Aboveground Carbon Stock in a Bottomland Hardwood Forest in the Southeastern United States
Abstract
:1. Introduction
Forest Carbon Stocks
2. Methods
2.1. Site Description
2.2. Data Collection
2.2.1. Vegetation Plot Layout
2.2.2. Trees
2.2.3. Woody Shrubs and Seedlings
2.2.4. Understory Herbaceous Vegetation and Visual Obstruction Measurement
2.2.5. Downed Woody Debris
2.2.6. Soil
2.2.7. Leaf Litter
2.3. Estimation of Aboveground Biomass and Carbon Stocks
2.3.1. Trees
2.3.2. Woody Shrubs and Seedlings
2.3.3. Understory Herbaceous Vegetation
2.3.4. Downed Woody Debris
2.3.5. Soil
2.3.6. Leaf Litter
2.4. Data Analysis
2.4.1. Trees
2.4.2. Woody Shrubs and Seedlings
2.4.3. Understory Herbaceous Vegetation
2.4.4. Downed Woody Debris
2.4.5. Soil
2.4.6. Leaf Litter
3. Results
3.1. Carbon Stock
3.1.1. Trees
3.1.2. Woody Shrubs and Seedlings
3.1.3. Understory Herbaceous Vegetation
3.1.4. Downed Woody Debris
3.1.5. Soil
3.1.6. Leaf Litter
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nordhaus, W.D. Can We Control Carbon Dioxide? (From 1975). Am. Econ. Rev. 2019, 109, 2015–2035. [Google Scholar] [CrossRef]
- Lemon, E.R. (Ed.) CO2 and Plants: The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Snæbjörnsdóttir, S.; Sigfússon, B.; Marieni, C.; Goldberg, D.; Gislason, S.R.; Oelkers, E.H. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 2020, 1, 90–102. [Google Scholar] [CrossRef]
- Cheng, W.; Dan, L.; Deng, X.; Feng, J.; Wang, Y.; Peng, J.; Tian, J.; Qi, W.; Liu, Z.; Zheng, X.; et al. Global monthly gridded atmospheric carbon dioxide concentrations under the historical and future scenarios. Sci. Data 2022, 9, 83. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Berner, L.T.; Law, B.E.; Birdsey, R.A.; Moomaw, W.R. Large Trees Dominate Carbon Storage in Forests East of the Cascade Crest in the United States Pacific Northwest. Front. For. Glob. Chang. 2020, 3, 127. [Google Scholar] [CrossRef]
- Chen, L.-C.; Guan, X.; Li, H.-M.; Wang, Q.-K.; Zhang, W.-D.; Yang, Q.-P.; Wang, S.-L. Spatiotemporal patterns of carbon storage in forest ecosystems in Hunan Province, China. For. Ecol. Manag. 2018, 432, 656–666. [Google Scholar] [CrossRef]
- Hofhansl, F.; Chacón-Madrigal, E.; Fuchslueger, L.; Jenking, D.; Morera-Beita, A.; Plutzar, C.; Silla, F.; Andersen, K.M.; Buchs, D.M.; Dullinger, S.; et al. Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Dalmonech, D.; Marano, G.; Amthor, J.S.; Cescatti, A.; Lindner, M.; Trotta, C.; Collalti, A. Feasibility of enhancing carbon sequestration and stock capacity in temperate and boreal European forests via changes to management regimes. Agric. For. Meteorol. 2022, 327, 109203. [Google Scholar] [CrossRef]
- Bouchard, V.; Cochran, M. Wetlands: Carbon Sequestration. Managing Water Resources and Hydrological Systems; CRC Press: Boca Raton, FL, USA, 2020; pp. 715–719. [Google Scholar]
- Aguilos, M.; Mitra, B.; Noormets, A.; Minick, K.; Prajapati, P.; Gavazzi, M.; Sun, G.; McNulty, S.; Li, X.; Domec, J.C.; et al. Long-term carbon flux and balance in managed and natural coastal forested wetlands of the Southeastern USA. Agric. For. Meteorol. 2020, 288–289, 108022. [Google Scholar] [CrossRef]
- Panja, P. Deforestation, Carbon dioxide increase in the atmosphere and global warming: A modelling study. Int. J. Model. Simul. 2019, 41, 209–219. [Google Scholar] [CrossRef]
- Kirby, K.R.; Potvin, C. Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project. For. Ecol. Manag. 2007, 246, 208–221. [Google Scholar] [CrossRef]
