Effects of the Surface Roughness of Six Wood Species for Furniture Production on the Wettability and Bonding Quality of Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Surface Roughness Test
2.3. Contact Angle Measurement
2.4. Determination of Equilibrium Contact Angle and Constant Contact Angle Change Rate
2.5. Determination of Surface Free Energy Components
2.6. Coating Application and Bonding Test
2.7. Statistics Analysis
3. Results and Discussion
3.1. Surface Roughness
3.2. Equilibrium Contact Angle
3.3. Surface Free Energy
3.4. Wettability of Acrylic Paint
3.5. Bonding Quality
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jing, O.Y.; Jun, O. Factors Influencing the Surface Color Difference of Pinus sylvestris wood. Furniture 2021, 42, 26–30. [Google Scholar] [CrossRef]
- Wei, S.; Junyi, Y.; Zairan, X.; Zhendong, X. New Zealand Radial Pine Import and Application Analysis. Int. Wood Ind. 2020, 50, 38–42. [Google Scholar]
- Liu, Y.; Liu, Y.; Wei, Q.; Liang, B.; Zhao, J. Influence of Heat Treatment Temperature on Dimensional Stability of Sesquiterpene Wood. J. Northeast. For. Univ. 2022, 50, 99–101+118. [Google Scholar] [CrossRef]
- Rui, W.; Lanlan, S.; YuronG, W. Rapid Prediction of Bending Resistance Properties of Liriodendron tulipifera Wood using NIR Spectroscopy. Spectrosc. Spect. Anal. 2023, 43, 557–562. [Google Scholar]
- Fan, Z.; Huang, Z.; Huang, W.; Li, X.; Zhang, H. Comparison of Anatomical Characteristics of Five Species of Camphor wood in Sichuan. Guangxi For. Sci. 2022, 51, 411–416. [Google Scholar] [CrossRef]
- Qin, Z.Y.; Liao, M.Y.; Zhang, Y.F.; Sun, J.P. Wood Interface and Surface Wettability Based on Contact Angle Method. J. Beihua Univ. Nat. Sci. Ed. 2019, 20, 249–255. [Google Scholar] [CrossRef]
- Martha, R.; Dirna, F.C.; Hasanusi, A.; Rahayu, I.; Darmawan, W. Surface Free Energy of 10 Tropical Woods Species and Their Acrylic Paint Wettability. J. Adhes. Sci. Technol. 2019, 34, 167–177. [Google Scholar] [CrossRef]
- Darmawan, W.; Nandika, D.; Noviyanti, E.; Alipraja, I.; Dumasari, D.; Gardner, D.; Gerardin, P. Wettability and Bonding Quality of Exterior Coatings on Jabon and Sengon Wood Surfaces. J. Coat Technol. Res. 2018, 15, 95–104. [Google Scholar] [CrossRef]
- Croitoru, C.; Spirchez, C.; Lunguleasa, A.; Cristea, D.; Roata, I.C.; Pop, M.A.; Bedo, T.; Stanciu, E.M.; Pascu, A. Surface Properties of Thermally Treated Composite Wood Panels. Appl. Surf. Sci. 2018, 438, 114–126. [Google Scholar] [CrossRef]
- Cogulet, A.; Blanchet, P.; Landry, V. The Multifactorial Aspect of Wood Weathering: A Review Based on a Holistic Approach of Wood Degradation Protected by Clear Coating. BioResources 2018, 13, 2116–2138. [Google Scholar] [CrossRef]
- Cogulet, A.; Blanchet, P.; Landry, V.; Morris, P. Comparison of Exterior Coatings Applied to Oak Wood as a Function of Natural and Artificial Weathering Exposure. Int. Biodeterior. Biodegrad. 2018, 129, 33–41. [Google Scholar] [CrossRef]
- De Windt, I.; Van den Bulcke, J.; Wuijtens, I.; Coppens, H.; Van Acker, J. Outdoor Weathering Performance Parameters of Exterior Wood Coating Systems on Tropical Hardwood Substrates. Eur. J. Wood Prod. 2014, 72, 261–272. [Google Scholar] [CrossRef]
- Candan, Z.; Büyüksarı, U.; Korkut, S.; Unsal, O.; Çakıcıer, N. Wettability and Surface Roughness of Thermally Modified Plywood Panels. Ind. Crops Prod. 2012, 36, 434–436. [Google Scholar] [CrossRef]
