Agroforestry Ecosystem Structure and the Stability Improvement Strategy in Control of Karst Desertification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Site Selection and Survey
2.2.1. Sample Site Selection
2.2.2. Structural Investigation
2.2.3. Collection and Determination of Physical and Chemical Properties of Soils
Soil Physical Indexes Were Determined
Soil Chemical Properties Determined
2.2.4. Determination of the Rate of Rock Outcrop
2.3. Parameter Calculation and Model Construction
2.3.1. Calculation of Parameters of AFS Structure
Angular Scale
Mixing Degree
Size Ratio
2.3.2. Species Diversity
2.3.3. Establishment of Evaluation Index System
Selection Criteria and Principles of Evaluation Indicators
Establishment of Evaluation Indicators
Calculation of Indicator Weight Values
Establishment of the Evaluation Set
Creation of Fuzzy Matrix
Comprehensive Evaluation
3. Results
3.1. Plant Species Components
3.1.1. Types of AFS Structure
3.1.2. Species Composition and Importance Values
3.1.3. Plant Diversity
3.2. Forest Stand Structure in the AFS
3.2.1. Nonspatial Structure
Nonspatial Structural Characteristics of the HG
Nonspatial Structural Characteristics of the ASV
Nonspatial Structural Characteristics of the MWLs
3.2.2. Spatial Structure
Spatial Structural Characteristics of the HG
Spatial Structural Characteristics of the ASV
Spatial Structural Characteristics of the MWLs
3.3. Stability Analysis
3.3.1. Calculation of Evaluation Index Weights and Analysis of the Results
3.3.2. Multilevel Fuzzy Comprehensive Evaluation
3.3.3. Distribution of Stability Levels
4. Discussion
4.1. AFS Species Composition and Species Diversity
4.2. AFS Structural Features
4.3. Driving Factor of AFS Stability
4.4. Stability Improvement Strategy
4.4.1. Species Composition and Its Diversity Strategy
Species Composition Strategy in the HG
Species Composition Strategy in the ASV
Species Composition Strategy in the MWLs
4.4.2. Artificial Interference Strategy
5. Conclusions
- (i)
- The species composition of the AFS in the KD control areas has a simple structure, the overall diversity level is low, and the diversity level of herbaceous plants is better than that of woody plants.
- (ii)
- The overall distribution curves of diameter at breast height (DBH), tree height (TH), and crown width (CW) of woody plants in the AFS in the KD control areas were slight to the left, with a single-peaked pattern, mostly randomly and unevenly distributed in space, with a low degree of tree species isolation and relatively weak stand stability.
- (iii)
- There is variability in the stability classes of different types of AFS, among which, in HG, it mainly shows the ranking in study areas of HJ (excellent) > SB (good) > BJ (fair); in ASV, it shows BJ (good) > HJ (fair) = SB (fair); in MWLs, it shows HJ (good) > SB (fair) > BJ (poor). Overall reflecting HG > ASV > MWLs.
- (iv)
- When structural optimization was applied, corresponding measures can be taken according to farmers’ wishes for different AFS and their primary business purposes. The improvement of stability depends mainly on the utility of structural optimization coupled with positive human interference (for example, pruning, dwarfing, and dense planting). This study provides a scientific reference for maintaining the stability and sustainable development of the AFS in the KD control areas.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPBES. Assessment Report on Land Degradation and Restoration: Summary for Policymakers IPBES Secretariat; The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2018. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystem and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Vivian, V.; Luis, G.B.; Paige, W.; Eleanor, J.; Sterling, S.N. The role of coffee agroforestry in the conservation of tree diversity and community composition of native forests in a Biosphere Reserve. Agric. Ecosyst. Environ. 2014, 189, 154–163. [Google Scholar]
