B and N Co-Doped Wood Scrap Charcoal for Decorated Supercapacitor with High Conductivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment of Elm Wood Scraps
2.3. Preparation of BNPCM Active Carbon
2.4. Characterizations
2.5. Electrochemical Properties
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Hu, X.; Guo, N.; Chen, S.; Yu, Y.; Yang, C. Synthesis O/S/N doped hierarchical porous carbons from kelp via two-step carbonization for high rate performance supercapacitor. J. Mater. Res. Technol. 2021, 15, 6918–6928. [Google Scholar] [CrossRef]
- Miller, E.E.; Hua, Y.; Tezel, F.H. Materials for energy storage: Review of electrode materials and methods of increasing ca-pacitance for supercapacitors. J. Energy Storage 2018, 20, 30–40. [Google Scholar] [CrossRef]
- Phiri, J.; Dou, J.; Vuorinen, T.; Gane, P.A.; Maloney, T.C. Highly porous willow wood-derived activated carbon for high performance superca-pacitor electrodes. ACS Omega 2019, 4, 18108–18117. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Kashif, M.; Dhar, A.; Vekariya, R.L.; Sangani, C.B.; Bhadja, P.; Muddassir, M. Balsa wood derived condensed, heteropore-connected 3D carbon–sojourn from herbal, non-hazardous stuff to flexible energy-storage device. J. Energy Storage 2021, 34, 102183. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, Z.; Zheng, L.; Teng, F.; Hu, L.; Fang, X. A Novel Sustainable Flour Derived Hierarchical Nitrogen-Doped Porous Carbon/Polyaniline Electrode for Advanced Asymmetric Supercapacitors. Adv. Energy Mater. 2016, 6, 1601111. [Google Scholar] [CrossRef]
- Rosli NH, A.; Lau, K.S.; Winie, T.; Chin, S.X.; Zakaria, S.; Chia, C.H. Rapid microwave synthesis of molybdenum disulfide-decorated reduced-graphene oxide nanosheets for use in high electrochemical performance supercapacitors. J. Energy Storage 2022, 52, 104991. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J.; Wang, T.; Shao, J.; Wang, D.; Yang, Y.-W. Mesoporous Transition Metal Oxides for Supercapacitors. Nanomaterials 2015, 5, 1667–1689. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Wei, L.; Deng, W.; Li, S.; Wu, Z.; Cai, J.; Luo, J. Sandwich-like chitosan porous carbon Spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J. Bioresour. Bioprod. 2022, 7, 63–72. [Google Scholar] [CrossRef]
- Shaker, M.; Ghazvini, A.A.S.; Cao, W.; Riahifar, R.; Ge, Q. Biomass-derived porous carbons as supercapacitor electrodes—A review. New Carbon Mater. 2021, 36, 546–572. [Google Scholar] [CrossRef]
- Jiang, X.; Guo, F.; Jia, X.; Zhan, Y.; Zhou, H.; Qian, L. Synthesis of nitrogen-doped hierarchical porous carbons from peanut shell as a promising electrode material for high-performance supercapacitors. J. Energy Storage 2020, 30, 101451. [Google Scholar] [CrossRef]
- Yu, J.; Li, X.; Chen, D.; Pang, X.; Chen, Y.; Cui, Z.; Gao, T.; Zhang, Q.; Sui, J.; Yu, L.; et al. Soybean root-derived heteroatoms co-doped porous carbon with ultra-high specific surface area for high performance supercapacitors. Diam. Relat. Mater. 2022, 126, 109044. [Google Scholar] [CrossRef]
- Ouyang, J.; Wang, X.; Wang, L.; Xiong, W.; Li, M.; Hua, Z.; Zhao, L.; Zhou, C.; Liu, X.; Chen, H.; et al. Construction of a porous carbon skeleton in wood tracheids to enhance charge storage for high-performance supercapacitors. Carbon 2022, 196, 532–539. [Google Scholar] [CrossRef]