- Darmawan, W.; Ginting, M.; Gayatri, A.; Putri, R.; Dumasari, D.; Hasanusi, A. Influence of Surface Roughness of Ten Tropical Woods Species on Their Surface Free Energy, Varnishes Wettability and Bonding Quality. Pigment. Resin Technol. 2020, 49, 441–447. [Google Scholar] [CrossRef]
- Hendarto, B.; Shayan, E.; Ozarska, B.; Carr, R. Analysis of Roughness of a Sanded Wood Surface. Int. J. Adv. Manuf. Technol. 2006, 28, 775–780. [Google Scholar] [CrossRef]
- Sinn, G.; Gindl, M.; Reiterer, A.; Stanzl-Tschegg, S. Changes in the Surface Properties of Wood Due to Sanding. Holzforschung 2004, 58, 246–251. [Google Scholar] [CrossRef]
- Iva Gavrilovic-Grmusa, I.; Dunky, M.; Miljkovic, J.; Djiporovic-Momcilovic, M. Influence of the Viscosity of UF Resins on the Radial and Tangential Penetration into Poplar Wood and on the Shear Strength of Adhesive Joints. Holzforschung 2012, 66, 849–856. [Google Scholar] [CrossRef]
- Gindl, M.; Sinn, G.; Reiterer, A.; Tschegg, S. Wood Surface Energy and Time Dependence of Wettability: A Comparison of Different Wood Surfaces Using an Acid-Base Approach. Holzforschung 2001, 55, 433–440. [Google Scholar] [CrossRef]
- Jankowska, A.; Zbiec, M.; Kozakiewicz, P.; Koczan, G.; Olenska, S.; Beer, P. The Wettability and Surface Free Energy of Sawn, Sliced and Sanded European Oak Wood. Maderas Cienc. Tecnol. 2018, 20, 443–454. [Google Scholar] [CrossRef]
- Leggate, W.; Kumar, C.; McGavin, R.L.; Faircloth, A.; Knackstedt, M. The Effects of Drying Method on the Wood Permeability, Wettability, Treatability, and Gluability of Southern Pine from Australia. BioResources 2021, 16, 698–720. [Google Scholar] [CrossRef]
- Liptáková, E.; Kúdela, J.; Bastl, Z.; Spirovová, I. Influence of Mechanical Surface Treatment of Wood on the Wetting Process. Holzorschung 1995, 49, 369–375. [Google Scholar] [CrossRef]
- Kiesvaara, J.; Yliruusi, J. The Use of the Washburn Method in Determining the Contact Angles of Lactose Powder. Int. J. Pharm. 1993, 92, 81–88. [Google Scholar] [CrossRef]
- Karlinasari, L.; Lestari, A.T.; Priadi, T. Evaluation of Surface Roughness and Wettability of Heat-Treated, Fast-Growing Tropical Wood Species Sengon (Paraserianthes falcataria (L.) I.C. Nielsen), Jabon (Anthocephalus cadamba (Roxb.) Miq), and Acacia (Acacia mangium Willd.). Int. Wood Prod. J. 2018, 9, 142–148. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F.; Yu, Z.; Zhang, Y.; Qi, C.; Du, L. Surface Free Energy and Dynamic Wettability of Wood Simultaneously Treated with Acidic Dye and Flame Retardant. J. Wood Sci. 2017, 63, 271–280. [Google Scholar] [CrossRef]
- Shi, S.; Gardner, D. Dynamic Adhesive Wettability of Wood. Wood Fiber Sci. J. Soc. Wood Sci. Technol. 2001, 33, 58–68. [Google Scholar] [CrossRef]
- Nussbaum, R.M. Natural Surface Inactivation of Scots Pine and Norway Spruce Evaluated by Contact Angle Measurements. Holz. Roh. Werkst. 1999, 57, 419–424. [Google Scholar] [CrossRef]
- Baldan, A. Phenomena in Bonded Joints. Int. J. Adhes. 2012, 38, 95–116. [Google Scholar] [CrossRef]
- Büyüksarı, Ü.; Avci, E.; Akkılıç, H. Effect of Pine Cone Ratio on the Wettability and Surface Roughness of Particleboard. BioResources 2014, 5, 1824–1833. [Google Scholar] [CrossRef]
- EN ISO 25178-71:2017; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 71. Software Measurement Standards: Geneva, Switzerland, 2017.