- Ordóñez, J.; de Jong, B.; García-Oliva, F.; Aviña, F.; Pérez, J.; Guerrero, G.; Martínez, R.; Masera, O. Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacan, Mexico. For. Ecol. Manag. 2008, 255, 2074–2084. [Google Scholar] [CrossRef]
- Sarwar, S.; Waheed, R.; Farooq, M.U.; Sarwar, S. Investigate solutions to mitigate CO2 emissions: The case of China. J. Environ. Plan. Manag. 2022, 65, 2054–2080. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Sharma, T.; Kurz, W.A.; Stinson, G.; Pellatt, M.G.; Li, Q. A 100-year conservation experiment: Impacts on forest carbon stocks and fluxes. For. Ecol. Manag. 2013, 310, 242–255. [Google Scholar] [CrossRef]
- Bastin, J.F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Zhang, X.M.; Brandt, M.; Yue, Y.M.; Tong, X.W.; Wang, K.L.; Fensholt, R. The Carbon Sink Potential of Southern China After Two Decades of Afforestation. Earth’s Future 2022, 10, e2022EF002674. [Google Scholar] [CrossRef]
- Birdsey, R. Carbon Storage and Accumulation in United States Forest Ecosystems. General Technical Report WO-59; US Department of Agriculture, Forest Service, Washington Office: Washington, DC, USA, 1992; Volume 59, 51p. [Google Scholar]
- Jenkins, J.; Chojnacky, D.; Heath, L.; Birdsey, R. National-scale biomass estimators for United States tree species. For. Sci. 2003, 49, 12–35. [Google Scholar]
- Shoch, D.; Kaster, G.; Hohl, A.; Souter, R. Carbon storage of bottomland hardwood afforestation in the Lower Mississippi Valley, USA. Wetlands 2009, 29, 535–542. [Google Scholar] [CrossRef]
- Kuimi, V.; Jayakumar, S. Methods to Estimate Above-Ground Biomass and Carbon Stock in Natural Forests—A Review. J. Ecosyst. Ecography 2012, 2, 1–7. [Google Scholar] [CrossRef]
- Omasa, K.; Qiu, G.Y.; Watanuki, K.; Yoshimi, K.; Akiyama, Y. Accurate Estimation of Forest Carbon Stocks by 3-D Remote Sensing of Individual Trees. Environ. Sci. Technol. 2003, 37, 1198–1201. [Google Scholar] [CrossRef]
- Campbell, A.D.; Fatoyinbo, T.; Charles, S.P.; Bourgeau-Chavez, L.L.; Goes, J.; Gomes, H.; Halabisky, M.; Holmquist, J.; Lohrenz, S.; Mitchell, C.; et al. A review of carbon monitoring in wet carbon systems using remote sensing. Environ. Res. Lett. 2022, 17, 025009. [Google Scholar] [CrossRef]
- Pan, Y.; Luo, T.; Birdsey, R.; Hom, J.; Melillo, J. ‘New Estimates of Carbon Storage and Sequestration in China’s Forests: Effects of Age—Class and Method on Inventory-Based Carbon Estimation’. Clim. Chang. 2004, 67, 211–236. [Google Scholar]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef]
- Wondrade, N.; Dick, O.B.; Tveite, H. Estimating aboveground biomass and carbon stock in the Lake Hawassa Watershed, Ethiopia by integrating remote sensing and allometric equations. For. Res. 2015, 4, 2. [Google Scholar]
- Ao, A.; Changkija, S.; Brearley, F.Q.; Tripathi, S.K. Plant Community Composition and Carbon Stocks of a Community Reserve Forest in North-East India. Forests 2023, 14, 245. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Schweitzer, C.; Gardiner, E. Afforestation of marginal agricultural land in the Lower Mississippi River Alluvial Valley, USA. Silva Fenn. 1998, 32, 281–297. [Google Scholar] [CrossRef]
- Gardiner, E.; Oliver, J. Restoration of Bottomland Hardwood Forests in the Lower Mississippi Alluvial Valley, USA. In Restoration of Boreal and Temperate Forests. Restoration of Bottomland Hardwood Forests in the Lower Mississippi Alluvial Valley; Stanturf, J.A., Madsen, P., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 235–251. [Google Scholar]
