Spatial Pattern of Deadwood Biomass and Its Drivers in a Subtropical Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Methods
2.3. Biotic and Abiotic Variables
2.4. Deadwood Biomass Estimates
2.5. Statistical Analyses
3. Results
3.1. Species Composition and Community Characteristics of Dead Trees
3.2. Deadwood Biomass Storage Patterns within the Study Plot
3.3. Drivers of Tree Mortality in Subtropical Forest
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
DBH Class | Equations | Adjusted R2 | Standard Error of the Mean | R. Error (%) |
---|---|---|---|---|
DBH ≤ 5 cm | WT = 0.05549 × D2.87776 | 0.91164 | 0.60826 | −0.23 |
WB = 0.01124 × D3.16237 | 0.81933 | 0.30284 | 0.00 | |
WL = 0.01551 × D2.32693 | 0.86555 | 0.08602 | 0.42 | |
WR = 0.02838 × D2.65348 | 0.90495 | 0.22077 | −0.27 | |
5 < DBH ≤ 10 cm | WT = 0.11701 × D2.36933 | 0.88428 | 2.05700 | 0.04 |
WB = 0.01621 × D2.93859 | 0.76490 | 1.79321 | 0.63 | |
WL = 0.04169 × D1.90082 | 0.68922 | 0.44047 | 0.39 | |
WR = 0.04977 × D2.19517 | 0.95730 | 0.32819 | −0.16 | |
10 < DBH ≤ 20 cm | WT = 0.10769 × D2.34891 | 0.77761 | 4.15734 | 4.55 |
WB = 0.00385 × D3.15093 | 0.88184 | 3.81171 | 3.69 | |
WL = 0.00372 × D2.65113 | 0.82848 | 0.96151 | 0.57 | |
WR = 0.03538 × D2.29567 | 0.81687 | 3.46518 | 0.45 | |
DBH > 20 cm | WT = 0.03541 × D2.65146 | 0.97844 | 36.71034 | −2.34 |
WB = 0.00583 × D2.94383 | 0.85965 | 52.85291 | −1.61 | |
WL = 0.07709 × D1.55399 | 0.71000 | 4.94167 | −0.30 | |
WR = 0.01128 × D2.67850 | 0.92962 | 24.5010 | −1.11 |
References
- Delcourt, C.; Veraverbeke, S. Allometric equations and wood density parameters for estimating aboveground and woody debris biomass in Cajander larch (Larix cajanderi) forests of northeast Siberia. Biogeosciences 2022, 19, 4499–4520. [Google Scholar] [CrossRef]
- Kamara, M.; Said, S. Estimation of aboveground biomass, stand density, and biomass growth per year in the past using stand reconstruction technique in black spruce and Scotch pine in boreal forest. Polar Sci. 2022, 33, 100787. [Google Scholar] [CrossRef]
- Kēnina, L.; Zute, D.; Jaunslaviete, I.; Samariks, V.; Jansons, Ā. Old-Growth Coniferous Stands on Fertile Drained Organic Soil: First Results of Tree Biomass and Deadwood Carbon Stocks in Hemiboreal Latvia. Forests 2022, 13, 279. [Google Scholar] [CrossRef]
- Seedre, M.; Janda, P.; Trotsiuk, V.; Hedwall, P.O.; Morrissey, R.C.; Mikoláš, M.; Bače, R.; Čada, V.; Svoboda, M. Biomass carbon accumulation patterns throughout stand development in primary uneven-aged forest driven by mixed-severity natural disturbances. For. Ecol. Manag. 2020, 455, 117676. [Google Scholar] [CrossRef]
- Shen, C.; Shi, N.; Fu, S.; Ye, W.; Ma, L.; Guan, D. Decline in Aboveground Biomass Due to Fragmentation in Subtropical Forests of China. Forests 2021, 12, 617. [Google Scholar] [CrossRef]
- Privetivy, T.; Samonil, P. Variation in Downed Deadwood Density, Biomass, and Moisture during Decomposition in a Natural Temperate Forest. Forests 2021, 12, 1352. [Google Scholar] [CrossRef]
- Blonska, E.; Lasota, J.; Piaszczyk, W. Carbon and nitrogen stock in deadwood biomass in natural temperate forest along a soil moisture gradient. Plant Biosyst. 2020, 154, 213–221. [Google Scholar] [CrossRef]
- Fonseca, N.; Jacqueline Meunier, I.; Borges Lins-e-Silva, A. Can fallen trees enhance aboveground biomass estimation? A proposal for the Brazilian Atlantic Forest. Rev. Biol. Trop. 2020, 68, 1284–1297. [Google Scholar] [CrossRef]
- Woodall, C.; Fraver, S.; Oswalt, S. Decadal dead wood biomass dynamics of coterminous US forests. Environ. Res. Lett. 2021, 16, 104034. [Google Scholar] [CrossRef]
- Badalamenti, E.; La Mantia, T.; La Mantia, G. Living and Dead Aboveground Biomass in Mediterranean Forests: Evidence of Old-Growth Traits in a Quercus pubescens Willd. s.l. Stand. Forests 2017, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Elfving, B.; Ulvcrona, K.; Egnell, G. Biomass equations for lodgepole pine in northern Sweden. Can. J. For. Res. 2017, 47, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, J.; Ellsworth, L.; Bell, D. Forest structure and biomass reflects the variable effects of fire and land use 15 and 29 years following fire in the western Cascades, Oregon. For. Ecol. Manag. 2019, 453, 117570. [Google Scholar] [CrossRef]
