Differences in Some Physical and Chemical Properties of Beechwood with False Heartwood, Mature Wood and Sapwood
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.2. Determination of the Density of Dry Beechwood
2.3. Determining the Color of Beechwood in the Color Space CIE L*a*b*
2.4. Determination of Acidity and Moisture Content of Beechwood
2.5. Determination of Chemical Composition of Wood
2.6. Changes in Lignin-Cellulose Matrix of Wood by ATR-FTIR
3. Results and Discussion
3.1. Density of Beechwood
- lignification of cell walls, as reported by [2] and confirmed by measurements performed on the faculty of wood in Zvolen;
3.2. The Color of Beechwood
3.3. Acidity and Moisture Content of Beechwood
3.4. Chemical Composition and FTIR Analysis of Beechwood
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sedliačiková, M.; Moresová, M. Are consumers interested in colored beech wood and furniture products? Forests 2022, 13, 1470. [Google Scholar] [CrossRef]
- Nečesaný, V. Beech False Heartwood, Structure, Origin and Development; Publishing House of the Slovak Academy of Sciences: Bratislava, Slovakia, 1958; p. 256. [Google Scholar]
- Požgaj, A.; Chovanec, D.; Kurjatko, S.; Babiak, M. Structure and Properties of Wood; Príroda: Bratislava, Slovakia, 1997; p. 485. [Google Scholar]
- Gorczynski, T. Comparative anatomical studies on European beech wood (Fagus sylvatica L.). Rocz. Demdr. Polsk. Tow. Bot. 1951, 7, 3–114. [Google Scholar]
- Molnár, S.; Németh, R.; Fehér, S.; Tolvaj, L.; Papp, G.; Varga, F. Technical and technological properties of Hungarian beech wood consider the red heart. Wood Res. 2001, 46, 21–30. [Google Scholar]
- Dzurenda, L.; Dudiak, M. Cross-correlation of color and acidity of wet beech wood in the process of thermal treatment with saturated steam. Wood Res. 2021, 66, 105–116. [Google Scholar] [CrossRef]
- Dudiak, M.; Dzurenda, L.; Kučerová, V. Effect of Sunlight on the Change in Color of Unsteamed and Steamed Beech Wood with Water Steam. Polymers 2022, 14, 1697. [Google Scholar] [CrossRef]
- Dzurenda, L. Range of Color Changes of Beech Wood in the Steaming Process. Bioresources 2022, 17, 1690–1702. [Google Scholar] [CrossRef]
- Bauch, J.; Koch, G. Biologische und Chemische Untersuchungen über Holzverfarbungen der Rotbuche (Fagus sylvatica L.) und Möglichkeiten Vorbeugender Maßnahmen; Abschlussbericht, Bundesforschungsanstalt für Forst- und Holzwirtschaft, Universität Hamburg: Hamburg, Germany, 2001. [Google Scholar]
- Račko, V.; Čunderlik, I. Qualitative and quantitative evaluation of false heartwood in beech logs of various age and qualitative structure. Wood Res. 2006, 51, 1–10. [Google Scholar]
- Mahler, G.; Höwecke, B. Verkernungserscheinungen bei der Buche in Baden- Württemberg in Abhängigkeit von Alter, Standort und Durchmesser. Schweiz. Z. Forstwes 1991, 142, 375–390. [Google Scholar]
- Babiak, M.; Čunderlík, I.; Kúdela, J. Permeability and structure of beech wood. IAWA Bull. 1990, 11, 115. [Google Scholar]
- Brown, H.P.; Panshin, A.J.; Forsaith, C.C. Textbook of Wood Technology; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
- Chovanec, D.; Korytárová, O. Signs of the first phase of beech steaming. Drevo 1989, 44, 311. [Google Scholar]
- Kúdela, J.; Čunderlík, I. Beech Wood-Structure, Properties, Use; Technical University in Zvolen: Zvolen, Slovakia, 2012. [Google Scholar]
- Trenčiansky, M.; Lieskovský, M.; Merganič, J.; Šulek, R. Analysis and evaluation of the impact of stand age on the occurrence and metamorphosis of red heartwood. For. Biogeosciences For. 2017, 10, 605–610. [Google Scholar] [CrossRef] [Green Version]
- Vilkovská, T.; Klement, I.; Výbohová, E. The effect of tension wood on the selected physical properties and chemical composition of beech wood (Fagus sylvatica L.). Acta Fac. Xylologiae Zvolen 2018, 60, 31–40. [Google Scholar]
- STN 49 0108; Wood Determination of Density. Drevo. Zistovanie: Bratislava, Slovakia, 1993.