- Shan, X.; Wu, J.; Zhang, X.; Wang, L.; Yang, J.; Chen, Z.; Yu, J.; Wang, X. Wood for Application in Electrochemical Energy Storage Devices. Cell Rep. Phys. Sci. 2021, 2, 100654. [Google Scholar] [CrossRef]
- Han, L.; Wang, J.; Mu, X.; Liao, C.; Cai, W.; Zhao, Z.; Kan, Y.; Xing, W.; Hu, Y. Anisotropic, low-tortuosity and ultra-thick red P@C-Wood electrodes for sodium-ion batteries. Nanoscale 2020, 12, 14642–14650. [Google Scholar] [CrossRef] [PubMed]
- Jiao, M.; Liu, T.; Chen, C.; Yue, M.; Pastel, G.; Yao, Y.; Xie, H.; Gan, W.; Gong, A.; Li, X.; et al. Holey three-dimensional wood-based electrode for vanadium flow batteries. Energy Storage Mater. 2020, 27, 327–332. [Google Scholar] [CrossRef]
- Murali, G.; Kesavan, T.; Ponnusamy, S.; Harish, S.; Navaneethan, M. Improved supercapacitor performance based on sustainable synthesis using chem-ically activated porous carbon. J. Alloys Compd. 2022, 906, 164287. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Y.; Wang, H.; Wang, T.; Wu, H.; Li, J.; Li, Y.; Wang, M.; Zhang, J. Lignin Isolated from Poplar Wood for Porous Carbons as Electrode for High-Energy Renewable Supercapacitor Driven by Lignin/Deep Eutectic Solvent Composite Gel Polymer Electrolyte. ACS Appl. Energy Mater. 2022, 5, 6393–6400. [Google Scholar] [CrossRef]
- Gunasekaran, S.S.; Gopalakrishnan, A.; Subashchandrabose, R.; Badhulika, S. Single step, direct pyrolysis assisted synthesis of nitro-gen-doped porous carbon nanosheets derived from bamboo wood for high energy density asymmetric supercapacitor. J. Energy Storage 2021, 42, 103048. [Google Scholar] [CrossRef]
- Song, J.; Chen, C.; Yang, Z.; Kuang, Y.; Li, T.; Li, Y.; Huang, H.; Kierzewski, I.; Liu, B.; He, S.; et al. Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. ACS Nano 2018, 12, 140–147. [Google Scholar] [CrossRef]
- Zhu, L.; Shen, F.; Smith, R.L.; Yan, L.; Li, L.; Qi, X. Black liquor-derived porous carbons from rice straw for high-performance supercapacitors. Chem. Eng. J. 2017, 316, 770–777. [Google Scholar] [CrossRef]
- Tang, Q.; Fang, L.; Wang, Y.; Zou, M.; Guo, W. Anisotropic flexible transparent films from remaining wood microstructures for screen pro-tection and AgNW conductive substrate. Nanoscale 2018, 10, 4344–4353. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huang, B.; Lin, X.; Xie, Z. Biomass-derived hierarchical porous carbons: Boosting the energy density of supercapacitors via an ionothermal approach. J. Mater. Chem. A 2017, 5, 13009–13018. [Google Scholar] [CrossRef]
- Nugroho, A.; Erviansyah, F.; Floresyona, D.; Mahalingam, S.; Manap, A.; Afandi, N.; Lau, K.S.; Chia, C.H. Synthesis and characterization NS-reduced graphene oxide hydrogel and its electrochemical properties. Lett. Mater. 2022, 12, 169–174. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, Z.; Wang, A.; Xiao, L.; Hou, L. Facile synthesis of N, S co-doped hierarchical porous carbon/MnO2 composites for supercapacitor electrodes via sodium alginate crosslinking. J. Alloys Compd. 2022, 923, 166333. [Google Scholar] [CrossRef]
- Yue, T.; Shen, B.; Gao, P. Carbon material/MnO2 as conductive skeleton for supercapacitor electrode material: A review. Renew. Sustain. Energy Rev. 2022, 158, 112131. [Google Scholar] [CrossRef]