- Wilson, R.R.; Oliver, J.M.; Twedt, D.J.; Uihlein, W.B. Bottomland hardwood restoration in the Mississippi Alluvial Valley: Looking past the trees to see the forest. Ecol. Manag. Bottomland Hardwood Syst. State Our Underst. 2005, 10, 519–532. [Google Scholar]
- Dey, D.C.; Gardiner, E.S.; Kabrick, J.M.; Stanturf, J.A.; Jacobs, D.F. Innovations in afforestation of agricultural bottomlands to restore native forests in the eastern USA. Scand. J. For. Res. 2010, 25 (Suppl. S8), 31–42. [Google Scholar] [CrossRef]
- Schmidt, J.; Moore, R.; Alber, M. Integrating ecosystem services and local government finances into land use planning: A case study from coastal Georgia. Landsc. Urban Plan. 2014, 122, 56–67. [Google Scholar] [CrossRef]
- Hodges, J. Ecology of Bottomland Hardwoods. In A Workshop to Resolve Conflicts in the Conservation of Migratory Landbirds in Bottomland Hardwood Forests; USDA Forest Service: New Orleans, LA, USA, 1994; p. 5. [Google Scholar]
- Reid, M.L. A Quarter Century of Plant Succession in a Bottomland Hardwood Forest in Northeastern Louisiana. MS Biology Dissertation, University of Louisiana Monroe, Monroe, LA, USA, 2014. [Google Scholar]
- King, S.L.; Keim, R.F. Hydrologic Modifications Challenge Bottomland Hardwood Forest Management. J. For. 2019, 117, 504–514. [Google Scholar] [CrossRef]
- Wharton, C.H.; Kitchens, W.M.; Sipe, T.W. Ecology of Bottomland Hardwood Swamps of the Southeast: A Community Profile; (No., FWS/OBS-81/37); Institute of Ecology, Georgia University: Athens, GA, USA; Fish and Wildlife Service, National Coastal Ecosystems Team: Slidell, LA, USA; Department of Biology, Wabash College: Crawfordsville, IN, USA, 1982. [Google Scholar]
- Louisiana Department of Wildlife and Fisheries. Louisiana Comprehensive Wildlife Louisiana Comprehensive Wildlife Conservation; Louisiana Department of Wildlife and Fisheries: Baton Rouge, LA, USA, 2005. [Google Scholar]
- Guimbellot, T. Analysis of Woody Plants on the Russell Sage Wildlife Management Area. Doctoral Dissertation, Northeast Louisiana University, Monroe, LA, USA, 1990. [Google Scholar]
- Law, B.; Arkebauer, T.; Campbell, J.; Chen, J.; Sun, O.; Schwartz, M.; van Ingen, C.; Verma, S. Terrestrial Carbon Observations: Protocols for Vegetation Sampling and Data Submission; FAO: Rome, Italy, 2008. [Google Scholar]
- Giese, L.A.B. Carbon Pools and Fluxes as an Indicator of Riparian Restoration; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2001. [Google Scholar]
- Tritton, L.; Hornbeck, J. Biomass Equations for Major Tree Species of the Northeast; US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Upper Darby, PA, USA, 1982. [Google Scholar]
- Jenkins, J.C.; Chojnacky, D.; Heath, L.; Birdsey, R. Comprehensive Database of Diameter-Based Biomass Regressions for North American Tree Species; General Technical Report NE-319; United States Department of Agriculture, Forest Service: Washington, DC, USA, 2004. [Google Scholar]
- Henry, M.; Bombelli, A.; Trotta, C.; Alessandrini, A.; Birigazzi, L.; Sola, G.; Vieilledent, G.; Santenoise, P.; Longuetaud, F.; Valentini, R.; et al. GlobAllomeTree: International platform for tree allometric equations to support volume, biomass and carbon assessment. iForest Biogeosciences For. 2013, 6, 326–330. [Google Scholar] [CrossRef]
- Brown, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer; Food & Agriculture Org.: Rome, Italy, 1997; Volume 134, p. 72. Available online: http://books.google.com/books?id=uv-ISezvitwC (accessed on 19 September 2019).