- FAO. Agroforestry for Landscape Restoration: Exploring the Potential of Agroforestry to Enhance the Sustainability and Resilience of Degraded Landscapes; Food, and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar] [CrossRef]
- Santos, M.; Cajaiba, R.L.; Bastos, R.; Gonzalez, D.; Petrescu Bakış, A.L.; Ferreira, D.; Mosquera-Losada, M.R. Why do agroforestry systems enhance biodiversity? Evidence from habitat amount hypothesis predictions. Front. Ecol. Evolut. 2022, 9, 1008. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Bayala, J.; Wallace, J.S. Tree-crop interactions: Agroforestry in a changing climate. In The Water Balance of Mixed Tree-Crop Systems; CABI: Wallingford, UK, 2015; pp. 146–190. [Google Scholar]
- Jose, S.; Udawatta, R.P. Agroforestry for Ecosystem Services: An Introduction. In Agroforestry and Ecosystem Services; Udawatta, R.P., Jose, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–17. [Google Scholar]
- Hu, Y.H.; Chen, Q.B.; Zhou, Z.D. Ecological Engineering of Tropical Agroforestry Complexes; China Forestry Press: Beijing, China, 2006. [Google Scholar]
- Marais, Z.E.; Baker, T.P.; O’Grady, A.P.; England, J.R.; Tinch, D.; Hunt, M.A. A Natural Capital Approach to Agroforestry Decision-Making at the Farm Scale. Forests 2019, 10, 980. [Google Scholar] [CrossRef]
- Xiao, J.; Xiong, K. A review of agroforestry ecosystem services and its enlightenment on the ecosystem improvement of the karst desertification control. Sci. Total Environ. 2022, 852, 158538. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, D.Y.; Chen, H.; Wen, Y.Q. Impact of agroforestry on soil environment in rocky desertification areas and its application. World For. Res. 2019, 32, 13–18. [Google Scholar]
- Wu, Q.; Liang, H.; Xiong, K.; Li, R. Eco-benefits coupling of agroforestry and soil and water conservation under KRD environment: Frontier theories and outlook. Agrofor. Syst. 2019, 93, 1927–1938. [Google Scholar] [CrossRef]
- Marais, Z.E.; Thomas, P.; Baker, M.A.; Hunt, D.M. Shelterbelt species composition and age determine structure: Consequences for ecosystem services. Agric. Ecosyst. Environ. 2022, 329, 107884. [Google Scholar] [CrossRef]
- Jiang, S.; Xiong, K.; Xiao, J. Structure and Stability of Agroforestry Ecosystems: Insights into the Improvement of Service Supply Capacity of Agroforestry Ecosystems under the Karst Rocky Desertification Control. Forests 2022, 13, 878. [Google Scholar] [CrossRef]
- Li, W.H.; Lai, S.D. Agroforestry Complex Management in China; Science Press: Beijing, China, 1994; pp. 20–21. [Google Scholar]
- António, C.B.S.; Obieze, C.; Jacinto, J.; Maquia, I.S.A.; Massad, T.; Ramalho, J.C.; Ribeiro, N.S.; Máguas, C.; Marques, I.; Ribeiro-Barros, A.I. Linking Bacterial Rhizosphere Communities of Two Pioneer Species, Brachystegia boehmii and B. spiciformis, to the Ecological Processes of Miombo Woodlands. Forests 2022, 13, 1840. [Google Scholar] [CrossRef]
- Deheuvels, O.; Avelino, J.; Somarriba, E.; Malezieux, E. Vegetation structure, and productivity in cocoa-based agroforestry systems in Talamanca, Costa Rica. Agric. Ecosyst. Environ. 2012, 149, 181–188. [Google Scholar] [CrossRef]
