 477, 118491. [Google Scholar] [CrossRef]
- Sarker, J.R.; Singh, B.P.; Cowie, A.L.; Fang, Y.Y.; Collins, D.; Badgeryd, W.; Dalal, R.C. Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils. Soil Till. Res. 2018, 178, 209–223. [Google Scholar] [CrossRef]
- Zhong, Z.K.; Wu, S.J.; Lu, X.Q.; Ren, Z.X.; Wu, Q.M.; Xu, M.P.; Ren, C.J.; Yang, G.H.; Han, X.H. Organic carbon, nitrogen accumulation, and soil aggregate dynamics as affected by vegetation restoration patterns in the Loess Plateau of China. Catena 2021, 196, 104867. [Google Scholar] [CrossRef]
- Gong, C.; Tan, Q.Y.; Liu, G.B.; Xu, M.X. Impacts of species mixture on soil nitrogen stocks in the Loess Plateau of China. For. Ecol. Manag. 2021, 491, 119145. [Google Scholar] [CrossRef]
- Dou, Y.X.; Yang, Y.; An, S.S.; Zhu, Z.L. Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau, China. Catena 2020, 185, 104294. [Google Scholar] [CrossRef]
- Niu, D.; Wang, S.L.; Ouyang, Z.Y. Comparisons of carbon storages in Cunninghamia Lanceolata and Michelia Macclurei plantations during a 22-year period in Southern China. J. Environ. Sci. 2009, 21, 801–805. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Liao, L.P.; Wang, S.L. Allelopathy of phenolics from decomposing stump roots in replant Chinese fir woodland. J. Chem. Ecol. 2000, 26, 2211–2219. [Google Scholar] [CrossRef]
- Xiao, R.H.; Man, X.L.; Duan, B.X. Carbon and Nitrogen Stocks in Three Types of Larix gmelinii Forests in Daxing’an Mountains, Northeast China. Forests 2020, 11, 305. [Google Scholar] [CrossRef] [Green Version]
- Reeves, S.H.; Somasundaram, J.; Wang, W.J.; Heenan, M.A.; Finn, R.C.D. Dalal Effect of soil aggregate size and long-term contrasting tillage, stubble and nitrogen management regimes on CO2 fluxes from a Vertisol. Geoderma 2019, 33, 1086–1096. [Google Scholar] [CrossRef]
- Chen, B.H.; Wang, J.; Duan, X.; Zhao, F.X.; Zhang, W.D.; Guan, X.; Chen, L.C.; Wang, Q.K.; Wang, S.L.; Yang, Q.P. Nitrogen addition decreases rhizodeposition by Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook) seedlings and its distribution in soil aggregates. Forests 2022, 13, 1166. [Google Scholar] [CrossRef]
- Yu, Z.H.; Zheng, Z.C.; Wang, Y.D.; Li, T.X. Distribution of mineral nitrogen in soil aggregates of tea-planting hilly region in Western Sichuan. J. Soil Water Conserv. 2022, 36, 263–267. [Google Scholar] [CrossRef]
