Developing Integrated Strategies to Address Emerging Weed Management Challenges in Christmas Tree Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Design and Treatments
2.3. Dominant Weeds for Each Farm
2.4. Assessments
2.4.1. Weed Control
2.4.2. Phytotoxicity
2.4.3. Growth Indices
2.4.4. Foliar Nitrogen Content
2.4.5. Statistical Analysis
3. Results
3.1. Weed Control
3.2. Phytotoxicity
3.3. Growth Indices
3.4. Foliar Nitrogen
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peachey, E.; Landgren, C.; Miller, T. Weed and Vegetation Management Strategies in Christmas Trees. Pac. Northwest Ext. Bull. PNW 2017, 625, 1–19. [Google Scholar]
- Saha, D.; Cregg, B.M.; Sidhu, M.K. A Review of Non-Chemical Weed Control Practices in Christmas Tree Production. Forests 2020, 11, 554. [Google Scholar] [CrossRef]
- Zandstra, B.; O’Donnell, J. Weed Control in Christmas Trees. Mich. State Univ. Ext. Bull. 2018, E3237, 1–11. [Google Scholar]
- Harper, G.J.; Comeau, P.G.; Biring, B.S. A Comparison of Herbicide and Mulch Mat Treatments for Reducing Grass, Herb, and Shrub Competition in the BC Interior Douglas-fir Zone—Ten Year Results. West. J. Appl. For. 2005, 20, 167–176. [Google Scholar] [CrossRef]
- Knowe, S.A.; Stein, W.I. Predicting the Effects of Site Preparation and Protection on the Development of Young Douglas-fir Plantations. Can. J. For. Res. 1995, 25, 1538–1547. [Google Scholar] [CrossRef]
- NeSmith, D.S.; Lindstrom, O.M. Vegetation Management of Leyland Cypress Grown for Christmas trees. J. Environ. Hortic. 1996, 14, 42–43. [Google Scholar] [CrossRef]
- Cui, M.; Smith, W.K. Photosynthesis, Water Relations and Mortality in Abies lasiocarpa Seedlings during Natural Establishment. Tree Physiol. 1991, 8, 37–46. [Google Scholar] [CrossRef]
- Heap, I. International Survey of Herbicide Resistant Weeds. Available online: http://www.weedscience.org/Home.aspx (accessed on 10 February 2021).
- Brown, J.H.; Cowen, W.F., Jr.; Heiligmann, R.B. Ohio Christmas Tree Producers Manual; Ohio State University Extension Publications: Columbus, OH, USA, 1991. [Google Scholar]
- Shaner, D.L.; Jachetta, J.; Seneseman, S.; Burke, I.; Hanson, B.; Jugulam, M.; Tan, S.; Reynolds, J.; Strek, H.; McAllister, R.; et al. Herbicide Handbook; Weed Science Society of America: Lawrenceville, GA, USA, 2014. [Google Scholar]
- Hill, E. Status of Herbicide-Resistant Weeds in Michigan. 2018. Available online: https://www.canr.msu.edu/news/2018_status_of_herbicide_resistant_weeds_in_michigan (accessed on 23 May 2021).