- Wang, X.; Wu, W.; Wang, Z.; Li, Z.; Wang, X.; Zhou, C.; Luo, Y. Cobalt Hydroxide Nanosheets Grown on Carbon Nanotubes Anchored in Wood Carbon Scaffolding for High-Performance Hybrid Supercapacitors. Energy Fuels 2021, 35, 18815–18823. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Liu, Q.; Li, S.; Wang, D.; Zheng, Z. Rational design of freestanding and high-performance thick electrode from carbon foam modified with polypyrrole/polydopamine for supercapacitors. Chem. Eng. J. 2022, 447, 137562. [Google Scholar] [CrossRef]
- Mastantuoni, G.G.; Van Chinh Tran, I.E.; Berglund, L.A.; Zhou, Q. In Situ Lignin Sulfonation for Highly Conductive Wood/Polypyrrole Porous Composites. Adv. Mater. Interfaces 2023, 10, 2201597. [Google Scholar] [CrossRef]
- Xiong, C.; Li, M.; Nie, S.; Dang, W.; Zhao, W.; Dai, L.; Ni, Y. Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free Wood@Polyaniline supercapacitor material for renewable energy storage application. J. Power Sources 2020, 471, 228448. [Google Scholar] [CrossRef]
- Kong, S.; Xiang, X.; Jin, B.; Guo, X.; Wang, H.; Zhang, G.; Huang, H.; Cheng, K. B, O and N Codoped Biomass-Derived Hierarchical Porous Carbon for High-Performance Elec-trochemical Energy Storage. Nanomaterials 2022, 12, 1720. [Google Scholar] [CrossRef] [PubMed]
- Poornima, B.H.; Vijayakumar, T. Hydrothermal synthesis of Boron-doped porous carbon from Azadirachta Indica wood for supercapacitor application. Inorg. Chem. Commun. 2022, 145, 109953. [Google Scholar] [CrossRef]
- Dai, X.; Zheng, L.; Tang, B.; Peng, J.; Chen, H. Notoginseng-derived B/N co-doped porous carbon with high N-doped content and good electrochemical performance. Ionics. 2021, 27, 1439–1449. [Google Scholar] [CrossRef]
- Zhang, H.; He, X.; Wei, F.; Dong, S.; Xiao, N.; Qiu, J. Moss-Covered Rock-like Hybrid Porous Carbons with Enhanced Electrochemical Properties. ACS Sustain. Chem. Eng. 2020, 8, 3065–3071. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, Z.; Rao, Y.; Wang, Y.; Gao, B.; Yu, J.; Li, H.; Chen, X. Laser direct writing O/N/S Co-doped hierarchically porous graphene on carboxymethyl chi-tosan/lignin-reinforced wood for boosted microsupercapacitor. Carbon 2023, 202, 296–304. [Google Scholar] [CrossRef]
- Rosli, N.H.A.; Lau, K.S.; Winie, T.; Chin, S.X.; Chia, C.H. Synergistic effect of sulfur-doped reduced graphene oxide created via microwave-assisted synthesis for supercapacitor applications. Diam. Relat. Mater. 2021, 120, 108696. [Google Scholar] [CrossRef]
- Jiang, L.; Sheng, L.; Fan, Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci. China Mater. 2018, 61, 133–158. [Google Scholar] [CrossRef]
- Wang, F.; Cheong, J.Y.; Lee, J.; Ahn, J.; Duan, G.; Chen, H.; Zhang, Q.; Kim, I.-D.; Jiang, S. Pyrolysis of Enzymolysis-Treated Wood: Hierarchically Assembled Porous Carbon Electrode for Advanced Energy Storage Devices. Adv. Funct. Mater. 2021, 31, 2101077. [Google Scholar] [CrossRef]
- He, W.; Qiang, H.; Liang, S.; Guo, F.; Wang, R.; Cao, J.; Guo, Z.; Pang, Q.; Wei, B.; Sun, J. Hierarchically Porous Wood Aerogel/polypyrrole (PPy) Composite Thick Electrode for Supercapacitor. Chem. Eng. J. 2022, 446, 137331. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, X.; Cao, D. Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/ polyaniline composites as high performance supercapacitor materials. Eng. Sci. 2018, 1, 55–63. [Google Scholar] [CrossRef]