- Six, J.; Paustian, K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biol. Biochem. 2014, 68, A4–A9. [Google Scholar] [CrossRef]
Variable | Litter | 0–20 cm Soil Depth | 20–40 cm Soil Depth | ||||
---|---|---|---|---|---|---|---|
S | S | A | S × A | S | A | S × A | |
Litter quantity (g m−2) | √√ | ||||||
Bulk density (g cm−3) | √√ | √√ | |||||
Total porosity (%) | √√ | √√ | |||||
pH | √√ | √√ | |||||
Soil aggregate proportion | × | √√ | √√ | × | √√ | √√ | |
MWD | √√ | √√ | √√ | √√ | √√ | √√ | |
GMD | √√ | √√ | √√ | √√ | √√ | √√ | |
OC (g kg−1) | √√ | √√ | × | √√ | √√ | √√ | |
AP (g kg−1) | √√ | √√ | √√ | √ | √ | × | |
TN (g kg−1) | √√ | √√ | √√ | √√ | √√ | × | |
AN (mg kg−1) | √√ | √√ | × | √√ | √√ | × | |
TAN (mg kg−1) | √√ | √√ | √√ | √√ | √√ | √√ | |
AIN (mg kg−1) | √√ | √ | √√ | √√ | √ | √ | |
AAN (mg kg−1) | √√ | √√ | √ | √√ | √√ | × | |
ASN (mg kg−1) | √√ | √√ | √√ | √√ | × | √√ | |
AMN (mg kg−1) | √√ | √√ | × | √√ | √√ | × | |
HUN (mg kg−1) | √√ | √√ | √√ | √√ | √√ | √ | |
NO3−-N (mg kg−1) | √√ | √√ | × | √√ | √√ | × | |
NH4+-N (mg kg−1) | √√ | √√ | √√ | √√ | √√ | √√ | |
TNS (g m−2) | √√ | √√ | √√ | √√ | √√ | √√ | |
ANS (g m−2) | √√ | √√ | × | √√ | √√ | × | |
TANS (g m−2) | √√ | √√ | √√ | √√ | √√ | √√ | |
AINS (g m−2) | √√ | √√ | √√ | √√ | √√ | √√ | |
AANS (g m−2) | √√ | √√ | √√ | √√ | √√ | √√ | |
ASNS (g m−2) | √√ | √√ | √√ | × | √√ | √√ | |
AMNS (g m−2) | √√ | √√ | √√ | √√ | √√ | √√ | |
HUNS (g m−2) | √√ | √√ | √√ | √√ | √√ | √√ | |
NO3−-NS (g m−2) | √√ | √√ | √√ | √√ | √√ | √√ | |
NH4+-NS (g m−2) | × | √√ | √√ | √√ | √√ | √√ |
Variable | 0–20 cm Soil Depth | 20–40 cm Soil Depth | ||||
---|---|---|---|---|---|---|
CF + MM | CF + ML | CF | CF + MM | CF + ML | CF | |
Litter quantity (g cm−2) | 504 ± 27 a | 455 ± 23 b | 324 ± 12 c | |||
Soil texture | Clay | Clay | Clay | Clay | Clay | Clay |
Bulk density (g cm−3) | 1.24 ± 0.01 b | 1.26 ± 0.01 b | 1.31 ± 0.02 a | 1.26 ± 0.01 b | 1.27 ± 0.01 b | 1.33 ± 0.01 a |
Total porosity (%) | 53.13 ± 0.22 a | 52.38 ± 0.38 a | 50.42 ± 0.28 b | 52.60 ± 0.19 a | 52.92 ± 0.19 a | 49.96 ± 0.83 b |
pH | 4.31 ± 0.01 c | 4.33 ± 0.01 b | 4.37 ± 0.00 a | 4.27 ± 0.01 b | 4.30 ± 0.01 b | 4.41 ± 0.02 a |
OC (g kg−1) | 33.34 ± 1.16 a | 24.80 ± 0.84 b | 20.96 ± 0.42 c | 17.16 ± 0.82 a | 10.17 ± 0.73 b | 7.25 ± 0.47 c |