- Ma, L.; Li, W.; Shi, N. Temporal and spatial patterns of aboveground biomass and its driving forces in a subtropical forest: A case study. Pol. J. Ecol. 2019, 67, 95–104. [Google Scholar] [CrossRef]
- Ma, L.; Shen, C.; Lou, D. Patterns of ecosystem carbon density in edge-affected fengshui forests. Ecol. Eng. 2017, 107, 216–223. [Google Scholar] [CrossRef]
- Moreira, A.; Gregoire, T.; do Couto, H. Estimation of the volume, biomass and carbon content of coarse woody debris within two forest types in the State of Sao Paulo, Brazil. Forestry 2019, 92, 278–286. [Google Scholar] [CrossRef]
- Wellbrock, N.; Grüneberg, E.; Riedel, T.; Polley, H. Carbon stocks in tree biomass and soils of German forests. Cent. Euro. For. J. 2017, 63, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Yepes, A.; Sierra, A.; Niño, L.M.; López, M.; Garay, C.; Vargas, D.; Cabrera, E.; Barbosa, A. Biomass and total carbon in oak forests of Southern Colombian Andes: Contributions to the REDD plus project-wide approach. Rev. Biol. Trop. 2016, 64, 399–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckman, N.; Wohl, E. Carbon storage in mountainous headwater streams: The role of old-growth forest and logjams. Water Res. Res. 2014, 50, 2376–2393. [Google Scholar] [CrossRef]
- Lutz, J.A.; Larson, A.J.; Furniss, T.J.; Donato, D.C.; Freund, J.A.; Swanson, M.E.; Bible, K.J.; Chen, J.; Franklin, J.F. Spatially nonrandom tree mortality and ingrowth maintain equilibrium pattern in an old-growth Pseudotsuga-Tsuga forest. Ecology 2014, 95, 2047–2054. [Google Scholar] [CrossRef] [Green Version]
- Petritan, I.C.; Marzano, R.; Petritan, A.M.; Lingua, E. Overstory succession in a mixed Quercus petraea-Fagus sylvatica old growth forest revealed through the spatial pattern of competition and mortality. For. Ecol. Manag. 2014, 326, 9–17. [Google Scholar] [CrossRef]
- Shen, Y.; Santiago, L.S.; Shen, H.; Ma, L.; Lian, J.; Cao, H.; Lu, H.; Ye, W. Determinants of change in subtropical tree diameter growth with ontogenetic stage. Oecologia 2014, 175, 1315–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Ye, W.; Cao, H.; Huang, Z.; Lian, J.; Li, L.; Wei, S.; Sun, I.F. Species-topography association in a species-rich subtropical forest of China. Basic App. Ecol. 2009, 10, 648–655. [Google Scholar] [CrossRef]
- Wei, S.G.; Li, L.; Huang, Z.L.; Ye, W.H.; Gong, G.Q.; Zhou, X.Y.; Lian, J.Y. Multifractal analysis of diversity scaling laws in a subtropical forest. Ecol. Complex. 2013, 13, 1–7. [Google Scholar] [CrossRef]
- Wang, Z.F.; Lian, J.Y.; Huang, G.M.; Ye, W.H.; Cao, H.L.; Wang, Z.M. Genetic groups in the common plant species Castanopsis chinensis and their associations with topographic habitats. Oikos 2012, 121, 2044–2051. [Google Scholar] [CrossRef]
- Ma, L.; Chen, C.; Shen, Y.; Wu, L.F.; Huang, Z.L.; Cao, H.L. Determinants of tree survival at local scale in a sub-tropical forest. Ecol. Res. 2014, 29, 69–80. [Google Scholar] [CrossRef]
- Shen, Y.; Santiago, L.S.; Ma, L.; Lin, G.J.; Lian, J.Y.; Cao, H.L.; Ye, W.H. Forest dynamics of a subtropical monsoon forest in Dinghushan, China: Recruitment, mortality and the pace of community change. J. Trop. Ecol. 2013, 29, 131–145. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Shen, C.; Lou, D.; Fu, S.; Guan, D. Ecosystem carbon storage in forest fragments of differing patch size. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Wei, P.; Kong, G. Biomass study of the community of Castanopsis chinensis + Cryptocarya concinna + Schima supera in a Southern China reserve. Acta Ecol. Sin. 1997, 17, 497–504. [Google Scholar]
- Liu, S.; Luo, Y.; Huang, Y. Studies on the community biomass and its allocations of five forest types in Dinghushan Nature Reserve. Ecol. Sci. 2007, 26, 387–393. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 1 January 2020).