- Cui, M.; Wang, F.; Zhang, Z.; Min, S. Polyaniline-filled carbonized wood membrane as an advanced self-supported electrode for superior pseudocapacitive energy storage. Electrochim. Acta. 2020, 359, 136961. [Google Scholar] [CrossRef]
- Quan, H.; Tao, W.; Wang, Y.; Chen, D. Enhanced supercapacitor performance of Camellia oleifera shell derived hierarchical porous carbon by carbon quantum dots. J. Energy Storage 2022, 55, 105573. [Google Scholar] [CrossRef]
- Wang, X.; Qu, G.; Hao, S.; Zhao, G.; Zhang, X.; Ma, W.; Xu, X. Improvement of nickel-cobalt-based supercapacitors energy storage performance by modification of elements. J. Colloid Interface Sci. 2021, 602, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.S.; Xu, W.H.; Yao, W.T.; Yu, S.H. Oxidation−reduction reaction driven approach for hydrothermal synthesis of polyaniline hollow spheres with controllable size and shell thickness. J. Phys. Chem. C 2009, 113, 8588–8594. [Google Scholar] [CrossRef]
- Jang, H.; Park, Y.H.; Kim, M.H.; You, J.; Ko, J.H.; Lee, J.T. Surface characteristics of porous carbon derived from genetically designed transgenic hybrid poplar for electric double-layer capacitors. Appl. Surf. Sci. 2021, 545, 148978. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Y.; Lv, H.; Chen, A. N/B-co-doped ordered mesoporous carbon spheres by ionothermal strategy for enhancing supercapacitor performance. J. Colloid Interface Sci. 2021, 587, 780–788. [Google Scholar] [CrossRef]
- Jiao, S.; Zhang, L.; Li, C.; Zhang, H.; Zhang, J.; Li, P.; Tao, Y.; Zhao, X.; Chen, H.; Jiang, J. Efficient construction of a carbon-based symmetric supercapacitor from soybean straw by coupling multi-stage carbonization and mild activation. Ind. Crops Prod. 2022, 183, 114906. [Google Scholar] [CrossRef]
- Wu, F.; Gao, J.; Zhai, X.; Xie, M.; Sun, Y.; Kang, H.; Tian, Q.; Qiu, H. Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors. Carbon 2019, 147, 242–251. [Google Scholar] [CrossRef]
- Qiu, S.; Chen, Z.; Zhuo, H.; Hu, Y.; Liu, Q.; Peng, X.; Zhong, L. Using FeCl3 as a Solvent, Template, and Activator to Prepare B, N Co-Doping Porous Carbon with Excellent Supercapacitance. ACS Sustain. Chem. Eng. 2019, 7, 15983–15994. [Google Scholar] [CrossRef]
- Zeng, M.J.; Li, X.; Li, W.; Zhao, T.; Wu, J.; Hao, S.M.; Yu, Z.Z. Self-supported and hierarchically porous activated carbon nanotube/carbonized wood electrodes for high-performance solid-state supercapacitors. Appl. Surf. Sci. 2022, 598, 153765. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Nie, Z.; Jing, Q.; Zhao, Y.; Song, H.; Wang, H. Ag nanoparticles-decorated hierarchical porous carbon from cornstalk for high-performance supercapacitor. J. Energy Storage 2022, 51, 104364. [Google Scholar] [CrossRef]
- Li, Y.-N.; Xu, D.; Zhang, M.; Qin, Q.; Song, M.; Zhou, J.; Chen, Z.; Teng, C.; Ren, G. 3D nitrogen and sulfur co-doped hierarchical porous carbon derived from mung bean jelly for high performance supercapacitors. J. Electroanal. Chem. 2021, 901, 115781. [Google Scholar] [CrossRef]
- Li, L.; Wei, X.-Y.; Shao, C.-W.; Yin, F.; Sun, B.-K.; Liu, F.-J.; Li, J.-H.; Liu, Z.-Q.; Zong, Z.-M. Honeycomb-like N/O self-doped hierarchical porous carbons derived from low-rank coal and its derivatives for high-performance supercapacitor. Fuel 2023, 331, 125658. [Google Scholar] [CrossRef]
- Yi, J.L.; Yu, X.H.; Zhang, R.L.; Liu, L. Chitosan-Based Synthesis of O, N, and P Codoped Hierarchical Porous Carbon as Electrode Materials for Supercapacitors. Energy Fuels 2021, 35, 20339–20348. [Google Scholar] [CrossRef]