- Notaro, M.; Deheuvels, O.; Gary, C. Participative design of the spatial and temporal development of improved cocoa agroforestry systems for yield and biodiversity. Eur. J. Agron. 2022, 132, 126395. [Google Scholar] [CrossRef]
- Feng, Z.W.; Wang, X.K.; Wu, G. Structure and Function of Agroforestry Systems: A Study of the Northern Part of Henan and Huaihai Plain; China Science and Technology Press: Beijing, China, 1992. [Google Scholar]
- Ripoche, A.; Autfray, P.; Rabary, B.; Randriamanantsoa, R.; Blanchart, E.; Trap, J.; Sauvadet, M.; Becquer, T.; Letourmy, P. Increasing plant diversity promotes ecosystem functions in rainfed rice-based short rotations in Malagasy highlands. Agric. Ecosyst. Environ. 2021, 320, 107576. [Google Scholar] [CrossRef]
- Lin, K.H.; Ye, G.F. A review of the stability of planted forest ecosystems. J. Southwest For. Acad. 2010, 30, 88–94. [Google Scholar]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
- Qin, Y. Strategies for Optimizing the Structure and Improvement the Stability of Forest Ecosystem in Karst Desertification Control; Guizhou Normal University: Guiyang, China, 2022. [Google Scholar]
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology; Wiley: Hoboken NJ, USA, 2007; p. 1. [Google Scholar]
- Cao, J.; Yuan, D.; Pei, J. Karst Ecosystems in Southwest China Constrained by Geological Conditions; Geological Press: Beijing, China, 2005. [Google Scholar]
- Kranjc, A. Dinaric karst: An example of deforestation and desertification of lime rocky terrain. In Deforestation Around the World; Moutinho, P., Ed.; Intech Open: London, UK, 2012; pp. 73–94. [Google Scholar]
- Sunkar, A. Deforestation and rocky desertification processes in Gunung Sewu karst landscape. Media Konserv. 2008, 13, 1–7. [Google Scholar]
- Xiong, K.N.; Chi, Y.K. Problems and countermeasures facing karst ecosystems in southern China. Ecol. Econ. 2015, 31, 23–30. [Google Scholar]
- Febles González, J.M.; Febles Díaz, J.M.; Sobrinho, N.M.B.A.; Tolón-Becerra, A.; Lastra-Bravo, X.; Botta, G.F. Resilience of Red Ferralitic soils in the karst regions of Mayabeque Province, Cuba. Land Degrad. Dev. 2019, 30, 109–116. [Google Scholar] [CrossRef]
- Zuo, T.A.; Zhang, F.T.; Yu, S.J.; Li, J.; Fan, H.; Ye, D. Progress of research on rocky desertification poverty in karst areas of China. China Karst 2021, 6, 1–13. [Google Scholar]
- Chen, H.S.; Yue, Y.M.; Wang, K.K. Comprehensive management of rocky desertification in a southwest karst region: Effectiveness, problems, and countermeasures. China Karst 2018, 37, 37. [Google Scholar]
- Su, W.C.; Zhu, W.X. The connotation and concept of sustainable agricultural development in karst ecologically fragile areas of Guizhou. Econ. Geogr. 2000, 05, 75–79. [Google Scholar]
- Mei, Z.M.; Xiong, K.N. The basic model of ecological reconstruction in the Karst mountains of Guizhou and its environmental benefits. J. Guizhou Norm. Univ. Nat. Sci. Ed. 2000, 4, 9–17. [Google Scholar]
- Luo, D.; Xiong, K.; Wu, C.; Gu, X.; Wang, Z. Soil Moisture and Nutrient Changes of Agroforestry in Karst Plateau Mountain: A Monitoring Example. Agronomy 2022, 13, 94. [Google Scholar] [CrossRef]
- Cui, L. Technology, and Demonstration of Rock Desertification Land Preparation Based on Plant Diversity Restoration and Conservation; Guizhou Normal University: Guizhou, China, 2016. [Google Scholar]
- Liu, Q.S.; Chen, H.; Li, L.Z.; Wang, C.L.; Chen, J.; Yang, Y.W.; Zhang, H.M. Marginal effects of soil mite communities in agroforestry areas of rocky desertification management. J. Appl. Environ. Biol. 2020, 26, 370–377. [Google Scholar]