- GB/T 4893.4-2013; Test of Surface Coatings of Furniture-Part 4: Determination of Adhesion-Cross Cut. GlobalSpec: Albany, NY, USA, 2013.
- Büyüksarı, Ü.; Akbulut, T.; Guler, C.; As, N. Wettability and Surface Roughness of Natural and Plantation-Grown Narrow-Leaved ASH (Fraxinus Angustifolia Vahl.) Wood. BioResources 2011, 6, 4721–4730. [Google Scholar] [CrossRef]
- Zhao, X. Wood Finishing Process; Chemical Industry Press: Beijing, China, 2006; pp. 22–24. [Google Scholar]
- Fujiwara, Y.; Fujii, Y.; Okumura, S. Relationship between Roughness Parameters Based on Material Ratio Curve and Tactile Roughness for Sanded Surfaces of Two Hardwoods. J. Wood Sci. 2005, 51, 274–277. [Google Scholar] [CrossRef]
- Long, Q.; Dong, X.; Zhefeng, L. Analysis of Cut Wood Surface Roughness Based on 3D Microscopic Systems. China For. Prod. Ind. 2020, 57, 13–17. [Google Scholar] [CrossRef]
- Piao, C.; Winandy, J.E.; Shupe, T.F. From Hydrophilicity to Hydrophobicity: A Critical Review: Part I. Wettability and Surface Behavior. Wood Fiber Sci. 2010, 42, 490–510. [Google Scholar] [CrossRef]
- Acda, M.N.; Devera, E.E.; Cabangon, R.J.; Ramos, H.J. Effects of Plasma Modification on Adhesion Properties of Wood. Int. J. Adhes. 2012, 32, 70–75. [Google Scholar] [CrossRef]
- Gardner, D.J.; Wolcott, M.P.; Wilson, L.; Huang, Y.; Carpenter, M. Our Understanding of Wood Surface Chemistry in 1995; University of Wisconsin-Madison: Madison, WI, USA, 1995. [Google Scholar]
- Wålinder, M.E.P. Study of Lewis Acid-Base Properties of Wood by Contact Angle Analysis. Holzforschung 2002, 56, 363–371. [Google Scholar] [CrossRef]
Liquids | Surface Tension and Its Components (mJ/m2) | ||||
---|---|---|---|---|---|
γL | γLLW | γLAB | |||
Water | 72.8 | 21.8 | 51.0 | 25.5 | 25.5 |
Diiodomethane | 50.8 | 50.8 | 0.0 | 0.0 | 0.0 |
Formamide | 58.0 | 39.0 | 19.0 | 2.28 | 39.6 |
Wood Species | Density (g/cm−3) | Sa (μm) | ||||
---|---|---|---|---|---|---|
P180 | P240 | P320 | P400 | P500 | ||
Pinus radiata | 0.391 ± 0.014 | 4.620 ± 0.229 | 5.170 ± 0.983 | 2.853 ± 0.114 | 2.363 ± 0.459 | 2.170 ± 0.411 |
Pinus sylvestris | 0.572 ± 0.051 | 4.040 ± 0.539 | 5.213 ± 0.340 | 5.227 ± 0.981 | 2.330 ± 0.348 | 2.017 ± 0.191 |
Larch | 0.530 ± 0.051 | 3.803 ± 0.896 | 4.417 ± 0.666 | 3.263 ± 0.312 | 3.277 ± 0.660 | 3.087 ± 0.701 |
Hemp oak | 0.896 ± 0.047 | 3.517 ± 0.499 | 3.277 ± 0.186 | 4.460 ± 1.064 | 1.763 ± 0.363 | 4.237 ± 1.315 |
Catalpa | 0.511 ± 0.047 | 3.827 ± 0.506 | 7.993 ± 2.634 | 3.520 ± 1.088 | 6.227 ± 4.498 | 8.403 ± 2.239 |
Camphor | 0.532 ± 0.024 | 3.330 ± 0.519 | 3.833 ± 0.216 | 2.507 ± 0.460 | 3.370 ± 0.894 | 2.993 ± 0.251 |
Wood Sample | Surface Pattern and Sanding Treatment | Equilibrium Contact Angle (°) | ||
---|---|---|---|---|
Water | Formamide | Diiodomethane | ||
