Identifying Optimal Forest Management Maximizing Carbon Sequestration in Mountain Forests Impacted by Natural Disturbances: A Case Study in the Alps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Provisioning and Analyses
2.2.1. Data Provisioning
2.2.2. Matrix Model
2.2.3. Scenarios
2.2.4. Optimizing Carbon Sequestration
2.3. Calculation of Carbon Sequestration
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ipcc Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-915794-0.
- Kindermann, G.E.; Schörghuber, S.; Linkosalo, T.; Sanchez, A.; Rammer, W.; Seidl, R.; Lexer, M.J. Potential Stocks and Increments of Woody Biomass in the European Union under Different Management and Climate Scenarios. Carbon Balance Manag. 2013, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, E.; Micali, M.; Sicuriello, F.; Cammarano, M.; Sermanni, A.G.; Ferlan, M.; Skudnik, M.; Mali, B.; Čater, M.; Simončič, P.; et al. Did ManFor C.BD Forest Treatments Influence Carbon Stock and Sequestration? Ital. J. Agron. 2016, 11, 118–166. [Google Scholar]
- Marenče, M. Environmental Report for 14 Regional Forest Management Plans for the Period 2021–2030; Slovenia Forest Service: Ljubljana, Slovenia, 2022. [Google Scholar]
- Klein, D.; Höllerl, S.; Blaschke, M.; Schulz, C. The Contribution of Managed and Unmanaged Forests to Climate Change Mitigation—A Model Approach at Stand Level for the Main Tree Species in Bavaria. Forests 2013, 4, 43–69. [Google Scholar] [CrossRef]
- Ciais, P.; Borges, A.V.; Abril, G.; Meybeck, M.; Folberth, G.; Hauglustaine, D.; Janssens, I.A. The Impact of Lateral Carbon FLuxes on the European Carbon Balance. Biogeosciences 2008, 5, 1259–1271. [Google Scholar] [CrossRef]
- Kauppi, P.E.; Stål, G.; Arnesson-Ceder, L.; Hallberg Sramek, I.; Hoen, H.F.; Svensson, A.; Wernick, I.K.; Högberg, P.; Lundmark, T.; Nordin, A. Managing Existing Forests Can Mitigate Climate Change. For. Ecol. Manag. 2022, 513, 120186. [Google Scholar] [CrossRef]
- Pretzsch, H. Forest Dynamics, Growth and Yield; From Measurement to Model; Springer: Berlin/Heidelberg, Germany, 2010; p. 664. ISBN 978-3-540-88306-7. [Google Scholar]
- Reyer, C.; Lasch-Born, P.; Suckow, F.; Gutsch, M.; Murawski, A.; Pilz, T. Projections of Regional Changes in Forest Net Primary Productivity for Different Tree Species in Europe Driven by Climate Change and Carbon Dioxide. Ann. For. Sci. 2014, 71, 211–225. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.-J.; Nabuurs, G.-J.; Zimmermann, N.E. Climate Change May Cause Severe Loss in the Economic Value of European Forest Land. Nat. Clim. Chang. 2013, 3, 203–207. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Rammer, W.; Verkerk, P.J. Increasing Forest Disturbances in Europe and Their Impact on Carbon Storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef]
- Reyer, C.P.O.; Bathgate, S.; Blennow, K.; Borges, J.G.; Bugmann, H.; Delzon, S.; Faias, S.P.; Garcia-Gonzalo, J.; Gardiner, B.; Gonzalez-Olabarria, J.R.; et al. Are Forest Disturbances Amplifying or Canceling out Climate Change-Induced Productivity Changes in European Forests? Environ. Res. Lett. 2017, 12, 034027. [Google Scholar] [CrossRef]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of Global Forest Area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Yousefpour, R.; Nabel, J.E.M.S.; Pongratz, J. Simulating Growth-Based Harvest Adaptive to Future Climate Change. Biogeosciences 2019, 16, 241–254. [Google Scholar] [CrossRef]