AP (g kg−1) | 3.93 ± 0.10 a | 3.75 ± 0.19 ab | 3.36 ± 0.13 b | 2.54 ± 0.03 b | 3.11 ± 0.22 a | 2.64 ± 0.03 b |
TN (g kg−1) | 1.46 ± 0.01 a | 1.25 ± 0.03 b | 1.26 ± 0.01 b | 1.21 ± 0.03 a | 0.75 ± 0.01 b | 0.68 ± 0.02 c |
C/N | 22.9 ± 0.88 a | 19.92 ± 0.53 b | 16.67 ± 0.33 c | 14.14 ± 0.61 a | 13.38 ± 0.86 a | 10.67 ± 0.40 b |
AN (mg kg−1) | 259.51 ± 12.46 a | 163.54 ± 6.40 b | 160.06 ± 6.47 b | 184.40 ± 12.33 a | 136.98 ± 7.03 b | 124.21 ± 8.64 b |
TAN (mg kg−1) | 763.57 ± 5.16 c | 1059.65 ± 8.63 a | 797.65 ± 7.10 b | 635.07 ± 7.70 a | 523.61 ± 5.23 c | 607.06 ± 12.33 b |
AIN (mg kg−1) | 401.83 ± 10.78 b | 479.33 ± 16.02 a | 454.74 ± 6.86 a | 573.08 ± 31.36 a | 231.07 ± 10.02 b | 66.14 ± 3.47 c |
AAN (mg kg−1) | 285.26 ± 11.30 a | 241.94 ± 3.80 b | 200.63 ± 4.85 c | 233.98 ± 6.04 a | 175.06 ± 6.02 c | 201.90 ± 4.81 b |
ASN (mg kg−1) | 81.48 ± 3.03 a | 70.95 ± 3.86 b | 59.15 ± 2.28 c | 71.84 ± 5.08 a | 71.48 ± 4.75 a | 57.46 ± 3.60 a |
AMN (mg kg−1) | 277.40 ± 2.64 a | 217.89 ± 4.17 b | 213.38 ± 1.76 b | 220.09 ± 4.56 a | 160.40 ± 3.52 b | 129.62 ± 5.55 c |
HUN (mg kg−1) | 415.51 ± 11.44 a | 232.80 ± 4.42 c | 324.5 ± 5.97 b | 109.17 ± 5.80 b | 116.66 ± 8.30 b | 218.09 ± 13.50 a |
NO3−-N (mg kg−1) | 1.75 ± 0.07 b | 2.18 ± 0.05 a | 2.09 ± 0.10 a | 0.95 ± 0.10 c | 1.95 ± 0.03 a | 1.67 ± 0.07 b |
NH4+-N (mg kg−1) | 7.54 ± 0.25 a | 7.34 ± 0.08 a | 6.93 ± 0.11 b | 6.83 ± 0.26 a | 6.62 ± 0.22 a | 5.23 ± 0.12 b |
Soil Depth | Stand Type | Aggregate Composition (%) | MWD mm | GMD mm | |||
---|---|---|---|---|---|---|---|
>2 mm | 1–2 mm | 0.25–1 mm | <0.25 mm | ||||
0–20 cm | CF + MM | 47.93 ± 0.12 Aa | 21.84 ± 0.20 Bc | 20.90 ± 0.13 Cc | 9.34 ± 0.05 Da | 3.35 ± 0.01 a | 1.93 ± 0.01 a |
CF + ML | 44.43 ± 0.15 Ab | 23.56 ± 0.13 Bb | 23.51 ± 0.05 Bb | 8.49 ± 0.05 Cb | 3.18 ± 0.02 b | 1.83 ± 0.01 b | |
CF | 37.65 ± 0.06 Ac | 28.60 ± 0.06 Ba | 26.57 ± 0.04 Ca | 7.18 ± 0.03 Dc | 2.86 ± 0.01 c | 1.68 ± 0.01 c | |
Mean | 43.34 | 24.67 | 23.66 | 8.34 | 3.13 | 1.81 | |
20–40 cm | CF + MM | 45.34 ± 0.10 Aa | 23.78 ± 0.13 Bb | 18.92 ± 0.09 Cc | 11.96 ± 0.12 Da | 3.21 ± 0.01 a | 1.77 ± 0.02 a |
CF + ML | 37.21 ± 0.22 Ab | 27.21 ± 0.17 Ba | 24.78 ± 0.11 Cb | 10.80 ± 0.07 Db | 2.81 ± 0.02 b | 1.55 ± 0.01 b | |
CF | 35.22 ± 0.10 Ac | 27.05 ± 0.07 Ba | 27.96 ± 0.08 Ca | 9.77 ± 0.07 Dc | 2.71 ± 0.01 c | 1.50 ± 0.01 c | |