Pinus radiata | Control | 21.09 | 0.55 | 16.51 |
Sanded P180 | 4.53 | 4.38 | 11.51 | |
Sanded P240 | 9.41 | 0.69 | 9.23 | |
Sanded P320 | 15.55 | 0.85 | 16.08 | |
Sanded P400 | 17.72 | 2.42 | 27.14 | |
Sanded P500 | 14.43 | 1.44 | 19.83 | |
Pinus sylvestris | Control | 38.67 | 2.32 | 10.48 |
Sanded P180 | 48.18 | 10.47 | 10.81 | |
Sanded P240 | 58.16 | 3.31 | 17.38 | |
Sanded P320 | 54.16 | 11.00 | 14.34 | |
Sanded P400 | 57.97 | 9.34 | 13.81 | |
Sanded P500 | 72.55 | 5.97 | 17.45 | |
Larch | Control | 51.38 | 13.27 | 27.77 |
Sanded P180 | 4.56 | 0.41 | 14.12 | |
Sanded P240 | 12.24 | 1.27 | 17.37 | |
Sanded P320 | 17.25 | 1.66 | 24.40 | |
Sanded P400 | 18.46 | 2.51 | 24.32 | |
Sanded P500 | 19.87 | 0.88 | 20.82 | |
Hemp oak | Control | 46.93 | 7.16 | 31.65 |
Sanded P180 | 18.31 | 1.6 | 29.66 | |
Sanded P240 | 18.29 | 2.86 | 26.59 | |
Sanded P320 | 23.66 | 3.51 | 22.18 | |
Sanded P400 | 25.13 | 5.67 | 29.97 | |
Sanded P500 | 26.03 | 5.27 | 35.04 | |
Catalpa | Control | 51.05 | 25.99 | 42.95 |
Sanded P180 | 23.71 | 7.35 | 30.64 | |
Sanded P240 | 24.23 | 7.50 | 33.00 | |
Sanded P320 | 34.15 | 11.32 | 34.86 | |
Sanded P400 | 34.13 | 14.82 | 35.04 | |
Sanded P500 | 37.22 | 10.77 | 36.33 | |
Camphor | Control | 63.85 | 29.38 | 46.18 |
Sanded P180 | 34.03 | 6.28 | 45.69 | |
Sanded P240 | 26.64 | 6.09 | 38.86 | |
Sanded P320 | 41.87 | 11.52 | 40.29 | |
Sanded P400 | 28.77 | 9.33 | 40.60 | |
Sanded P500 | 34.49 | 12.36 | 43.49 |
Source | Sum of Squares | DF | Mean Squares | F | Significance |
---|---|---|---|---|---|
Grit size | 2204.902 | 5 | 440.980 | 4.906 | 0.003 ** |
Wood species | 1332.640 | 5 | 266.528 | 2.965 | 0.033 * |
Droplet type | 2193.061 | 2 | 1096.530 | 12.199 | 0.000 ** |
Error | 2067.457 | 23 | 89.889 | ||
Corrected total | 24,955.566 | 36 |
Wood | Surface Pattern and Sanding Treatment | vOCG | |||
---|---|---|---|---|---|
γLW 1 | γ− 2 | γ+ 3 | γs 4 | ||
Pinus radiata | Control | 48.727 | 32.216 | 3.253 | 84.196 |
Sanded P180 | 49.784 | 34.237 | 4.076 | 88.096 | |
Sanded P240 | 50.144 | 33.210 | 4.037 | 87.392 | |
Sanded P320 | 48.832 | 31.186 | 4.439 | 84.457 | |
Sanded P400 | 45.359 | 30.132 | 5.560 | 81.051 | |
Sanded P500 | 47.832 | 31.559 | 4.738 | 84.129 | |
Pinus sylvestris | Control | 49.955 | 27.828 | 1.053 | 78.836 |
Sanded P180 | 49.903 | 12.021 | 4.064 | 65.987 | |
Sanded P240 | 48.508 | 5.548 | 4.910 | 58.966 | |
Sanded P320 | 49.230 | 8.232 | 4.296 | 61.758 | |
Sanded P400 | 49.342 | 5.935 | 4.413 | 59.690 | |
Sanded P500 | 48.490 | 0.467 | 5.053 | 54.010 | |
Larch | Control | 45.116 | 23.339 | 0.444 | 68.899 |
Sanded P180 | 49.277 | 34.042 | 4.279 | 87.598 | |
Sanded P240 | 48.509 | 32.335 | 4.522 | 85.366 | |
Sanded P320 | 46.365 | 30.370 | 5.224 | 81.959 | |
Sanded P400 | 46.391 | 29.872 | 5.210 | 81.473 | |