- Hoel, M.; Sletten, T.M. Climate and Forests: The Tradeoff between Forests as a Source for Producing Bioenergy and as a Carbon Sink. Resour. Energy Econ. 2016, 43, 112–129. [Google Scholar] [CrossRef]
- Skudnik, M.; Grah, A.; Guček, M.; Hladnik, D.; Jevšenak, J.; Kovač, M.; Kušar, G.; Mali, B.; Pintar, A.M.; Pisek, R.; et al. Stanje in Spremembe Slovenskih Gozdov Med Letoma 2000 in 2018; Gozdarski Inštitut Slovenije, Silva Slovenica: Ljubljana, Slovenia, 2021; ISBN 978-961-6993-71-5. [Google Scholar]
- Klopčič, M.; Poljanec, A.; Gartner, A.; Bončina, A. Factors Related to Natural Disturbances in Mountain Norway Spruce (Picea Abies) Forests in the Julian Alps. Écoscience 2009, 16, 48–57. [Google Scholar] [CrossRef]
- Nagel, T.A.; Mikac, S.; Dolinar, M.; Klopcic, M.; Keren, S.; Svoboda, M.; Diaci, J.; Boncina, A.; Paulic, V. The Natural Disturbance Regime in Forests of the Dinaric Mountains: A Synthesis of Evidence. For. Ecol. Manag. 2017, 388, 29–42. [Google Scholar] [CrossRef]
- Klopčič, M.; Poljanec, A.; Dolinar, M.; Kastelec, D.; Bončina, A. Ice-Storm Damage to Trees in Mixed Central European Forests: Damage Patterns, Predictors and Susceptibility of Tree Species. For. Int. J. For. Res. 2020, 93, 430–443. [Google Scholar] [CrossRef]
- Lindroth, A.; Lagergren, F.; Grelle, A.; Klemedtsson, L.; Langvall, O.; Weslien, P.; Tuulik, J. Storms Can Cause Europe-Wide Reduction in Forest Carbon Sink. Glob. Chang. Biol. 2009, 15, 346–355. [Google Scholar] [CrossRef]
- Thom, D.; Seidl, R. Natural Disturbance Impacts on Ecosystem Services and Biodiversity in Temperate and Boreal Forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef]
- Williams, C.A.; Gu, H.; MacLean, R.; Masek, J.G.; Collatz, G.J. Disturbance and the Carbon Balance of US Forests: A Quantitative Review of Impacts from Harvests, Fires, Insects, and Droughts. Glob. Planet. Chang. 2016, 143, 66–80. [Google Scholar] [CrossRef]
- Mikoláš, M.; Svitok, M.; Bače, R.; Meigs, G.W.; Keeton, W.S.; Keith, H.; Buechling, A.; Trotsiuk, V.; Kozák, D.; Bollmann, K.; et al. Natural Disturbance Impacts on Trade-Offs and Co-Benefits of Forest Biodiversity and Carbon. Proc. R. Soc. B 2021, 288, 20211631. [Google Scholar] [CrossRef]
- Jevšenak, J.; Klopčič, M.; Mali, B. The Effect of Harvesting on National Forest Carbon Sinks up to 2050 Simulated by the CBM-CFS3 Model: A Case Study from Slovenia. Forests 2020, 11, 1090. [Google Scholar] [CrossRef]
- Fürstenau, C. The Impact of Silvicultural Strategies and Climate Change on Carbon Sequestration and Other Forest Ecosystem Functions; Institutional Repository of the Potsdam University: Potsdam, Germany, 2008. [Google Scholar]
- Pilli, R.; Grassi, G.; Kurz, W.A.; Moris, J.V.; Viñas, R.A. Modelling Forest Carbon Stock Changes as Affected by Harvest and Natural Disturbances. II. EU-Level Analysis. Carbon Balance Manag. 2016, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Silva Pedro, M.; Rammer, W.; Seidl, R. Tree Species Diversity Mitigates Disturbance Impacts on the Forest Carbon Cycle. Oecologia 2015, 177, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Carle, M.-A.; D’Amours, S.; Azouzi, R.; Rönnqvist, M. A Strategic Forest Management Model for Optimizing Timber Yield and Carbon Sequestration. For. Sci. 2021, 67, 205–218. [Google Scholar] [CrossRef]