Mean | 39.26 | 26.01 | 23.89 | 10.84 | 2.91 | 1.61 |
Soil Depth | Response Variable | Soil Aggregate Parameters | |||||
---|---|---|---|---|---|---|---|
>2 mm | 1–2 mm | 0.25–1 mm | <0.25 mm | MWD mm | GMD mm | ||
0–20 cm | TN (g kg−1) | 0.696 ** | −0.632 * | −0.771 ** | 0.718 ** | 0.702 ** | 0.724 ** |
AN (mg kg−1) | 0.732 ** | −0.679 ** | −0.797 ** | 0.763 ** | 0.737 ** | 0.752 ** | |
TAN (mg kg−1) | 0.682 ** | −0.61 * | −0.776 ** | 0.725 ** | 0.689 ** | 0.71 ** | |
AIN (mg kg−1) | −0.423 | 0.362 | 0.509 | −0.467 | −0.429 | −0.448 | |
AAN (mg kg−1) | 0.9 ** | −0.881 ** | −0.914 ** | 0.916 ** | 0.901 ** | 0.9 ** | |
ASN (mg kg−1) | 0.821 ** | −0.818 ** | −0.817 ** | 0.836 ** | 0.82 ** | 0.814 ** | |
AMN (mg kg−1) | 0.777 ** | −0.719 ** | −0.851 ** | 0.818 ** | 0.783 ** | 0.797 ** | |
HUN (mg kg−1) | 0.323 | −0.23 | −0.452 | 0.372 | 0.333 | 0.366 | |
NO3−-N (mg kg−1) | −0.452 | 0.395 | 0.553 * | −0.551 * | −0.457 | −0.459 | |
NH4+-N (mg kg−1) | 0.596 * | −0.577 * | −0.623 * | 0.634 * | 0.597 * | 0.588 * | |
20–40 cm | TN (g kg−1) | 0.983 ** | −0.965 ** | −0.956 ** | 0.896 ** | 0.982 ** | 0.981 ** |
AN (mg kg−1) | 0.812 ** | −0.8 ** | −0.803 ** | 0.799 ** | 0.81 ** | 0.797 ** | |
TAN (mg kg−1) | 0.507 | −0.664 ** | −0.369 | 0.244 | 0.501 | 0.527 * | |
AIN (mg kg−1) | 0.976 ** | −0.916 ** | −0.98 ** | 0.944 ** | 0.976 ** | 0.969 ** | |
AAN (mg kg−1) | 0.707 ** | −0.797 ** | −0.605 * | 0.485 | 0.704 ** | 0.726 ** | |
ASN (mg kg−1) | 0.411 | −0.258 | −0.471 | 0.41 | 0.419 | 0.427 | |
AMN (mg kg−1) | 0.952 ** | −0.884 ** | −0.972 ** | 0.966 ** | 0.952 ** | 0.939 ** | |
HUN (mg kg−1) | −0.648 ** | 0.463 | 0.755 ** | −0.797 ** | −0.655 ** | −0.632 * | |
NO3−-N (mg kg−1) | −0.853 ** | 0.913 ** | 0.769 ** | −0.658 ** | −0.851 ** | −0.867 ** | |
NH4+-N (mg kg−1) | 0.639 * | −0.473 | −0.717 ** | 0.701 ** | 0.646 ** | 0.639 * |
Soil Depth | Response Variable | Soil Aggregate Parameters | |||||
---|---|---|---|---|---|---|---|
>2 mm | 1–2 mm | 0.25–1 mm | <0.25 mm | MWD mm | GMD mm | ||
0–20 cm | TNS (g kg−1) | 0.696 ** | −0.632 * | −0.771 ** | 0.718 ** | 0.702 ** | 0.724 ** |
ANS (mg kg−1) | 0.732 ** | −0.679 ** | −0.797 ** | 0.763 ** | 0.737 ** | 0.752 ** | |
TANS (mg kg−1) | 0.682 ** | −0.61 * | −0.776 ** | 0.725 ** | 0.689 ** | 0.71 ** | |
AINS (mg kg−1) | −0.423 | 0.362 | 0.509 | −0.467 | −0.429 | −0.448 | |