- Duryea, M.; English, R.; Hermansen, L. A comparison of landscape mulches: Chemical, allelopathic, and decomposition properties. J. Arboric. 1999, 25, 88–96. [Google Scholar] [CrossRef]
- Arthur, M.; Wang, Y. Soil Nutrients and Microbial Biomass Following Weed-Control Treatments in a Christmas Tree Plantation. Soil Sci. Soc. Am. J. 1999, 63, 629–637. [Google Scholar] [CrossRef]
- Cregg, B.; Nzokou, P.; Goldy, R. Growth and Physiology of Newly Planted Fraser Fir (Abies fraseri) and Colorado Blue Spruce (Picea pungens) Christmas Trees in Response to Mulch and Irrigation. HortScience 2009, 44, 660–665. [Google Scholar] [CrossRef]
- Blumenthal, D.; Jordan, N.; Russelle, M. Soil carbon addition controls weeds and facilitates prairie restoration. Ecol. Appl. 2003, 13, 605–615. [Google Scholar] [CrossRef]
- Gower, S.; Vogt, K.; Grier, C. Carbon dynamics of Rocky Mountain Douglas-fir: Influence of water and nutrient availability. Ecol. Monogr. 1992, 62, 43–65. [Google Scholar] [CrossRef]
- McLendon, T.; Redente, E. Effects of nitrogen limitation on species replacement dynamics during early secondary succession on a sagebrush site. Oecologia 1992, 91, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, S.; Harrison, H. Evaluation of mulches for use in the home garden. HortScience 1983, 18, 180–182. [Google Scholar] [CrossRef]
- Billeaud, L.; Zajicek, J. Influence of mulches on weed control, soil pH, soil nitrogen content, and growth of Ligustrum japonicum. J. Environ. Hortic. 1989, 7, 155–157. [Google Scholar] [CrossRef]
- Chalker-Scott, L. Impact of Mulches on Landscape Plants and the Environment—A Review. J. Environ. Hortic. 2007, 25, 239–249. [Google Scholar] [CrossRef]
- Dumas, A. Procedes de l’analyse Organic. Ann. Chim. 1826, 33, 342. [Google Scholar]
- Brown, K.; William, R.D. Weed Control in Christmas Trees. In Oregon State University Extension; Oregon State University Extension Service: Corvallis, OR, USA, 1981; Volume 181, p. 4. [Google Scholar]
- Saha, D.; Marble, S.C.; Pearson, B.J.; Perez, H.E.; MacDonald, G.; Odero, D.C. Mulch Type and Depth, Herbicide Formulation, and Postapplication Irrigation Volume Influence on Control of Common Landscape Weed Species. HortTechnology 2019, 29, 65–77. [Google Scholar] [CrossRef]
- Derr, J. Innovative Herbicide Application Methods and Their Potential for Use in the Nursery and Landscape Industries. HortTechnology 1994, 4, 345–350. [Google Scholar] [CrossRef]
- Kuhns, L.J. Weed Control Recommendations for Christmas Tree Growers. Hortic. Mimeo Ser. II 2018, 128, 2–22. [Google Scholar]
- Gandhi, K.; Khan, S.; Patrikar, M.; Markad, A.; Kumar, N.; Choudhari, A.; Sagar, P.; Indurkar, S. Exposure risk and environmental impacts of glyphosate: Highlights on the toxicity of herbicide co-formulants. Environ. Chall. 2021, 4, 100149. [Google Scholar] [CrossRef]