- Hennigar, C.R.; MacLean, D.A.; Amos-Binks, L.J. A Novel Approach to Optimize Management Strategies for Carbon Stored in Both Forests and Wood Products. For. Ecol. Manag. 2008, 256, 786–797. [Google Scholar] [CrossRef]
- Dalmonech, D.; Marano, G.; Amthor, J.S.; Cescatti, A.; Lindner, M.; Trotta, C.; Collalti, A. Feasibility of Enhancing Carbon Sequestration and Stock Capacity in Temperate and Boreal European Forests via Changes to Management Regimes. Agric. For. Meteorol. 2022, 327, 109203. [Google Scholar] [CrossRef]
- Kucuker, D.M. Analyzing the Effects of Various Forest Management Strategies and Carbon Prices on Carbon Dynamics in Western Turkey. J. Environ. Manag. 2019, 249, 109356. [Google Scholar] [CrossRef] [PubMed]
- Perez-Garcia, J.; Lippke, B.; Comnick, J.; Manriquez, C. An assessment of carbon pools, storage, and wood products market substitution using life-cycle analysis results. Wood Fiber Sci. 2005, 37, 140–148. [Google Scholar]
- Brnkalakova, S.; Melnykovych, M.; Nijnik, M.; Barlagne, C.; Pavelka, M.; Udovc, A.; Marek, M.; Kovac, U.; Kluvánková, T. Collective Forestry Regimes to Enhance Transition to Climate Smart Forestry. Environ. Policy Gov. 2022, 32, 492–503. [Google Scholar] [CrossRef]
- Blattert, C.; Lemm, R.; Thees, O.; Hansen, J.; Lexer, M.J.; Hanewinkel, M. Segregated versus Integrated Biodiversity Conservation: Value-Based Ecosystem Service Assessment under Varying Forest Management Strategies in a Swiss Case Study. Ecol. Indic. 2018, 95, 751–764. [Google Scholar] [CrossRef]
- SEA, The Archive of Climate Observations. Available online: https://Meteo.Arso.Gov.Si/Met/En/Weather/ (accessed on 20 January 2023).
- Klopčič, M.; Bončina, A. Stand Dynamics of Silver Fir (Abies Alba Mill.)-European Beech (Fagus Sylvatica L.) Forests during the Past Century: A Decline of Silver Fir? Forestry 2011, 84, 259–271. [Google Scholar] [CrossRef]
- Jelovica, F.M.P. Forest Management Plan for Forest Management Unit Jelovica 2012–2021; Slovenia Forest Service: Bled, Slovenia, 2012. [Google Scholar]
- Ficko, A.; Roessiger, J.; Bončina, A. Can the Use of Continuous Cover Forestry Alone Maintain Silver Fir (Abies Alba Mill.) in Central European Mountain Forests? Forestry 2016, 89, 412–421. [Google Scholar] [CrossRef]
- Roessiger, J.; Ficko, A.; Clasen, C.; Griess, V.C.; Knoke, T. Variability in Growth of Trees in Uneven-Aged Stands Displays the Need for Optimizing Diversified Harvest Diameters. Eur. J. Forest. Res. 2016, 135, 283–295. [Google Scholar] [CrossRef]
- García, O. Linear Programming and Related Approaches in Forest Planning. N. Z. J. For. Sci. 1990, 20, 307–331. [Google Scholar]
- Lindo Systems Inc. 2012 “What’s Best” Version 12.0.1.5. Excel Add-in for Linear, Non-Linear, and Integer Modeling. Available online: http://Www.Lindo.Com/Index.Php?Option=com_content&view=article&id=3&Itemid=11 (accessed on 13 March 2022).
- Tina Simončič; Andrej Bončina Are Forest Functions a Useful Tool for Multi-Objective Forest Management Planning? Expiriences from Slovenia. Croat. J. For. Eng. 2015, 36, 239–305.
- IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry/The Intergovernmental Panel on Climate Change; Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., et al., Eds.; Hayama: Kanagawa, Japan, 2003; ISBN 4-88788-003-0. [Google Scholar]
- Thrippleton, T.; Blattert, C.; Bont, L.G.; Mey, R.; Zell, J.; Thürig, E.; Schweier, J. A Multi-Criteria Decision Support System for Strategic Planning at the Swiss Forest Enterprise Level: Coping With Climate Change and Shifting Demands in Ecosystem Service Provisioning. Front. For. Glob. Chang. 2021, 4, 693020. [Google Scholar] [CrossRef]
- Akujärvi, A.; Shvidenko, A.; Pietsch, S.A. Modelling the Impacts of Intensifying Forest Management on Carbon Budget across a Long Latitudinal Gradient in Europe. Environ. Res. Lett. 2019, 14, 034012. [Google Scholar] [CrossRef]
- Härkönen, S.; Neumann, M.; Mues, V.; Berninger, F.; Bronisz, K.; Cardellini, G.; Chirici, G.; Hasenauer, H.; Koehl, M.; Lang, M.; et al. A Climate-Sensitive Forest Model for Assessing Impacts of Forest Management in Europe. Environ. Model. Softw. 2019, 115, 128–143. [Google Scholar] [CrossRef]
- Jelovica, F.M.P. Forest Management Plan for Forest Management Unit Jelovica 2002–2011; Slovenia Forest Service: Bled, Slovenia, 2002. [Google Scholar]
- Achilles, F.; Tischer, A.; Bernhardt-Römermann, M.; Heinze, M.; Reinhardt, F.; Makeschin, F.; Michalzik, B. European Beech Leads to More Bioactive Humus Forms but Stronger Mineral Soil Acidification as Norway Spruce and Scots Pine—Results of a Repeated Site Assessment after 63 and 82 Years of Forest Conversion in Central Germany. For. Ecol. Manag. 2021, 483, 118769. [Google Scholar] [CrossRef]
- Rehschuh, S.; Jonard, M.; Wiesmeier, M.; Rennenberg, H.; Dannenmann, M. Impact of European Beech Forest Diversification on Soil Organic Carbon and Total Nitrogen Stocks–A Meta-Analysis. Front. For. Glob. Chang. 2021, 4, 606669. [Google Scholar] [CrossRef]
- Vacek, Z.; Prokůpková, A.; Vacek, S.; Bulušek, D.; Šimůnek, V.; Hájek, V.; Králíček, I. Mixed vs. Monospecific Mountain Forests in Response to Climate Change: Structural and Growth Perspectives of Norway Spruce and European Beech. For. Ecol. Manag. 2021, 488, 119019. [Google Scholar] [CrossRef]
- Pretzsch, H.; Schütze, G. Effect of Tree Species Mixing on the Size Structure, Density, and Yield of Forest Stands. Eur. J. For. Res. 2016, 135, 1–22. [Google Scholar] [CrossRef]
- Cicșa, A.; Tudoran, G.-M.; Cicșa (Boroeanu), M.; Dobre, A.-C.; Spârchez, G. Effect of Species Composition on Growth and Yield in Mixed Beech–Coniferous Stands. Forests 2022, 13, 1651. [Google Scholar] [CrossRef]
- Knohl, A.; Kolle, O.; Minayeva, T.; Milyukova, I.; Vygodskaya, N.; Foken, T.; Ernst Detlef, S. Carbon Exchange of a Russian Boreal Forest after Windthrow. Glob. Chang. Biol. 2002, 8, 231–246. [Google Scholar] [CrossRef]
- Alvarez, S.; Ortiz, C.; Díaz-Pinés, E.; Rubio, A. Influence of Tree Species Composition, Thinning Intensity and Climate Change on Carbon Sequestration in Mediterranean Mountain Forests: A Case Study Using the CO2Fix Model. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 1045–1058. [Google Scholar] [CrossRef]
- Nabuurs, G.-J.; Schelhaas, M.-J.; Mohren, G.; Frits, M.J.; Field, C.B. Temporal Evolution of the European Forest Sector Carbon Sink from 1950 to 1999: European Forest Sector Carbon Sink. Glob. Chang. Biol. 2003, 9, 152–160. [Google Scholar] [CrossRef]
- Ogris, N.; de Groot, M. Verjetnostna in Količinska Napoved Sanitarnega Poseka Smreke Zaradi Podlubnikov v Sloveniji v 2022. Napovedi o Zdravju Gozdov, 2022. Available online: https://www.zdravgozd.si/prognoze_zapis.aspx?idpor=61 (accessed on 20 January 2023).