- Liu, S.Q.; Bian, Z.; An, T.Y.; Xia, C.Z.; Zhang, M.; Chen, J.; Hou, R.P.; Zhang, K.B.; Zhao, H.Q. Carbon pools of biomass and dead organic matter in typical forest ecosystems of Tibet: A new estimation based on the first forestry carbon sequestration monitoring undertaken in China. Land Degrad. Dev. 2021, 32, 2877–2891. [Google Scholar] [CrossRef]
- Lutz, J.A.; Struckman, S.; Germain, S.J.; Furniss, T.J. The importance of large-diameter trees to the creation of snag and deadwood biomass. Ecol. Process. 2021, 10, 1–4. [Google Scholar] [CrossRef]
- Pfeifer, M.; Lefebvre, V.; Turner, E.; Cusack, J.; Khoo, M.; Chey, V.K.; Peni, M.; Ewers, R.M. Deadwood biomass: An underestimated carbon stock in degraded tropical forests? Environ. Res. Lett. 2015, 10, 044019. [Google Scholar] [CrossRef]
- Barlow, J.; Peres, C.A.; Lagan, B.O.; Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 2003, 6, 6–8. [Google Scholar] [CrossRef]
- Slik, J.F.; Paoli, G.; McGuire, K.; Amaral, I.; Barroso, J.; Bastian, M.; Blanc, L.; Bongers, F.; Boundja, P.; Clark, C.; et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 2013, 22, 1261–1271. [Google Scholar] [CrossRef]
- Chisholm, R.A.; Muller-Landau, H.C.; Abdul Rahman, K.; Bebber, D.P.; Bin, Y.; Bohlman, S.A.; Bourg, N.A.; Brinks, J.; Bunyavejchewin, S.; Butt, N.; et al. Scale-dependent relationships between tree species richness and ecosystem function in forests. J. Ecol. 2013, 101, 1214–1224. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yu, G.; Wang, Q. How temperature, precipitation and stand age control the biomass carbon density of global mature forests. Glob. Ecol. Biogeogr. 2014, 23, 323–333. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, H.Y.; Lian, J.; John, R.; Ronghua, L.I.; Liu, H.; Ye, W.; Berninger, F.; Ye, Q. Using functional trait diversity patterns to disentangle the scale-dependent ecological processes in a subtropical forest. Funct. Ecol. 2018, 32, 1379–1389. [Google Scholar] [CrossRef]
- Horak, J.; Vodka, S.; Kout, J.; Halda, J.P.; Bogusch, P.; Pech, P. Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. For. Ecol. Manag. 2014, 315, 80–85. [Google Scholar] [CrossRef]
- Mataji, A.; Sagheb-Talebi, K.; Eshaghi-Rad, J. Deadwood assessment in different developmental stages of beech (Fagus orientalis Lipsky) stands in Caspian forest ecosystems. Int. J. Environ. Sci. Technol. 2014, 11, 1215–1222. [Google Scholar] [CrossRef] [Green Version]
- Mi, X.; Feng, G.; Hu, Y.; Zhang, J.; Chen, L.; Corlett, R.T.; Hughes, A.C.; Pimm, S.; Schmid, B.; Shi, S.; et al. The global significance of biodiversity science in China: An overview. Natl. Sci. Rev. 2021, 8, nwab032. [Google Scholar] [CrossRef]
- Yuan, Z.; Gazol, A.; Lin, F. Soil organic carbon in an old-growth temperate forest: Spatial pattern, determinants and bias in its quantification. Geoderma 2013, 195, 48–55. [Google Scholar] [CrossRef]
- Karlin, M.; Zapata, R.; Coirini, R. Soil organic carbon and dead biomass pools in woodlands from Monte region (Argentina). Bosque 2021, 42, 67–79. [Google Scholar] [CrossRef]