- Jain, T.B.; Graham, R.T.; Adams, D. Carbon Concentrations and Carbon Pool Distributions in Dry, Moist, and Cold Mid-Aged Forests of the Rocky Mountains. In Integrated Management of Carbon Sequestration and Biomass Utilization Opportunities in a Changing Climate: Proceedings of the 2009 National Silviculture Workshop, Boise, Idaho, 15–18 June 2009; ID. Proceedings RMRS-P-61; Jain, T.B., Graham, R.T., Sandquist, J., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2009; Volume 61, pp. 39–59. [Google Scholar]
- Woodall, C.W.; Monleon, V.J. Sampling Protocol, Estimation, and Analysis Procedures for the Down Woody Materials Indicator of the FIA Program; Volume 256 of General technical report NC NRS-22; USDA Forest Service, North Central Research Station: Newtown Square, PA, USA, 2008; Volume 22, 68p. [Google Scholar]
- Harmon, M.E.; Fasth, B.; Woodall, C.W.; Sexton, J. Carbon concentration of standing and downed woody detritus: Effects of tree taxa, decay class, position, and tissue type. For. Ecol. Manag. 2013, 291, 259–267. [Google Scholar] [CrossRef]
- Burt, R. Soil Survey Laboratory Methods Manual, Soil Survey Investigation Report; U.S. Department of Agriculture Natural Resources Conservation Service National Soil Survey Center: Lincoln, NE, USA, 2004; Volume 42. [Google Scholar]
- Lunt, H. The carbon-organic matter factor in forest soil humus. Soil Sci. 1931, 32, 27–34. [Google Scholar] [CrossRef]
- Schumacher, B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments; United States Environmental Protection Agency Environmental Sciences Division National Exposure Research Laboratory: Las Vegas, NV, USA, 2002; pp. 1–23. [Google Scholar]
- Adams, M.B.; Angradi, T.R. Decomposition and nutrient dynamics of hardwood leaf litter in the Femow Whole-Watershed Acidification Experiment. For. Ecol. Manag. 1996, 1127, 61–69. [Google Scholar] [CrossRef]
- Chaiyo, U.; Pizzo, Y.; Garivait, S. Estimation of Carbon Released from Dry Dipterocarp Forest Fires in Thailand. Int. J. Environ. Ecol. Geol. Min. Eng. 2013, 7, 611–614. [Google Scholar]
- Mamoun, E.M.; Idris, E.Z.; Ibrahim, E.M. Modelling Height-Diameter Relationships of Selected Economically Important Natural Forests Species. J. For. Prod. Ind. 2013, 2, 34–42. [Google Scholar]
- USDA. The Plants Database; National Plant Data Team: Greensboro, NC, USA, 2019. Available online: http://plants.usda.gov (accessed on 16 September 2019).
- Smith, J.E. Methods for Calculating Forest Ecosystem and Harvested Carbon with Standard Estimates for Forest Types of the United States (No. 343); United States Department of Agriculture, Forest Service, Northeastern Research Station: Newtown Square, PA, USA, 2006. [Google Scholar]
- Giese LAust, W.; Kolka, R.; Trettin, C. Biomass and carbon pools of disturbed riparian forests. For. Ecol. Manag. 2003, 180, 493–508. [Google Scholar] [CrossRef]
- Trettin, C.C.; Jurgensen, M.F. Carbon Cycling in Wetland Forest Soils; Lewis Publishers: Boca Raton, FL, USA, 2003; pp. 311–331. [Google Scholar]
- Chapin, S.I.; Matson, P.A.; Mooney, H.A. Principles of Terrestrial Ecosystem Ecology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; 529p. [Google Scholar]
- Falk, M.; Wharton, S.; Schroeder, M.; Ustin, S.; Paw, U.T. Flux partitioning in an old-growth forest: Seasonal and interannual dynamics. Tree Physiol. 2008, 28, 509–520. [Google Scholar] [CrossRef]