- Dobor, L.; Hlásny, T.; Rammer, W.; Zimová, S.; Barka, I.; Seidl, R. Is Salvage Logging Effectively Dampening Bark Beetle Outbreaks and Preserving Forest Carbon Stocks? J. Appl. Ecol. 2020, 57, 67–76. [Google Scholar] [CrossRef]
- Thom, D.; Rammer, W.; Seidl, R. Disturbances Catalyze the Adaptation of Forest Ecosystems to Changing Climate Conditions. Glob. Chang. Biol. 2017, 23, 269–282. [Google Scholar] [CrossRef]
- Mina, M.; Bugmann, H.; Cordonnier, T.; Irauschek, F.; Klopcic, M.; Pardos, M.; Cailleret, M. Future Ecosystem Services from European Mountain Forests under Climate Change. J. Appl. Ecol. 2017, 54, 389–401. [Google Scholar] [CrossRef]
- Taverna, R.; Hofer, P.; Werner, F.; Kaufmann, E.; Thürig, E. CO2-Effekte der Schweizer Wald-und Holzwirtschaft; Umwelt-Wiessen Nr. 0739; Bundesamt für Umwelt: Bern, Switzerlad, 2007. [Google Scholar]
- Irauschek, F.; Barka, I.; Bugmann, H.; Courbaud, B.; Elkin, C.; Hlásny, T.; Klopcic, M.; Mina, M.; Rammer, W.; Lexer, M.J. Evaluating Five Forest Models Using Multi-Decadal Inventory Data from Mountain Forests. Ecol. Model. 2021, 445, 109493. [Google Scholar] [CrossRef]
- Mackensen, J.; Bauhus, J.; Webber, E. Decomposition rates of coarse woody debris—A review with particular emphasis on Australian tree species. Aust. J. Bot. 2003, 51, 27–37. [Google Scholar] [CrossRef]
Period 0–10 Years | Period 11–20 Years | |||||
---|---|---|---|---|---|---|
BAU | COPT | DIST | BAU | COPT | DIST | |
COPT | 0.0079 | 0.0031 | ||||
DIST | 0.9952 | 0.0079 | 0.9180 | 0.003 | ||
COPT_DIST | 0.3027 | 0.3027 | 0.3027 | 0.0887 | 0.493 | 0.08872 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štraus, H.; Podvinšek, S.; Klopčič, M. Identifying Optimal Forest Management Maximizing Carbon Sequestration in Mountain Forests Impacted by Natural Disturbances: A Case Study in the Alps. Forests 2023, 14, 947. https://doi.org/10.3390/f14050947
Štraus H, Podvinšek S, Klopčič M. Identifying Optimal Forest Management Maximizing Carbon Sequestration in Mountain Forests Impacted by Natural Disturbances: A Case Study in the Alps. Forests. 2023; 14(5):947. https://doi.org/10.3390/f14050947
Chicago/Turabian StyleŠtraus, Hana, Suzana Podvinšek, and Matija Klopčič. 2023. "Identifying Optimal Forest Management Maximizing Carbon Sequestration in Mountain Forests Impacted by Natural Disturbances: A Case Study in the Alps" Forests 14, no. 5: 947. https://doi.org/10.3390/f14050947
APA StyleŠtraus, H., Podvinšek, S., & Klopčič, M. (2023). Identifying Optimal Forest Management Maximizing Carbon Sequestration in Mountain Forests Impacted by Natural Disturbances: A Case Study in the Alps. Forests, 14(5), 947. https://doi.org/10.3390/f14050947