Laboratory Durability Testing of Preservative-Treated Wood Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Products and Preservative Treatment
2.2. Specimen Preparation and Incubation
- Coniophora puteana (Schumach.) P. Karst. (Eberswalde 15), C.p.
- Rhodonia placenta (Fr.) Niemelä, K.H. Larsson & Schigel (FPRL 280), R.p.
- Gloeophyllum trabeum (Pers.:Fr.) Murrill (Eberswalde 109), G.t.
- Trametes versicolor (L.) Lloyd. F. (CTB 863a), T.v.
2.3. Decay Assessment
- Pdecay is the percentage decayed area (%);
- Pdecay,sap is the percentage decayed sapwood area (%);
- Pixtotal is the number of pixels, total cross-sectional area;
- Pixdecay is the number of pixels, decayed cross-sectional area;
- Adecay is the decayed cross-sectional area (cm2);
- Adecay,sap is the decayed cross-sectional sapwood area (cm2);
- Atotal is the total cross-sectional area (cm2);
- Atotal,sap is the sapwood cross-sectional area (cm2).
2.4. Determining Wood Moisture Content and Its Spatial Distribution
3. Results and Discussion
3.1. Fungal Growth
3.2. Fungal Decay
3.3. Moisture Conditions
3.4. Infestation Pathways and Decay Patterns
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Findlay, W.P.K. The nature and durability of wood. In Natural Durability of Timber in the Tropics; Findlay, W.P.K., Ed.; Springer: Dordrecht, The Netherlands, 1985; p. 273. [Google Scholar]
- Scheffer, T.C.; Morrell, J.J. Natural durability of wood: A worldwide checklist of species. For. Res. Lab. 1998, 22, 58. [Google Scholar]
- Van Acker, J.; Stevens, M.; Carey, J.; Sierra-Alvarez, R.; Militz, H.; Le Bayon, I.; Kleist, G.; Peek, R.D. Biological durability of wood in relation to end-use. Eur. J. Wood Wood Prod. 2003, 61, 35–45. [Google Scholar] [CrossRef]
- Kutnik, M.; Suttie, E.; Brischke, C. European standards on durability and performance of wood and wood-based products–Trends and challenges. Wood Mat. Sci. Eng. 2014, 9, 122–133. [Google Scholar] [CrossRef]
- EN 350; Durability of Wood and Wood-Based Products. Testing and Classification of the Durability to Biological Agents of Wood and Wood-Based Materials. European Committee for Standardization: Brussels, Belgium, 2016.
- Alfredsen, G.; Westin, M. Durability of modified wood-laboratory vs. field performance. In Proceedings of the 4th European Conference on Wood Modification (ECWM4), Stockholm, Sweden, 27–29 April 2009; pp. 515–522. [Google Scholar]
- Alfredsen, G.; Brischke, C.; Meyer-Veltrup, L.; Humar, M.; Flæte, P.O. The effect of different test methods on durability classification of modified wood. Pro Ligno 2017, 13, 290–297. [Google Scholar]
- Emmerich, L.; Brischke, C.; Militz, H. Wood modification with N-methylol and N-methyl compounds: A case study on how non-fixated chemicals in modified wood may affect the classification of their durability. Holzforschung 2021, 75, 1061–1065. [Google Scholar] [CrossRef]
- EN 113-2; Durability of Wood and Wood-Based Products—Test Method against Wood Destroying Basidiomycetes—Part 2: Assessment of Inherent or Enhanced Durability. European Committee for Standardization: Brussels, Belgium, 2021.
- CEN/TS 15083-2; Durability of Wood and Wood-Based Products—Determination of the Natural Durability of Solid Wood against Wood-Destroying Fungi, Test Methods—Part 2: Soft Rotting Micro-Fungi. European Committee for Standardization: Brussels, Belgium, 2005.