- Mantzos, N.A.; Karakitsou, A.; Hela, D.; Patakioutas, G.; Leneti, E.; Konstantinou, I. Persistence of oxyfluorfen in soil, runoff water, sediment and plants of a sunflower cultivation. Sci. Total Environ. 2014, 472, 767–777. [Google Scholar] [CrossRef]
- Coate, J. Conifer Phytotoxicity and Vegetation Control Efficacy of Ten Selected Herbicides; Oregon State University: Corvallis, OR, USA, 1999. [Google Scholar]
- Richardson, R.J.; Zandstra, B.H. Weed Control in Christmas Trees with Flumioxazin and Other Residual Herbicides Applied Alone or in Tank Mixtures. HortTechnology 2009, 19, 181. [Google Scholar] [CrossRef]
- Willoughby, I. Dormant season application of broad spectrum herbicides in forestry. Asp. Appl. Biol. 1996, 44, 55–62. [Google Scholar]
- Grover, R. Effects of chemical weed control on the growth patterns of conifer transplants. Weed Res. 1967, 7, 155–163. [Google Scholar] [CrossRef]
- Hart, J.; Landgren, C.; Fletcher, R.; Bondi, M.; Withrow-Robinson, B.; Chastagner, G. Christmas Tree Nutrient Management Guide Western Oregon and Washington; Oregon State University Extension Service: Corvallis, OR, USA, 2009; Volume EM 8856-E, pp. 23–26. [Google Scholar]
Treatments | Rate of Applications (Highest Labeled Rate) |
---|---|
Clopyralid | 0.58 L Ha−1 |
Glyphosate | 1.9 L Ha−1 |
Oxyfluorfen | 4.6 L Ha−1 |
Oxyfluorfen + Glyphosate | 4.6 L Ha−1 + 1.9 L Ha−1 |
Clopyralid + Oxyfluorfen | 0.58 L Ha−1 + 4.6 L Ha−1 |
Clopyralid + Glyphosate | 0.58 L Ha−1 + 1.9 L Ha−1 |
Mulch only | 5 cm depth 0.3 m diameter |
Mulch + Oxyfluorfen + Glyphosate | 5 cm depth 0.3 m diameter + 4.6 L Ha−1 + 1.9 L Ha−1 |
Mulch + Clopyralid + Oxyfluorfen | 5 cm depth 0.3 m diameter + 0.58 L Ha−1 + 4.6 L Ha−1 |
Mulch + Clopyralid + Glyphosate | 5 cm depth 0.3 m diameter + 0.58 L Ha−1 + 1.9 L Ha−1 |
Clopyralid + Oxyfluorfen + Glyphosate | 0.58 L Ha−1 + 4.6 L Ha−1 + 1.9 L Ha−1 |
Control (no herbicides, no mulch) |
Date of Treatment Application | Name of Farm | Species | Soil Type | Weather Condition |
---|---|---|---|---|
27 May 2021 | Gwinn’s farm, Horton, MI, USA | Fraser fir | Boyer-Oshtemo sandy loams, 1 to 6 percent slopes 11.5% 11B Boyer-Oshtemo sandy loams, 6 to 12 percent slopes 37.9% 11C Hillsdale-Riddles sandy loams, 6 to 12 percent slopes 50.6% 49C | Sunny, 15.5 °C, 52% humidity, wind 15.9 km/h northeast |
11 June 2021 | Korson’s farm, Sidney, MI, USA | Fraser fir | Tekenink fine sandy loam, 6 to 12 percent slopes 100% 62C | Partly cloudy, 26.6 °C, 71% humidity, wind 2.9 km/h east. |
11 June 2021 | Korson’s farm, Sidney, MI, USA | Blue spruce | McBride and Isabella sandy loams, 2 to 6 percent slopes 100% Mk | Partly cloudy, 26.6 °C, 71% humidity, wind 2.9 km/h east. |
17 June 2021 | Badger farm, Allegan, MI, USA | White pine | Metea loamy fine sand, 1 to 6 percent slopes 78.2% 27B Metea loamy fine sand, 6 to 12 percent slopes 21.8% 27C | Sunny, 26.6 °C, 48% humidity, wind 5.95 km/h southwest |
17 June 2021 | Wahmhoff farm, Gobles, MI, USA | Scotch pine | Spinks-Oshtemo complex, 0 to 6 percent slopes 100% 12B | Sunny, 31 °C, 48% humidity, wind 11.27 km/h southwest |