Sanded P500 | 47.537 | 29.240 | 4.861 | 81.638 | |
Hemp oak | Control | 43.527 | 24.788 | 1.105 | 69.420 |
Sanded P180 | 44.362 | 29.789 | 5.930 | 80.081 | |
Sanded P240 | 45.570 | 29.914 | 5.482 | 80.966 | |
Sanded P320 | 47.111 | 27.370 | 4.984 | 79.465 | |
Sanded P400 | 44.234 | 26.543 | 5.918 | 76.695 | |
Sanded P500 | 42.012 | 25.869 | 6.792 | 74.672 | |
Catalpa | Control | 38.094 | 23.070 | 1.512 | 62.676 |
Sanded P180 | 43.955 | 27.481 | 5.933 | 77.369 | |
Sanded P240 | 42.933 | 27.150 | 6.311 | 76.395 | |
Sanded P320 | 42.095 | 21.455 | 6.464 | 70.014 | |
Sanded P400 | 42.012 | 22.079 | 6.167 | 70.258 | |
Sanded P500 | 41.403 | 19.252 | 6.819 | 67.474 | |
Camphor | Control | 36.374 | 18.408 | 0.269 | 55.051 |
Sanded P180 | 36.640 | 20.660 | 9.241 | 66.541 | |
Sanded P240 | 40.181 | 25.475 | 7.523 | 73.179 | |
Sanded P320 | 39.466 | 16.043 | 7.630 | 63.138 | |
Sanded P400 | 39.305 | 24.505 | 7.727 | 71.537 | |
Sanded P500 | 37.815 | 21.159 | 8.199 | 67.173 |
Wood Sample | K Value | R2 | Errors | Initial Contact Angle (°) | Equilibrium Contact Angle (°) | Contact Angle Reduction Ratio (%) |
---|---|---|---|---|---|---|
Pinus radiata | 0.53 | 0.955 | 0.08 | 44.54 | 28.42 | 36.20% |
Pinus sylvestris | 0.25 | 0.936 | 0.04 | 46.78 | 32.77 | 29.95% |
Larch | 0.58 | 0.915 | 0.12 | 41.37 | 32.29 | 21.95% |
Hemp oak | 0.82 | 0.947 | 0.16 | 58.09 | 38.25 | 34.15% |
Catalpa | 0.17 | 0.976 | 0.02 | 57.81 | 50.06 | 13.41% |
Camphor | 0.13 | 0.926 | 0.03 | 61.64 | 51.31 | 16.76% |
Wood Sample | Bonding Quality | Mean Scores |
---|---|---|
Pinus radiata | 0 (60%), 1 (40%) | 0.4 |
Pinus sylvestris | 0 (20%), 1 (80%) | 0.8 |
Larch | 0 (20%), 1 (80%) | 0.8 |
Hemp oak | 0 (80%), 1(20%) | 0.2 |
Catalpa | 0 (40%), 1 (60%) | 0.6 |
Camphor | 0 (60%), 1(40%) | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Q.; Pan, X.; Yang, Z.; Zhang, L.; Cao, J. Effects of the Surface Roughness of Six Wood Species for Furniture Production on the Wettability and Bonding Quality of Coating. Forests 2023, 14, 996. https://doi.org/10.3390/f14050996
Yu Q, Pan X, Yang Z, Zhang L, Cao J. Effects of the Surface Roughness of Six Wood Species for Furniture Production on the Wettability and Bonding Quality of Coating. Forests. 2023; 14(5):996. https://doi.org/10.3390/f14050996
Chicago/Turabian StyleYu, Qinglin, Xi Pan, Zhong Yang, Li Zhang, and Jingyun Cao. 2023. "Effects of the Surface Roughness of Six Wood Species for Furniture Production on the Wettability and Bonding Quality of Coating" Forests 14, no. 5: 996. https://doi.org/10.3390/f14050996
APA StyleYu, Q., Pan, X., Yang, Z., Zhang, L., & Cao, J. (2023). Effects of the Surface Roughness of Six Wood Species for Furniture Production on the Wettability and Bonding Quality of Coating. Forests, 14(5), 996. https://doi.org/10.3390/f14050996