- Scheiding, W.; Jacobs, K.; Bollmus, S.; Brischke, C. Durability classification of treated and modified wood—Approaching a guideline for sampling, testing, and statistical analysis. In Proceedings of the IRG Annual Meeting, IRG/WP 20-20676, Online-Conference, 10–11 June 2020. [Google Scholar]
- Cookson, L.J.; Page, D.; Singh, T. Accelerated above-ground decay testing in Australia and New Zealand. Int. Biodeter. Biodegr. 2014, 86, 210–217. [Google Scholar] [CrossRef]
- Evans, P.D.; Wingate-Hill, R.; Cunningham, R.B. Wax and oil emulsion additives: How effective are they at improving the performance of preservative-treated wood? For. Prod. J. 2009, 59, 66. [Google Scholar]
- Singh, T.; Page, D. Evaluation of Selected Accelerated Above-Ground Durability Testing Methods for Wood after Ten Years Exposure. Forests 2020, 11, 559. [Google Scholar] [CrossRef]
- Goodell, B.; Jellison, J.; Loferski, J.; Quarles, S.L. Brown-rot decay of ACQ and CA-B treated lumber. For. Prod. J. 2007, 57, 31. [Google Scholar]
- Ra, J.B. Ten-year performance of shell-treated wooden deck. J. Korean Wood Sci. Technol. 2019, 47, 667–673. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Tran, N.Q.; Nguyen, T.M.N.; Trinh, H.M.; Le, X.P.; Nguyen, T.K. Evaluation of Weathering Performance of Rosin-Copper Based Treated Wood. J. Renew. Mat. 2022, 10, 2765–2780. [Google Scholar] [CrossRef]
- Brischke, C.; Alfredsen, G. Biological durability of pine wood. Wood Mat. Sci. Eng. 2022. [Google Scholar] [CrossRef]
- Foliente, G.C.; Leicester, R.H.; Wang, C.H.; Mackenzie, C.; Cole, I. Durability design for wood construction. For. Prod. J. 2002, 52, 10–19. [Google Scholar]
- Brischke, C.; Alfredsen, G. Wood-water relationships and their role for wood susceptibility to fungal decay. Appl. Microbiol. Biotechnol. 2020, 104, 3781–3795. [Google Scholar] [CrossRef]
- EN 252; Field Test Method for Determining the Relative Protective Effectiveness of a Wood Preservative in Ground Contact. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 12037; Wood Preservatives-Field Test Method for Determining the Relative Protective Effectiveness of a Wood Preservative Exposed Out of Ground Contact-Horizontal Lap-Joint Method. European Committee for Standardization: Brussels, Belgium, 2023.
- Råberg, U.; Edlund, M.L.; Terziev, N.; Land, C.J. Testing and evaluation of natural durability of wood in above ground conditions in Europe—An overview. J. Wood Sci. 2005, 51, 429–440. [Google Scholar] [CrossRef]
- Augusta, U. Untersuchung der Natürlichen Dauerhaftigkeit Wirtschaftlich Bedeutender Holzarten bei Verschiedener Beanspruchung im Außenbereich. Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 2007. [Google Scholar]
- Brischke, C.; Rolf-Kiel, H. Durability of European oak (Quercus spp.) in ground contact—A case study on fence posts in service. Eur. J. Wood Wood Prod. 2010, 68, 129–137. [Google Scholar] [CrossRef]
- Sharapov, E.; Brischke, C.; Militz, H. Assessment of preservative-treated wooden poles using drilling-resistance measurements. Forests 2019, 11, 20. [Google Scholar] [CrossRef]
- Johnstone, D.; Moore, G.; Tausz, M.; Nicolas, M. The measurement of wood decay in landscape trees. Arboricult. Urban For. 2010, 36, 121–127. [Google Scholar] [CrossRef]
- Goh, C.L.; Rahim, R.A.; Rahiman, M.H.F.; Talib, M.T.M.; Tee, Z.C. Sensing wood decay in standing trees: A review. Sens. Actuat. A Phys. 2018, 269, 276–282. [Google Scholar] [CrossRef]
- Pohleven, F.; Petric, M.; Zupin, J. Effect of mini-block test conditions on activity of Coniophora puteana. In Proceedings of the IRG Annual Meeting, IRG/WP/00-20184, Kona, HI, USA, 14–19 May 2000. [Google Scholar]
- Brischke, C.; Grünwald, L.K.; Bollmus, S. Effect of size and shape of specimens on the mass loss caused by Coniophora puteana in wood durability tests. Eur. J. Wood Wood Prod. 2020, 78, 811–819. [Google Scholar] [CrossRef]
- Schmidt, O. Wood and Tree Fungi. Biology, Damage, Protection, and Use; Springer: Berlin/Heidelberg, Germany, 2006; p. 334. [Google Scholar]
- Meyer, L.; Brischke, C. Fungal decay at different moisture levels of selected European-grown wood species. Int. Biodeter. Biodegr. 2015, 103, 23–29. [Google Scholar] [CrossRef]
- Stienen, T.; Schmidt, O.; Huckfeldt, T. Wood decay by indoor basidiomycetes at different moisture and temperature. Holzforschung 2014, 68, 9–15. [Google Scholar] [CrossRef]
