The Impact of the Method of Reclamation of the Coal Ash Dump from the “Adamów” Power Plant on the Survival, Viability, and Wood Quality of the Introduced Tree Species
Abstract
:1. Introduction
2. Material and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alves Dias, P.; Kanellopoulos, K.; Medarac, H.; Kapetaki, Z.; Miranda-Barbosa, E.; Shortall, R.; Czako, V.; Telsnig, T.; Vazquez-Hernandez, C.; LacalArántegui, R.; et al. EU Coal Regions: Opportunities and Challenges Ahead; European Commission, Joint Research Centre: Petten, The Netherlands, 2018; pp. 20–32. [Google Scholar]
- Kasztelewicz, Z.; Tajduś, A.; Cała, M.; Ptak, M.; Sikora, M. Strategic conditions for the future of brown coal mining in Poland. Polityka Energetyczna—Energy Policy J. 2018, 21, 155–178. [Google Scholar] [CrossRef]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.O.; Xia, M.S.; Xi, Y.O. Comprehensive review on the application of coal fly ash. Earth Sci. Rev. 2014, 141, 241–252. [Google Scholar] [CrossRef]
- Antonkiewicz, J. Effect of sewage sludge and furnace waste on the content of selected elements in the sward of legume-grass mixture. J. Elem. 2010, 15, 435–443. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Ukwattage, N.L.; Ranjith, P.G.; Bouazza, M. The use of coal combustion fly ash as a soil amendment in agricultural lands (with comments on its potential to improve food security and sequester carbon). Fuel 2013, 109, 400–408. [Google Scholar] [CrossRef]
- Mocek-Płóciniak, A. The physicochemical and microbiochemical properties of soils developing in landfills with ash and slag from power plants. Rozprawy Naukowe No. 499. Wyd. Uniw. Przyr. w Pozn. 2018, 1–171. (In Polish) [Google Scholar]
- Gilewska, M. Biological reclamation of power plant lignite ash dump sites. Rocz. Glebozn. 2004, 55, 111–121. (In Polish) [Google Scholar]
- Dziennik Ustaw, 2013, poz. 523, Rozporządzenie Ministra Środowiska z dnia 30 Kwietnia 2013 r. w Sprawie Składowisk odpadów. (Journal of Laws, 2013, item 523, Regulation of the Minister of the Environment of 30 April 2013 on Landfills). (In Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20130000523/O/D20130523.pdf (accessed on 20 January 2023).
- Zikeli, S.; Jahn, R.; Kastler, M. Initial soil development in lignite ash landfills and settling ponds in Saxony-Anhalt, Germany. J. Plant Nutr. Soil Sci. 2002, 165, 530–536. [Google Scholar] [CrossRef]
- Juwarkar, A.A.; Jambhulkar, H.P. Restoration of fly ash dump through biological interventions. Environ. Monit. Assess. 2008, 139, 355–365. [Google Scholar] [CrossRef]
- Haynes, R.J. Reclamation and revegetation of fly ash disposal sites—Challenges and research needs. J. Environ. Manag. 2009, 90, 43–53. [Google Scholar] [CrossRef]
- Gilewska, M.; Otremba, K. Impact of planting technique on reclamation of a disposal site of power station incineration ash. Inż. Środ. 2010, 17, 86–93. (In Polish) [Google Scholar]
- Weber, J.; Strączyńska, S.; Kocowicz, A.; Gilewska, M.; Bogacz, A.; Gwiżdż, M.; Dębicka, M. Properties of soil materials derived from fly ash 11 years after revegetation of post-mining excavation. Catena 2015, 1133, 250–254. [Google Scholar] [CrossRef]
- Gilewska, M.; Otremba, K.; Kozłowski, M. Physical and chemical properties of ash from thermal power station combusting lignite. A case study from central Poland. J. Elem. 2020, 25, 279–295. [Google Scholar] [CrossRef]
- Técher, D.; Laval-Gilly, P.; Bennasroune, A.; Henry, S.; Martinez-Chois, C.; D’Innocenzo, M.; Falla, J. An appraisal of Miscanthus x giganteus cultivation for fly ash revegetation and soil restoration. Ind. Crop. Prod. 2012, 36, 427–433. [Google Scholar] [CrossRef]