- Xiong, K.; Li, P.; Zhou, Z.; An, Y.; Lv, T.; Lan, A. Remote Sensing of Karst Rock Desertification: A Typical Study of GIS: Guizhou Province as an Example; Geological Publishing House: Beijing, China, 2002. [Google Scholar]
- Nair, P.K.R. Classification of an agroforestry system. Agrofor. Syst. 1985, 3, 97–182. [Google Scholar] [CrossRef]
- Nair, P.K.R. An Introduction to Agroforestry; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Zhang, Y.; Xiong, K.N.; Yu, Y.H.; Xu, M.; Cheng, W.; Tan, D.J. Characteristics of daily dynamics of soil respiration in three economic forests in karstic rocky desertification areas of southern China. J. Cent. South Univ. For. Sci. Technol. 2019, 01, 92–99. [Google Scholar]
- Song, S.; Xiong, K.N.; Chi, Y.; Guo, W.; Liao, J. A review of research on degraded grassland improvement in the management of karstic rock desertification in southern China. J. Domest. Anim. Ecol. 2019, 3, 82–87, 96. [Google Scholar]
- Yang, S.; Yu, Y.H.; Xiong, K.; Zhang, S.; LI, T.; Wang, Z.; Hu, T. Influence of soil nutrients on functional traits of pickled walnut in KD areas. Guangxi Plant 2022, 6, 927–937. [Google Scholar]
- Fang, J.; Wang, X.; Shen, Z.; Tang, Z.; He, J.; Yu, D.; Guo, Z. Main contents, methods and technical specifications of plant community inventory. Biol. Divers. 2009, 6, 533–548. [Google Scholar]
- Li, K.; Li, Z.J. Methods of Soil Agrochemical Analysis; China Agricultural Science and Technology Press: Beijing, China, 2019; pp. 33–41. [Google Scholar]
- Liu, J.; Shen, Y.; Zhao, Z.; Zhao, G. A method for measuring surface rock exposure rate in rocky desert areas. J. Mt. Sci. 2018, 6, 973–980. [Google Scholar]
- Zhu, Y.; Shao, M. Spatial distribution of surface rock fragment on hill-slopes in a small catchment in wind-water erosion crisscross region of the Loess Plateau. Sci. Chin. 2008, 51, 862–870. [Google Scholar] [CrossRef]
- Hui, G. Angular scale-a structural parameter describing the distribution pattern of individual trees. Sci. For. 1999, 1, 25. [Google Scholar]
- Li, J. Treasureday Oak Natural Secondary Forest Stand Structure Quantitative Analysis. Master’s Thesis, Henan Agricultural University, Henan, China, 2008. [Google Scholar]
- Sun, C.; Qin, F.; Yang, Z.; Dong, X.; Tai, H.; Ren, X. Study on the stability of typical artificial forest ecosystem in the Arsenic sandstone region based on information entropy. Res. Soil Water Conserve. 2021, 6, 90–97. [Google Scholar]
- Zhang, L.; Li, S.; Miu, N.; Zeng, Y.; Li, J.; Wang, Y.; Sun, H. Stability evaluation of Chinese fir ecosystem based on information entropy in the pelvic region of Sichuan Province. J. Cent. South Univ. For. Technol. 2020, 7, 79–88. [Google Scholar]
- Tang, C.Q.; Li, Y.H.; Zhang, Z.Y. Species diversity patterns in natural secondary plant communities and man-made forests in a subtropical mountainous karst area, Yunnan, SW China. Mt. Res. Dev. 2010, 30, 244–251. [Google Scholar] [CrossRef]
- Du, Y.; Wu, C.; Zhou, S.; Huang, L.; Han, S.; Xu, X.; Ding, Y. Forest soil organic carbon density and its distribution characteristics along an altitud in algradient in Lushan Mountains of China. J. Appl. Ecol. 2011, 7, 1675–1681. [Google Scholar]
- Sheng, M.; Xiong, K.; Cui, G.; Liu, Y. Plant diversity and soil physicochemical properties in karstic desertification areas of Guizhou. J. Ecol. 2015, 2, 434–448. [Google Scholar]
- Cao, J.; Yuan, D.; Zhang, C.; Jiang, L. Karst ecosystems in southwest China constrained by geological conditions. Earth Environ. 2004, 32, 1–8. [Google Scholar]
- Zhang, S.; Xiong, K.; Qin, Y.; Min, X.; Xiao, J. Evolution and determinants of ecosystem services: Insights from South China Karst. Ecol. Indic. 2021, 133, 108437. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y. Advances in the study of biodiversity and stability mechanisms. J. Ecol. 2016, 13, 3859–3870. [Google Scholar]