- Morrell, J.J. Effect of kerfing on performance of Douglas-fir utility poles in the Pacific Northwest. In Proceedings of the IRG Annual Meeting, IRG/WP 3604, Rotorua, New Zealand, 13–19 May 1990. [Google Scholar]
- Ross, R.J.; Wang, X.; Brashaw, B.K. Detecting decay in wood components. In Inspection and Monitoring Techniques for Bridges and Civil Structures; Woodhead Publishing Limited: Sawston, UK, 2005; pp. 100–114. [Google Scholar]
- Bornemann, T.; Brischke, C.; Alfredsen, G. Decay of wooden commodities–moisture risk analysis, service life prediction and performance assessment in the field. Wood Mat. Sci. Eng. 2014, 9, 144–155. [Google Scholar] [CrossRef]
- Van den Bulcke, J.; De Windt, I.; Defoirdt, N.; De Smet, J.; Van Acker, J. Moisture dynamics and fungal susceptibility of plywood. Int. Biodeter. Biodegr. 2011, 65, 708–716. [Google Scholar] [CrossRef]
- Udele, K.E.; Morrell, J.J.; Sinha, A. Biological durability of cross-laminated timber—The state of things. For. Prod. J. 2021, 71, 124–132. [Google Scholar] [CrossRef]
Product 1 | Number of Replicates | Solution Uptake [kg/m3] | Retention [kg/m3] |
---|---|---|---|
Palisade PQ (poor treatment quality) | 50 | 74 ± 28 | 3.8 ± 1.4 |
(10) | (68 ± 22) | (3.5 ± 1.1) | |
Palisade HQ (high treatment quality) | 50 | 347 ± 57 | 18.4 ± 3.0 |
(10) | (353 ± 41) | (18.7 ± 2.2) | |
Palisade C (untreated control) | 40 | - | - |
(10) | - | - | |
Decking board HQ | 60 | 268 ± 127 | 14.2 ± 6.7 |
(5) | (208 ± 99) | (11.0 ± 5.2) | |
Decking board C | 30 | - | - |
(5) | - | - |
Test Fungus/Wood Species | Mass Loss (%) | |||
---|---|---|---|---|
Palisade Test | Decking Board Test | |||
Mean | SD | Mean | SD | |
Trametes versicolor/Beech | 67.3 | 11.1 | - | - |
Coniophora puteana/Scots pine sapwood | 56.7 | 12.7 | 46.8 | 19.7 |
Gloeophyllum trabeum/Scots pine sapwood | 25.2 | 5.3 | - | - |
Rhodonia placenta/Scots pine sapwood | 27.0 | 7.3 | - | - |
Treatment | Test Fungus | Decayed Specimens [%] | Decayed Cross-Sectional Area Pdecay% [%] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Sapwood | |||||||||
Mean | SD | Max | SD | Mean | SD | Max | SD | |||
None | T.v. | 100 | 29.4 | 7.5 | 34.4 | 8.2 | 46.8 | 9.9 | 53.2 | 11.0 |
C.p. | 100 | 51.2 | 7.9 | 54.6 | 4.7 | 81.6 | 4.7 | 84.3 | 3.6 | |
G.t. | 100 | 16.9 | 6.3 | 21.2 | 5.9 | 33.8 | 13.7 | 42.0 | 13.7 | |
R.p. | 100 | 12.4 | 5.4 | 15.5 | 6.0 | 18.8 | 7.8 | 23.4 | 8.4 | |
Poor quality PQ | T.v. | 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
C.p. | 100 | 7.1 | 5.7 | 11.1 | 7.1 | 12.8 | 10.0 | 19.3 | 12.7 | |
G.t. | 60 | 0.3 | 0.6 | 0.7 | 1.1 | 0.4 | 1.0 | 1.1 | 1.7 | |
R.p. | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
High quality HQ | T.v. | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
C.p. | 60 | 0.1 | 0.4 | 0.5 | 1.1 | 0.1 | 0.5 | 0.6 | 1.1 | |
G.t. | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
R.p. | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Treatment | Pre-Oven-Drying | End-Grain Sealant | Sapwood Area [%] | Decayed Specimens [%] | Decayed Area Adecay [%] | |||
---|---|---|---|---|---|---|---|---|
Mean | SD | Max | SD | |||||
No | Yes | No | 38.0 | 100 | 71.3 | 29.5 | 95.6 | 12.1 |
Yes | 35.8 | 100 | 50.3 | 19.5 | 60.3 | 17.3 | ||
No | No | 34.4 | 100 | 41.0 | 16.6 | 65.5 | 20.5 | |
Yes | 35.4 | 100 | 25.6 | 19.7 | 35.8 | 21.7 | ||
Yes | Yes | No | 53.6 | 100 | 31.4 | 20.9 | 55.3 | 28.8 |
Yes | 54.9 | 90 | 3.2 | 5.3 | 4.9 | 5.4 | ||
No | No | 51.6 | 60 | 10.9 | 16.0 | 25.8 | 26.8 | |
Yes | 50.8 | 0 | 0.0 | 0.0 | 0.0 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brischke, C.; Sievert, M.; Schilling, M.; Bollmus, S. Laboratory Durability Testing of Preservative-Treated Wood Products. Forests 2023, 14, 1001. https://doi.org/10.3390/f14051001
Brischke C, Sievert M, Schilling M, Bollmus S. Laboratory Durability Testing of Preservative-Treated Wood Products. Forests. 2023; 14(5):1001. https://doi.org/10.3390/f14051001
Chicago/Turabian StyleBrischke, Christian, Marten Sievert, Max Schilling, and Susanne Bollmus. 2023. "Laboratory Durability Testing of Preservative-Treated Wood Products" Forests 14, no. 5: 1001. https://doi.org/10.3390/f14051001
APA StyleBrischke, C., Sievert, M., Schilling, M., & Bollmus, S. (2023). Laboratory Durability Testing of Preservative-Treated Wood Products. Forests, 14(5), 1001. https://doi.org/10.3390/f14051001