- Čermák, P. Forest reclamation of dumpsites of coal combustion by–products (CCB). J. For. Sci. 2008, 54, 273–280. [Google Scholar] [CrossRef]
- Krzaklewski, W.; Pietrzykowski, M.; Woś, B. Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench on fly ash technosols at different substrate improvement. Ecol. Eng. 2012, 49, 35–40. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Woś, B.; Pająk, M.; Wanic, T.; Krzaklewski, W.; Chodak, M. Reclamation of a lignite combustion waste disposal site with alders (Alnus sp.): Assessment of tree growth and nutrient status within 10 years of the experiment. Environ. Sci. Pollut. Res. 2018, 25, 17091–17099. [Google Scholar] [CrossRef] [PubMed]
- Lefrançois, E.; Quoreshi, A.; Khasa, D.; Fung, M.; Whyte, L.G.; Roy, S.; Greer, C.W. Field performance of alder-Frankia symbionts for the reclamation of oil sands sites. Appl. Soil Ecol. 2010, 46, 183–191. [Google Scholar] [CrossRef]
- Pietrzykowski, M. Macronutrient accumulation and relationships in a Scots pine (Pinus sylvestris L.) ecosystem on reclaimed opencast lignite mine spoil heaps in central Poland. In Proceedings of the 25th Annual Meeting of American Society of Mining and Reclamation (ASMR) and 10th International Affiliation of Land Reclamationists (IALR), “New Opportunities to Apply Our Science”, Richmond, VA, USA, 14–19 June 2008; ASMR: St. Louis, MO, USA. [Google Scholar]
- Pająk, M.; Michalec, K.; Wąsik, R.; Kościelny, M. Jakość surowca sosnowego pochodzącego z terenów rekultywowanych dla leśnictwa na przykładzie zwałowiska odpadów po wydobyciu siarki w Piasecznie. (Quality of Scots pine wood on the lands reclaimed for forestry—Spoil heap after the exploitation of sulphur in Piaseczno case study). Sylwan 2016, 160, 284–291. (In Polish) [Google Scholar] [CrossRef]
- Pająk, M.; Vítek, P.; Urban, O.; Klem, K.; Wąsik, R.; Michalec, K.; Pietrzykowski, M. Genotype and soil substrate effects on the wood quality of poplar grown in a reclaimed lignite-mining area. J. Environ. Manag. 2021, 285, 112146. [Google Scholar] [CrossRef]
- Michalec, K.; Wąsik, R.; Pająk, M.; Sikora, F. Zmienność wybranych cech makrostruktury i gęstości drewna świerkowego pochodzącego z drzewostanów gospodarczych i terenów pogórniczych. (Variability of selected features of macrostructure and density of spruce wood from commercial stands and post−mining areas). Sylwan 2020, 164, 10–15. (In Polish) [Google Scholar] [CrossRef]
- Krzaklewski, W. Podstawy Rekultywacji Leśnej; Uniwersytet Rolniczy w Krakowie: Kraków, Poland, 2017. [Google Scholar]
- Pacewicz, K.; Wróbel, M.; Wieczorek, T.; Gilewska, M.; Otremba, K. Charakterystyka wzrostu drzew klonu jesionolistnego, oliwnika wąskolistnego i robinii akacjowej na składowisku popiołów elektrownianych. (Growth characteristics of Acer negundo, Eleagnusangustifolius and Robiniapseudoacacia trees on wet ash disposal site). Acta Sci. Pol. Form. Circumiectus 2006, 5, 87–98. (In Polish) [Google Scholar]
- PN-91/D-95018; Warunki Techniczne—Drewno Średniowymiarowe (Wood—Middlesized Sawn Timber). PLN: Warszawa, Poland, 1991. (In Polish)
- Czuraj, M. Tablice Miąższości Kłód Odziomkowych i Drzew Stojących; PWRL: Warszawa, Poland, 1991. (In Polish) [Google Scholar]
- Kot, S.M.; Jakubowski, J.; Sokołowski, A. Statystyka. (Statistics); Difin: Warszawa, Poland, 2007. (In Polish) [Google Scholar]
- Stat Soft 2006. Statistica ver. 12. Elektroniczny Podręcznik Statystyki PL, Krakow, WEB. Available online: http://www.statsoft.pl/textbook/stathome.html (accessed on 20 January 2023).