Location/Tree Species | |||||
---|---|---|---|---|---|
Treatment | Allegan White Pine | Horton Fraser Fir | Sidney Blue Spruce | Sidney Fraser Fir | Gobles Scotch Pine |
Clopyralid | 75.23 a * | 1.86 d | 6.93 d | 15.06 abcd | 22.48 bc |
Glyphosate | 60.49 a | 11.51 cd | 13.32 d | 5.82 cd | 63.03 ab |
Oxyfluorfen | 63.59 a | 18.19 bcd | 24.72 bcd | 12.38 bcd | 67.04 ab |
Oxyfluorfen + Glyphosate | 51.89 a | 59.02 abc | 9.69 d | 31.87 abc | 67.13 ab |
Clopyralid + Oxyfluorfen | 76.91 a | 59.01 abc | 9.25 d | 23.93 abcd | 72.35 ab |
Clopyralid + Glyphosate | 58.16 a | 43.57 bcd | 10.53 d | 43.57 abc | 52.89 ab |
Mulch | 69.13 a | 59.73 abc | 72.34 abc | 2.83 dc | 88.10 a |
Mulch + Oxyfluorfen + Glyphosate | 82.62 a | 85.18 a | 83.08 ab | 66.78 a | 96.27 a |
Mulch + Clopyralid + Oxyfluorfen | 91.13 a | 76.75 a | 92.47 a | 56.31 ab | 95.31 a |
Mulch + Clopyralid + Glyphosate | 85.18 a | 75.00 a | 90.87 a | 36.67 abc | 63.81 ab |
Clopyralid + Oxyfluorfen + Glyphosate | 79.13 a | 67.37 ab | 23.16 cd | 37.91 abc | 16.63 bc |
Control | 0.00 b | 0.00 d | 0.00 d | 0.00 d | 0.00 c |
Location/Tree Species | |||||
---|---|---|---|---|---|
Effect | Allegan White Pine | Horton Fraser Fir | Sidney Blue Spruce | Sidney Fraser Fir | Gobles Scotch Pine |
Clopyralid (Clo) | 15.26 *** | 4.46 * | 0.25 | 8.18 ** | 0.03 |
Glyphosate (Gly) | 2.7 | 10.71 ** | 1.35 | 6.32 * | 1.17 |
Oxyfluorfen (Oxy) | 8.37 ** | 38 *** | 3.34 | 4.08 | 5.31 * |
Clo × Gly | 6.12 * | 1.13 | 0.07 | 0 | 5.93 * |
Clo × Oxy | 2.45 | 0.61 | 0.41 | 3 ** | 3.17 |
Gly × Oxy | 4.56 * | 0.14 | 1.48 | 0.21 | 13.97 *** |
Clo × Gly × Oxy | 10.57 ** | 0.76 | 3.45 | 0.19 | 0 |
Contrast: Combinations with mulch vs. without | 3.18 | 10.96 ** | 45.55 *** | 2.05 | 0.03 |
Location/Tree Species | |||||
---|---|---|---|---|---|
Treatment | Allegan White Pine | Horton Fraser Fir | Sidney Blue Spruce | Sidney Fraser Fir | Gobles Scotch Pine |
Clopyralid | 9.25 a * | 17.19 ab | 4.06 ab | 5.78 bc | 8.32 a |
Glyphosate | 3.68 ab | 10.64 ab | 7.20 ab | 23.25 ab | 15.15 a |
Oxyfluorfen | 6.25 ab | 2.94 ab | 4.99 ab | 12.38 abc | 4.99 ab |
Oxyfluorfen + Glyphosate | 13.15 a | 35.62 a | 7.73 ab | 25.00 ab | 4.12 ab |
Clopyralid + Oxyfluorfen | 10.21 a | 6.10 ab | 15.79 ab | 12.12 abc | 10.02 a |
Clopyralid + Glyphosate | 6.10 ab | 11.61 ab | 7.65 ab | 38.51 a | 7.30 a |
Mulch | 0 b | 3.69 ab | 0 b | 0 c | 0 b |
Mulch + Oxyfluorfen + Glyphosate | 8.32 a | 5.50 ab | 17.66 ab | 31.46 ab | 5.82 ab |
Mulch + Clopyralid + Oxyfluorfen | 5.82 ab | 6.25 ab | 7.30 ab | 18.36 ab | 2.18 ab |
Mulch + Clopyralid + Glyphosate | 6.65 ab | 15.69 ab | 32.77 a | 37.36 a | 11.64 a |
Clopyralid + Oxyfluorfen + Glyphosate | 7.91 a | 41.19 a | 4.26 a | 24.03 ab | 5.14 ab |
Control | 0 b | 0 b | 0 b | 0 c | 0 b |
Location/Tree Species | |||||
---|---|---|---|---|---|
Effect | Allegan White Pine | Horton Fraser Fir | Sidney Blue Spruce | Sidney Fraser Fir | Gobles Scotch Pine |
Clopyralid (Clo) | 5.04 * | 2.84 | 0.03 | 2.46 | 3.46 |