- Hu, S.C.; Cheng, J.; Wang, W.P.; Sun, G.T.; Hu, L.L.; Zhu, M.Q.; Huang, X.H. Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications. Renew. Energy 2021, 177, 82–94. [Google Scholar] [CrossRef]
- Wu, M.; Xu, S.; Li, X.; Zhang, T.; Lv, Z.; Li, Z.; Li, X. Pore regulation of wood-derived hierarchical porous carbon for improving electrochemical performance. J. Energy Storage 2021, 40, 102663. [Google Scholar] [CrossRef]
- Demir, M.; Doguscu, M. Preparation of porous carbons using NaOH, K2CO3, Na2CO3 and Na2S2O3 activating agents and their supercapacitor application: A comparative study. ChemistrySelect 2022, 7, e202104295. [Google Scholar] [CrossRef]
- Cai, N.; Cheng, H.; Jin, H.; Liu, H.; Zhang, P.; Wang, M. Porous carbon derived from cashew nut husk biomass waste for high-performance supercapacitors. J. Electroanal. Chem. 2020, 861, 113933. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Wang, S.; Shao, W.; Wu, Q.; Zhao, X.; Kong, F. A new lamellar larch-based carbon material: Fabrication, electrochemical characterization and supercapacitor applications. Ind. Crops Prod. 2020, 148, 112306. [Google Scholar] [CrossRef]
- Ren, X.; Yuan, Z.; Ma, Y.; Zhang, C.; Qin, C.; Jiang, X. Nitrogen-/Boron-Doped Carbon from Poplar Powder and Carbon Nanotube Composite as Electrode Material for Supercapacitors. Energy Fuels 2022, 36, 2841–2850. [Google Scholar] [CrossRef]
Samper | BET Specific Surface Area (m2 g−1) | BJH Pore Volume (cm3 g−1) | BJH Adsorption Average Pore Size (nm) |
---|---|---|---|
NCM | 1335.194 | 0.359 | 2.388 |
PNCM | 2294.941 | 0.757 | 2.412 |
BNPCM | 2333.507 | 0.957 | 2.426 |
Carbon Materials | Electrolytes | Working Window of Electrolyte | Current Density (A g−1) | Capacitance (F g−1) | Ref. |
---|---|---|---|---|---|
Azadirachta Indica wood | 3 M KOH | 0~1 V | 1.0 | 285.6 | [33] |
Camellia oleifera shell | 1 M H2SO4 | −0.2~0.8 V | 1.0 | 259.0 | [42] |
Cornstalks | 6 M KOH | −1~0 V | 0.5 | 323.8 | [51] |
Mung bean jelly | 6 M KOH | −1~0 V | 0.5 | 330.2 | [52] |
RL and SSBC | 6 M KOH | 0~1 V | 0.5 | 373.0 | [53] |
Chitosan | 6 M KOH | −1~0 V | 0.2 | 230.0 | [54] |
Lacquer wood | 1 M H2SO4 | −0.8~0.4 V | 0.2 | 354.0 | [55] |
Poplar wood | 6 M KOH | −1~0 V | 0.5 | 323.0 | [56] |
Laver | 6 M KOH | −1~0 V | 1 | 382.5 | [57] |
BNPCM | 6 M KOH | −1~0 V | 0.5 | 406.0 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Li, Y.; Han, E.; Zhang, Z.; Yang, X.; Zhou, D.; He, Y. B and N Co-Doped Wood Scrap Charcoal for Decorated Supercapacitor with High Conductivity. Forests 2023, 14, 965. https://doi.org/10.3390/f14050965
Chen G, Li Y, Han E, Zhang Z, Yang X, Zhou D, He Y. B and N Co-Doped Wood Scrap Charcoal for Decorated Supercapacitor with High Conductivity. Forests. 2023; 14(5):965. https://doi.org/10.3390/f14050965
Chicago/Turabian StyleChen, Gaojun, Yudong Li, Enshan Han, Ziqiang Zhang, Xiaohui Yang, Desheng Zhou, and Yanzhen He. 2023. "B and N Co-Doped Wood Scrap Charcoal for Decorated Supercapacitor with High Conductivity" Forests 14, no. 5: 965. https://doi.org/10.3390/f14050965
APA StyleChen, G., Li, Y., Han, E., Zhang, Z., Yang, X., Zhou, D., & He, Y. (2023). B and N Co-Doped Wood Scrap Charcoal for Decorated Supercapacitor with High Conductivity. Forests, 14(5), 965. https://doi.org/10.3390/f14050965