- Stephenson, N.; Das, A.J.; Condit, R.; Russo, S.; Baker, P.; Beckman, N.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 2014, 507, 90–93. [Google Scholar] [CrossRef]
- Grote, R. Foliage and branch biomass estimation of coniferous and deciduous tree species. Silva Fenn. 2002, 36, 779–788. [Google Scholar] [CrossRef]
- Miao, G.; Noormets, A.; Domec, J.-C.; Trettin, C.C.; McNulty, S.; Sun, G.; King, J.S. The effect of water table fluctuation on soil respiration in a lower coastal plain forested wetland in the southeastern U.S. J. Geophys. Res. Biogeosci. 2013, 118, 1748–1762. [Google Scholar] [CrossRef]
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon Pools and Flux of Global Forest Ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
Species-Specific Height Equations | |||
---|---|---|---|
Species | N | Equation | R2 |
ACRU | 9 | H = 4.5844 × ln(DBH) + 0.2578 | 0.8624 |
CAAQ2 | 142 | H = 6.2917 × ln(DBH) − 3.4539 | 0.8232 |
CELA | 56 | H = 5.3685 × ln(DBH) − 1.2017 | 0.7894 |
CEOC2 | 10 | H = 3.4878 × ln(DBH) − 1.1739 | 0.5880 |
COFO | 1 | N/A due to sample size | - |
CRVI2 | 2 | N/A due to sample size | - |
DIVI5 | 35 | H = 5.5713 × ln(DBH) − 1.1284 | 0.8452 |
FOAC | 37 | H = 2.8701 × ln(DBH) + 0.8398 | 0.5749 |
FRPE | 57 | H = 5.0789 × ln(DBH) − 1.0896 | 0.8548 |
GLTR | 15 | H = 8.1933 × ln(DBH) − 7.0103 | 0.8993 |
ILDE | 71 | H = 2.3271 × ln(DBH) + 1.4227 | 0.5935 |
PLAQ | 11 | H = 5.0546 × ln(DBH) − 2.8941 | 0.9338 |
QULY | 138 | H = 8.0379 × ln(DBH) − 7.0009 | 0.7805 |
QUTE | 131 | H = 8.4535 × ln(DBH) − 8.658 | 0.6064 |
QUPH | 68 | H = 7.7845 × ln(DBH) − 3.818 | 0.6277 |
STAM4 | 5 | H = 3.6215 × ln(DBH) + 0.6896 | 0.8828 |
TADI2 | 1 | N/A due to sample size | - |
ULAL | 21 | H = 4.0795 × ln(DBH) − 1.0297 | 0.7952 |
ULAM | 27 | H = 7.3993 × ln(DBH) − 7.355 | 0.7553 |
ULCR | 59 | H = 6.3431 × ln(DBH) − 4.823 | 0.8655 |
Species | Average Height (m) | # Individuals | Average DBH (cm) | Total Biomass (Mg) | Total Carbon (Mg) |
---|---|---|---|---|---|
ACRU | 5.4 | 8 | 15.9 | 1.1 | 0.6 |
CAAQ2 | 5.6 | 218 | 20.3 | 81.1 | 40.6 |
CELA | 11.1 | 166 | 20 | 40.8 | 20.4 |
DIVI5 | 6.6 | 27 | 16.6 | 3.7 | 1.9 |
FOAC | 3.8 | 3 | 21.2 | 0.6 | 0.3 |
FRPE | 7.3 | 84 | 23.9 | 27.9 | 13.9 |
GLTR | 15.6 | 17 | 30.9 | 14.2 | 7.1 |
PLAQ | 6.9 | 20 | 19.5 | 3.9 | 1.9 |
QULY | 22.8 | 269 | 36.9 | 392.1 | 196.5 |
QUTE | 22.7 | 312 | 35 | 321.6 | 161.1 |
QUPH | 25.6 | 90 | 47.3 | 182.3 | 91.2 |
TADI2 | 23.8 | 1 | 77.5 | 4.7 | 2.4 |
ULAL | 6.2 | 5 | 13.1 | 0.3 | 0.2 |
ULAM | 14.5 | 119 | 21.6 | 38.1 | 19.1 |
ULCR | 8.9 | 57 | 18 | 72.2 | 36.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Streeter, J.R.; Bhattacharjee, J.; Kandel, B. Aboveground Carbon Stock in a Bottomland Hardwood Forest in the Southeastern United States. Forests 2023, 14, 974. https://doi.org/10.3390/f14050974
Streeter JR, Bhattacharjee J, Kandel B. Aboveground Carbon Stock in a Bottomland Hardwood Forest in the Southeastern United States. Forests. 2023; 14(5):974. https://doi.org/10.3390/f14050974
Chicago/Turabian StyleStreeter, Jared R., Joydeep Bhattacharjee, and Bibek Kandel. 2023. "Aboveground Carbon Stock in a Bottomland Hardwood Forest in the Southeastern United States" Forests 14, no. 5: 974. https://doi.org/10.3390/f14050974
APA StyleStreeter, J. R., Bhattacharjee, J., & Kandel, B. (2023). Aboveground Carbon Stock in a Bottomland Hardwood Forest in the Southeastern United States. Forests, 14(5), 974. https://doi.org/10.3390/f14050974