- Li, L.; Wei, S.G.; Huang, Z.L.; Ye, W.H.; Cao, H.L. Spatial patterns and interspecific associations of three canopy species at different life stages in a subtropical forest, China. J. Integra. Plant Biol. 2008, 50, 1140–1150. [Google Scholar] [CrossRef]
- Smallman, T.L.; Exbrayat, J.F.; Mencuccini, M.; Bloom, A.A.; Williams, M. Assimilation of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests. J. Geophys. Res-Biogeo. 2017, 122, 528–545. [Google Scholar] [CrossRef]
- Thompson, P.L.; Rayfield, B.; Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 2017, 40, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.R.; Caspersen, J.P.; Fuller, M.M.; Jones, T.A.; Thomas, S.C. Temporal dynamics and causes of postharvest mortality in a selection-managed tolerant hardwood forest. For. Ecol. Manag. 2014, 314, 183–192. [Google Scholar] [CrossRef]
- Philipson, C.D.; Dent, D.H.; O’Brien, M.J.; Chamagne, J.; Dzulkifli, D.; Nilus, R.; Philips, S.; Reynolds, G.; Saner, P.; Hector, A. A trait-based trade-off between growth and mortality: Evidence from 15 tropical tree species using size-specific relative growth rates. Ecol. Evol. 2014, 4, 3675–3688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanner, E.V.; Rodriguez-Sanchez, F.; Healey, J.R.; Holdaway, R.J.; Bellingham, P.J. Long-term hurricane damage effects on tropical forest tree growth and mortality. Ecology 2014, 95, 2974–2983. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lei, Y.; Pang, Y.; Liu, X.; Wang, J. Tree mortality in response to climate change induced drought across Beijing, China. Clim. Chang. 2014, 124, 179–190. [Google Scholar] [CrossRef]
DBH Ranges | cm | Abundance | DBd |
---|---|---|---|
Very small | 1–10 cm | 9997 | 18.0 |
Small | 10–30 cm | 1201 | 78.3 |
Medium | 30–50 cm | 81 | 43.7 |
Large | >50 cm | 4 | 2.5 |
Total | 11,283 | 142.5 |
Species | DBd | |
---|---|---|
1 | Castanopsis chinensis Hance | 41.7 |
2 | Engelhardtia roxburghiana Wall | 22.9 |
3 | Schima superba Gardn. et Champ | 27.7 |
4 | Craibioden dronscleranthum var. kwangtungense (S. Y. Hu) Judd | 12.6 |
5 | Acmena acuminatissima Merr. et Perry | 8.3 |
6 | Cryptocarya chinensis (Hance) Hemsl | 7.9 |
7 | Machilu schinensis (Champ. ex Benth.) Hemsl | 4.5 |
8 | Pinus massoniana Lamb | 3.5 |
9 | Syzygium rehderianum Merr. et Perry | 3.3 |
10 | Rhododendron henryi Hance | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Du, W.; Shu, H.; Cao, H.; Shen, C. Spatial Pattern of Deadwood Biomass and Its Drivers in a Subtropical Forest. Forests 2023, 14, 773. https://doi.org/10.3390/f14040773
Ma L, Du W, Shu H, Cao H, Shen C. Spatial Pattern of Deadwood Biomass and Its Drivers in a Subtropical Forest. Forests. 2023; 14(4):773. https://doi.org/10.3390/f14040773
Chicago/Turabian StyleMa, Lei, Wenzhi Du, Hui Shu, Honglin Cao, and Chunyu Shen. 2023. "Spatial Pattern of Deadwood Biomass and Its Drivers in a Subtropical Forest" Forests 14, no. 4: 773. https://doi.org/10.3390/f14040773
APA StyleMa, L., Du, W., Shu, H., Cao, H., & Shen, C. (2023). Spatial Pattern of Deadwood Biomass and Its Drivers in a Subtropical Forest. Forests, 14(4), 773. https://doi.org/10.3390/f14040773