AANS (mg kg−1) | 0.9 ** | −0.881 ** | −0.914 ** | 0.916 ** | 0.901 ** | 0.9 ** | |
ASNS (mg kg−1) | 0.821 ** | −0.818 ** | −0.817 ** | 0.836 ** | 0.82 ** | 0.814 ** | |
AMNS (mg kg−1) | 0.777 ** | −0.719 ** | −0.851 ** | 0.818 ** | 0.783 ** | 0.797 ** | |
HUNS (mg kg−1) | 0.323 | −0.23 | −0.452 | 0.372 | 0.333 | 0.366 | |
NO3−-NS (mg kg−1) | −0.452 | 0.395 | 0.553 * | −0.551 * | −0.457 | −0.459 | |
NH4+-NS (mg kg−1) | 0.596 * | −0.577 * | −0.623 * | 0.634 * | 0.597 * | 0.588 * | |
20–40 cm | TNS (g kg−1) | 0.983 ** | −0.965 ** | −0.956 ** | 0.896 ** | 0.982 ** | 0.981 ** |
ANS (mg kg−1) | 0.812 ** | −0.8 ** | −0.803 ** | 0.799 ** | 0.81 ** | 0.797 ** | |
TANS (mg kg−1) | 0.507 | −0.664 ** | −0.369 | 0.244 | 0.501 | 0.527 * | |
AINS (mg kg−1) | 0.976 ** | −0.916 ** | −0.98 ** | 0.944 ** | 0.976 ** | 0.969 ** | |
AANS (mg kg−1) | 0.707 ** | −0.797 ** | −0.605 * | 0.485 | 0.704 ** | 0.726 ** | |
ASNS (mg kg−1) | 0.411 | −0.258 | −0.471 | 0.41 | 0.419 | 0.427 | |
AMNS (mg kg−1) | 0.952 ** | −0.884 ** | −0.972 ** | 0.966 ** | 0.952 ** | 0.939 ** | |
HUNS (mg kg−1) | −0.648 ** | 0.463 | 0.755 ** | −0.797 ** | −0.655 ** | −0.632 * | |
NO3−-NS (mg kg−1) | −0.853 ** | 0.913 ** | 0.769 ** | −0.658 ** | −0.851 ** | −0.867 ** | |
NH4+-NS (mg kg−1) | 0.639 * | −0.473 | −0.717 ** | 0.701 ** | 0.646 ** | 0.639 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Zhang, Q.; Wang, S.; Jiang, C.; Lan, Y.; Zhang, H.; Ye, S. Mixed Plantations Induce More Soil Macroaggregate Formation and Facilitate Soil Nitrogen Accumulation. Forests 2023, 14, 735. https://doi.org/10.3390/f14040735
He Y, Zhang Q, Wang S, Jiang C, Lan Y, Zhang H, Ye S. Mixed Plantations Induce More Soil Macroaggregate Formation and Facilitate Soil Nitrogen Accumulation. Forests. 2023; 14(4):735. https://doi.org/10.3390/f14040735
Chicago/Turabian StyleHe, Yaqin, Qianchun Zhang, Shengqiang Wang, Chenyang Jiang, Yahui Lan, Han Zhang, and Shaoming Ye. 2023. "Mixed Plantations Induce More Soil Macroaggregate Formation and Facilitate Soil Nitrogen Accumulation" Forests 14, no. 4: 735. https://doi.org/10.3390/f14040735
APA StyleHe, Y., Zhang, Q., Wang, S., Jiang, C., Lan, Y., Zhang, H., & Ye, S. (2023). Mixed Plantations Induce More Soil Macroaggregate Formation and Facilitate Soil Nitrogen Accumulation. Forests, 14(4), 735. https://doi.org/10.3390/f14040735