- Condit, R.; Ashton, P.S.; Baker, P.; Bunyavejchewin, S.; Gunatilleke, S.; Gunatilleke, N.; Hubbell, S.P.; Foster, S.P.; Itoh, R.B.; LaFrankie, A.; et al. Spatial patterns in the distribution of tropical tree species. Science 2000, 288, 1414–1418. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; He, J.; Yu, S. Spatial structures of different-sized tree species in a secondary forest in the early succession stage. Eur. J. For. Res. 2020, 139, 709–719. [Google Scholar] [CrossRef]
- Sahle, M.; Saito, O.; Demissew, S. Characterization and mapping of inset-based home-garden agroforestry for sustainable landscape management of the Gurage socioecological landscape in Ethiopia. Environ. Sci. Pollut. Res. 2022, 29, 24894–24910. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.W. The role of the epi karst in karst and cave hydrogeology: A review. Int. J. Speleol. 2008, 37, 1–10. [Google Scholar] [CrossRef]
- Sweeting, M.M. Reflections on the development of Karst geomorphology in Europe and a comparison with its development in China. Z. Geomorphol. 1993, 37, 127–136. [Google Scholar]
- Li, S.; Ren, H.; Yao, X. Influence of land use patterns on the daily dynamics of environmental microclimate in karst areas. J. Appl. Ecol. 2009, 20, 387–395. [Google Scholar]
- Xiong, K.N.; Xiao, J.; Zhu, D.Y. Advances in the study of agroforestry ecosystem services. J. Ecol. 2022, 42, 851–861. [Google Scholar]
- Tilma, D.; Dowuin, J.A. Biodiversity and stability in grasslands. Nature 1994, 367, 363–365. [Google Scholar] [CrossRef]
- Lehman, C.L.; Tilman, D. Biodiversity, stability, and productivity in competitive communities. Am. Nat. 2000, 156, 534–552. [Google Scholar] [CrossRef]
- Loreau, L.; Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 2013, 16, 106–115. [Google Scholar] [CrossRef]
- Li, Z.Y.; Ye, X.Z.; Wang, S.P. Ecosystem stability and its relationship with biodiversity. J. Plant Ecol. 2021, 12, 1127. [Google Scholar] [CrossRef]
- Gross, K.; Cardinale, B.J.; Fox, J.W.; Gonzalez, A.; Loreau, M.; Wayne Polley, H. Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments. Am. Nat. 2014, 183, 1–12. [Google Scholar] [CrossRef]
- Geng, S.; Shi, P.; Song, M.; Zong, N.; Zu, J.; Zhu, W. The diversity of vegetation composition enhances ecosystem stability along elevational gradients in the Taihang Mountains, China. Ecol. Ind. 2019, 104, 594–603. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, H.; Mi, Z.; Zhang, Z.; Wang, Y.; Xu, W.; He, J. Climate warming reduces the temporal stability of plant community biomass production. Nat. Commun. 2017, 8, 15378. [Google Scholar] [CrossRef]
- Wu, Z.; Xiong, K.; Zhu, D.; Xiao, J. Revelation of Coupled Ecosystem Quality and Landscape Patterns for Agroforestry Ecosystem Services Sustainability Improvement in the Karst Desertification Control. Agriculture 2023, 13, 43. [Google Scholar] [CrossRef]
- Hou, W.J.; Gao, J.B.; Peng, T.; Wu, S.H.; Dale, F. Progress of research on the vulnerability of karst ecosystems in southwest China under the structure-function-habitat framework. Adv. Geosci. 2016, 03, 320–330. [Google Scholar]
- Guo, K.; Liu, C.; Dong, M. Ecological Adaptation of Karst Plants and Rock Desertification Management in Southwest China. J. Pl. Ecol. 2011, 10, 991–999. [Google Scholar]
- Song, T.Q.; Peng, L.X.; Du, H.; Wang, K.L.; Zeng, F.P. Spatial and temporal evolution characteristics, occurrence mechanism and regulation measures of karstic desertification in southwest China. J. Ecol. 2014, 34, 5328–5341. [Google Scholar]