- Bongarten, B.C.; Huber, D.A.; Apsley, D.K. Environmental and genetic influences on short-rotation biomass production of black locust (Robiniapseudoacacia L.) in the Georgia Piedmont. Forest Ecol. Manag. 1992, 55, 315–331. [Google Scholar] [CrossRef]
- Grünewald, H.; Böhm, C.; Quinkenstein, A.; Grundmann, P.; Eberts, J.; von Wühlisch, G. Robiniapseudoacacia L.: A lesser known tree species for biomass production. BioEnergy Res. 2009, 2, 123–133. [Google Scholar] [CrossRef]
- Römer, W.; Lehne, P. Neglected P and K fertilization in organic farming reduces N-2 fixation and grain yield in a red clover-oat rotation. J. Plant Nutr. Soil Sci. 2004, 167, 106–113. [Google Scholar] [CrossRef]
- Kanzler, M.; Böhm, C.; Freese, D. Impact of P fertilisation on the growth performance of black locust (Robiniapseudoacacia L.) in a lignite post-mining area in Germany. Ann. For. Res. 2015, 58, 39–54. [Google Scholar] [CrossRef]
- Nicolescu, V.N.; Rédei, K.; Mason, W.L.; Vor, T.; Pöetzelsberger, E.; Bastien, J.C.; Brus, R.; Benčať, T.; Đodan, M.; Cvjetkovic, B.; et al. Ecology, growth and management of black locust (Robiniapseudoacacia L.), a non-native species integrated into European forests. J. For. Res. 2020, 31, 1081–1101. [Google Scholar] [CrossRef]
- Karbowniczak, A.; Hamerska, J.; Wróbel, M.; Jewiarz, M.; Necka, K. Evaluation of selected species of woody plants in terms of suitability for energy production. In Springer Proceedings Energy; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 735–742. [Google Scholar]
- Wróbel, M.; Hamerska, J.; Jewiarz, M.; Mudryk, K.; Niemczyk, M. Influence of parameters of the torrefaction process on the selected parameters of torrefied woody biomass. In Springer Proceedings Energy; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 691–700. [Google Scholar]
- Spyroglou, G.; Fotelli, M.; Nanos, N.; Radoglou, K. Assessing black locust biomass accumulation in restoration plantations. Forests 2021, 12, 1477. [Google Scholar] [CrossRef]
- Kraszkiewicz, A. Productivity of black locust (Robiniapseudoacacia L.) grown on a varying habitats in southeastern Poland. Forests 2021, 12, 470. [Google Scholar] [CrossRef]
- Torbert, J.L.; Burger, J.A.; Daniels, W.L. Pine growth variation associated with overburden rock type on a reclaimed surface mine in Virginia. J. Environ. Qual. 1990, 19, 88–92. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Socha, J. An estimation of Scots pine (Pinus sylvestris L.) ecosystem productivity on reclaimed post-mining sites in Poland (central Europe) using of allometric equations. Ecol. Eng. 2011, 37, 381–386. [Google Scholar] [CrossRef]
- Pietrzykowski, M.; Socha, J.; van Doorn, N.S. Scots pine (Pinus sylvestris L.) site index in relation to physico-chemical and biological properties in reclaimed mine soils. New Forests 2015, 46, 247–266. [Google Scholar] [CrossRef]
- Rodrigue, J.A.; Burger, J.A.; Oderwald, R.G. Forest productivity and commercial value of pre-law reclaimed mined land in the Eastern United States. North. J. Appl. For. 2002, 19, 106–114. [Google Scholar] [CrossRef]
- Kuznetsova, T.; Mandre, M.; Klõšeiko, J.; Pärn. A comparison of the growth of Scots pine (Pinus sylvestris L.) in a reclaimed oil shale post-mining area and in a Calluna site in Estonia. Environ. Monit. Assess 2010, 166, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Pająk, M.; Michalec, K.; Wąsik, R.; Urban, O.; Vitek, P.; Woś, B.; Krzaklewski, W.; Pietrzykowski, M. Jakość drewna topól wprowadzonych w ramach rekultywacji leśnej na zwałowisko skał towarzyszących wydobyciu węgla brunatnego. (Quality of wood of poplars used in the reclamation of spoil rock dump accompanying the lignite mining). Sylwan 2019, 163, 855–861. (In Polish) [Google Scholar] [CrossRef]