Glyphosate (Gly) | 1.83 | 11.6 ** | 0.04 | 24.8 *** | 2.98 |
Oxyfluorfen (Oxy) | 9.47 ** | 2.61 | 3.74 | 1.79 | 0.01 |
Clo × Gly | 6.89 * | 1.59 | 0.34 | 0.11 | 10.14 ** |
Clo × Oxy | 5.85 * | 0.81 | 1.32 | 2.85 | 0.09 |
Gly × Oxy | 0.13 | 3.74 | 5.38 | 5.88 * | 10.3 ** |
Clo × Gly × Oxy | 0.36 | 1.31 | 0.41 | 0.08 | 5.03 * |
Contrast: Combinations with mulch vs. without | 0.59 | 0.14 | 0.8 | 0.81 | 0.02 |
Treatment | Allegan | Horton | Sidney Blue Spruce | Sidney Fraser Fir |
---|---|---|---|---|
1. Clopyralid | 26.46 a * | 46.20 a | 43.59 a | 64.72 a |
2. Glyphosate | 34.39 a | 47.73 a | 47.26 a | 62.86 a |
3. Oxyfluorfen | 29.30 a | 45.27 a | 45.16 a | 60.93 a |
4. Oxyfluorfen + Glyphosate | 30.48 a | 41.45 a | 48.84 a | 66.49 a |
5. Clopyralid + Oxyfluorfen | 30.35 a | 53.52 a | 45.38 a | 67.12 a |
6. Clopyralid + Glyphosate | 33.05 a | 41.49 a | 40.18 a | 70.09 a |
7. Mulch | 28.89 a | 39.68 a | 40.29 a | 67.29 a |
8. Mulch + Oxyfluorfen + Glyphosate | 28.89 a | 41.75 a | 37.25 a | 58.66 a |
9. Mulch + Clopyralid + Oxyfluorfen | 31.42 a | 40.53 a | 47.49 a | 65.03 a |
10. Mulch + Clopyralid + Glyphosate | 34.63 a | 41.63 a | 38.41 a | 65.88 a |
11. Clopyralid + Oxyfluorfen + Glyphosate | 29.53 a | 40.61 a | 43.89 a | 63.37 a |
12. Control | 30.40 a | 44.52 a | 43.86 a | 64.32 a |
Treatment 90 DAT ** | Gobles |
---|---|
1. Clopyralid | 44.87 b * |
2. Glyphosate | 58.74 ab |
3. Oxyfluorfen | 43.36 b |
4. Oxyfluorfen + Glyphosate | 44.98 b |
5. Clopyralid + Oxyfluorfen | 55.67 ab |
6. Clopyralid + Glyphosate | 51.96 ab |
7. Mulch | 53.76 ab |
8. Mulch + Oxyfluorfen + Glyphosate | 56.20 ab |
9. Mulch + Clopyralid + Oxyfluorfen | 48.37 b |
10. Mulch + Clopyralid + Glyphosate | 60.33 ab |
11. Clopyralid + Oxyfluorfen + Glyphosate | 64.56 ab |
12. Control | 68.37 a |
Treatment Group | Foliar Nitrogen Percent |
---|---|
Control | 1.96 a * |
Two or More Herbicides | 1.90 a |
One Herbicide | 1.90 a |
Mulch + Herbicides | 1.80 a |
Mulch | 1.77 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallina, G.; Cregg, B.; Patterson, E.; Saha, D. Developing Integrated Strategies to Address Emerging Weed Management Challenges in Christmas Tree Production. Forests 2023, 14, 881. https://doi.org/10.3390/f14050881
Gallina G, Cregg B, Patterson E, Saha D. Developing Integrated Strategies to Address Emerging Weed Management Challenges in Christmas Tree Production. Forests. 2023; 14(5):881. https://doi.org/10.3390/f14050881
Chicago/Turabian StyleGallina, Greta, Bert Cregg, Eric Patterson, and Debalina Saha. 2023. "Developing Integrated Strategies to Address Emerging Weed Management Challenges in Christmas Tree Production" Forests 14, no. 5: 881. https://doi.org/10.3390/f14050881
APA StyleGallina, G., Cregg, B., Patterson, E., & Saha, D. (2023). Developing Integrated Strategies to Address Emerging Weed Management Challenges in Christmas Tree Production. Forests, 14(5), 881. https://doi.org/10.3390/f14050881