- He, F.Y.; Xiong, K.N.; Zhu, D.Y. Research progress on moisture effects of agroforestry in karst mountains. China Forage 2020, 07, 22–27. [Google Scholar]
- Li, S.; Ren, H.; Xue, L.; Chang, J.; Yao, X. Influence of bare rocks on surrounding soil moisture in the karst rocky desertification regions under drought conditions. Catena 2014, 116, 157–162. [Google Scholar] [CrossRef]
- Li, S.; Xue, L.; Wang, J.; Ren, H.; Yao, S.; Leng, X.; Wu, Z. Surface temperature and air temperature and humidity dynamics of bare rock in rocky desertification areas. J. Ecol. 2019, 2, 436–442. [Google Scholar] [CrossRef]
Indicators | Measurement Methods |
---|---|
Soil pH (pH) | By water leaching-potentiometric method (National Standard GB7859-87) |
Soil bulk density (SBD) | Soaking method and ring knife method |
Soil capillary porosity (WFPS) | Soaking method and ring knife method |
Soil organic matter (SOM) | National standard GB7857-87 oxidation of potassium dichromate -external heating method |
Soil total nitrogen (TN) | National standard GB7173-87 semi-trace Kelvin method |
Soil total phosphorus (TP) | Sodium hydroxide alkali fusion—molybdenum antimony anti-colorimetric method |
Total potassium in soil (TK) | By flame photometry |
First-Class Index | Second-Class Index | ||||
---|---|---|---|---|---|
Ordinal | Indicator Name | Weight | Ordinal | Indicator Name | Weight |
1 | U1 | 0.2983 | 1 | U11 | 0.0462 |
2 | U12 | 0.0722 | |||
3 | U13 | 0.0374 | |||
4 | U14 | 0.0274 | |||
5 | U15 | 0.0604 | |||
6 | U16 | 0.0546 | |||
2 | U2 | 0.1909 | 7 | U21 | 0.0466 |
8 | U22 | 0.0323 | |||
9 | U23 | 0.0366 | |||
10 | U24 | 0.0754 | |||
3 | U3 | 0.3402 | 11 | U31 | 0.0547 |
12 | U32 | 0.0550 | |||
13 | U33 | 0.0567 | |||
14 | U34 | 0.0886 | |||
15 | U35 | 0.0301 | |||
16 | U36 | 0.0300 | |||
4 | U4 | 0.1706 | 17 | U37 | 0.0250 |
18 | U41 | 0.0587 | |||
19 | U42 | 0.0658 | |||
20 | U43 | 0.0461 |
Structure Type | Area | Level | Rating | ||||
---|---|---|---|---|---|---|---|
I | II | III | IV | V | |||
HG | BJ | 0.1000 | 0.0870 | 0.1238 | 0.0608 | 0.0243 | III |
HJ | 0.2929 | 0.1193 | 0.0675 | 0.0393 | 0.0331 | I | |
SB | 0.0481 | 0.1541 | 0.1414 | 0.0745 | 0.0234 | II | |
ASV | BJ | 0.0336 | 0.1746 | 0.1072 | 0.0782 | 0.0006 | II |
HJ | 0.0705 | 0.0809 | 0.1032 | 0.0360 | 0.0901 | III | |
SB | 0.0414 | 0.0606 | 0.1183 | 0.0813 | 0.0694 | III | |
MWLs | BJ | 0.1330 | 0.0741 | 0.0319 | 0.1489 | 0.0612 | IV |
HJ | 0.0324 | 0.1115 | 0.1089 | 0.1076 | 0.0072 | II | |
SB | 0.0861 | 0.0794 | 0.1420 | 0.0772 | 0.0208 | III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Xiong, K.; Xiao, J.; Yang, Y.; Huang, Y.; Wu, Z. Agroforestry Ecosystem Structure and the Stability Improvement Strategy in Control of Karst Desertification. Forests 2023, 14, 845. https://doi.org/10.3390/f14040845
Jiang S, Xiong K, Xiao J, Yang Y, Huang Y, Wu Z. Agroforestry Ecosystem Structure and the Stability Improvement Strategy in Control of Karst Desertification. Forests. 2023; 14(4):845. https://doi.org/10.3390/f14040845
Chicago/Turabian StyleJiang, Shilian, Kangning Xiong, Jie Xiao, Yiling Yang, Yunting Huang, and Zhigao Wu. 2023. "Agroforestry Ecosystem Structure and the Stability Improvement Strategy in Control of Karst Desertification" Forests 14, no. 4: 845. https://doi.org/10.3390/f14040845
APA StyleJiang, S., Xiong, K., Xiao, J., Yang, Y., Huang, Y., & Wu, Z. (2023). Agroforestry Ecosystem Structure and the Stability Improvement Strategy in Control of Karst Desertification. Forests, 14(4), 845. https://doi.org/10.3390/f14040845