- Węgorek, T. Efektywność rekultywacji terenu zwałowiska kopalni siarki w Piasecznie. Inżynieria Ekol. 2000, 1, 37–44. (In Polish) [Google Scholar]
Characteristics of the Plots | ||
---|---|---|
Plot Number | Layer Name | Cover Thickness |
1 | ash | 0 |
2 | ash | 0 |
3 | ash | 0 |
4 | sewage sludge | 25 |
5 | sewage sludge | 25 |
6 | sewage sludge | 25 |
7 | sewage sludge | 50 |
12 | clay | 50 |
13 | clay | 50 |
14 | clay | 50 |
15 | clay | 50 |
16 | clay | 50 |
17 | sewage sludge | 50 |
Cover Name | Species | Features of Trees | Average | Min | Max | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|---|---|---|
S25 | BL | DBH (cm) | 13.9 | 7.0 | 25.0 | 4.05 | 29.09 |
H (m) | 12.3 | 10.6 | 14.8 | 0.79 | 6.43 | ||
V (m3) | 0.10 | 0.01 | 0.35 | 0.07 | 69.09 | ||
ALM | DBH (cm) | 11.0 | 7.0 | 22.0 | 3.48 | 31.56 | |
H (m) | 11.6 | 10.3 | 14.0 | 0.76 | 6.56 | ||
V (m3) | 0.06 | 0.01 | 0.25 | 0.05 | 84.60 | ||
CM | DBH (cm) | 14.4 | 11.0 | 20.0 | 2.90 | 20.12 | |
H (m) | 12.3 | 11.3 | 13.5 | 0.61 | 4.99 | ||
V (m3) | 0.10 | 0.04 | 0.21 | 0.05 | 50.82 | ||
S50 | BL | DBH (cm) | 15.2 | 7.0 | 25.0 | 3.79 | 24.93 |
H (m) | 13.7 | 11.5 | 16.7 | 1.07 | 7.79 | ||
V (m3) | 0.12 | 0.01 | 0.40 | 0.07 | 58.21 | ||
ALM | DBH (cm) | 12.8 | 7.0 | 24.0 | 4.23 | 33.05 | |
H (m) | 13.1 | 11.4 | 16.4 | 1.20 | 9.16 | ||
V (m3) | 0.09 | 0.01 | 0.34 | 0.08 | 88.71 | ||
CM | DBH (cm) | 13.7 | 7.0 | 22.0 | 3.66 | 26.65 | |
H (m) | 13.4 | 11.4 | 15.8 | 1.07 | 7.94 | ||
V (m3) | 0.10 | 0.01 | 0.29 | 0.07 | 65.81 | ||
C50 | BL | DBH (cm) | 14.8 | 8.0 | 30.0 | 3.91 | 26.38 |
H (m) | 13.7 | 10.4 | 20.8 | 1.73 | 12.61 | ||
V (m3) | 0.12 | 0.02 | 0.64 | 0.09 | 76.04 | ||
ALM | DBH (cm) | 11.6 | 7.0 | 26.0 | 3.81 | 32.97 | |
H (m) | 12.4 | 9.3 | 19.3 | 1.76 | 14.12 | ||
V (m3) | 0.08 | 0.01 | 0.80 | 0.10 | 132.26 | ||
CM | DBH (cm) | 11.0 | 7.0 | 21.0 | 3.04 | 27.60 | |
H (m) | 12.0 | 9.1 | 15.5 | 1.27 | 10.54 | ||
V (m3) | 0.06 | 0.01 | 0.24 | 0.05 | 80.42 | ||
AS | DBH (cm) | 9.7 | 7.0 | 23.0 | 3.1 | 31.98 | |
H (m) | 11.7 | 9.3 | 18.4 | 1.5 | 12.71 | ||
V (m3) | 0.04 | 0.01 | 0.36 | 0.06 | 131.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szadek, P.; Pająk, M.; Michalec, K.; Wąsik, R.; Otremba, K.; Kozłowski, M.; Pietrzykowski, M. The Impact of the Method of Reclamation of the Coal Ash Dump from the “Adamów” Power Plant on the Survival, Viability, and Wood Quality of the Introduced Tree Species. Forests 2023, 14, 848. https://doi.org/10.3390/f14040848
Szadek P, Pająk M, Michalec K, Wąsik R, Otremba K, Kozłowski M, Pietrzykowski M. The Impact of the Method of Reclamation of the Coal Ash Dump from the “Adamów” Power Plant on the Survival, Viability, and Wood Quality of the Introduced Tree Species. Forests. 2023; 14(4):848. https://doi.org/10.3390/f14040848
Chicago/Turabian StyleSzadek, Paweł, Marek Pająk, Krzysztof Michalec, Radosław Wąsik, Krzysztof Otremba, Michał Kozłowski, and Marcin Pietrzykowski. 2023. "The Impact of the Method of Reclamation of the Coal Ash Dump from the “Adamów” Power Plant on the Survival, Viability, and Wood Quality of the Introduced Tree Species" Forests 14, no. 4: 848. https://doi.org/10.3390/f14040848
APA StyleSzadek, P., Pająk, M., Michalec, K., Wąsik, R., Otremba, K., Kozłowski, M., & Pietrzykowski, M. (2023). The Impact of the Method of Reclamation of the Coal Ash Dump from the “Adamów” Power Plant on the Survival, Viability, and Wood Quality of the Introduced Tree Species. Forests, 14(4), 848. https://doi.org/10.3390/f14040848