- STN EN 13183-1; Moisture Content of a Piece of Sawn Timber–Part1: Determination by Oven Dry Method. Slovenian Institute for Standardization: Ljubljana, Slovenia, 2003.
- ASTM D1107-96; Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International: West Conshohocken, PA, USA, 2007.
- ASTM D1106-96; Standard Test Method for Acid-Insoluble Lignin in Wood. ASTM International: West Conshohocken, PA, USA, 2013.
- Wise, L.E.; Murphy, M.; D’Addieco, A.A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap. Trade J. 1946, 122, 35–44. [Google Scholar]
- Kürschner, K.; Hoffer, A. Ein neues Verfahren zur Bestimmung der Cellulose in Hölzern und Zellstoffen. Techn. Chem. Papier und Zellstoff. Fabr. 1929, 26, 125–129. [Google Scholar]
- Shimaji, K. Anatomical studies on the wood of some Fagus species. Bull. Tokyo Univ. For. 1952, 42, 181–193. [Google Scholar]
- Jacenko-Chmelevskij, A.A. Fundamentals and Methods of Anatomical Study of Wood; Moskva-Leningrad; 1954. [Google Scholar]
- Makovíny, I. Useful Properties and Use of Different Types of Wood; TU Zvolen: Zvolen, Slovakia, 2010. [Google Scholar]
- Babiak, M.; Kubovský, I.; Mamoňová, M. A Colorful Space of Selected Domestic Trees. In Interaction of Wood with Various Forms of Energy; Zvolen TU: Zvolen, Slovakia, 2004; pp. 113–117. [Google Scholar]
- Molnar, S.; Tolvaj, L. Colour Homogenisation of Different Wood Species by Steaming. In Interaction of Wood with Various Forms of Energy; TU Zvolen: Zvolen, Slovakia, 2002; pp. 119–122. [Google Scholar]
- Meints, T.; Teischinger, A.; Stingl, R.; Hassmann, C. Wood colour of central European wood species: CIELAB characterisation and colour intensification. Eur. J. Wood Prod. 2017, 75, 499–509. [Google Scholar] [CrossRef]
- Dzurenda, L.; Dudiak, M. Effect of UV Radiation on Change in Color of Steamed Beech Wood. Wood Res. 2022, 67, 361–371. [Google Scholar] [CrossRef]
- Dzurenda, L.; Geffert, A.; Geffertová, J.; Dudiak, M. Evaluation of the process thermal treatment of maple wood saturated water steam in terms of change of pH and color of wood. BioResources 2020, 15, 2550–2559. [Google Scholar] [CrossRef]
- Dzurenda, L.; Dudiak, M. Changes in wood tree species Fagus sylvatica L. and characteristics of the thermal process of modifying its color with saturated water steam. Adv. Ecol. Environ. Res. 2020, 5, 142–156. [Google Scholar]
- Geffert, A.; Geffertová, J.; Dudiak, M. Direct Method of Measuring the pH Value of Wood. Forests 2019, 10, 852. [Google Scholar] [CrossRef] [Green Version]
- Dudiak, M. Acidity (pH) of false heartwood and sapwood of beech wood before and after the drying process. In Proceedings of the Furniture and Wood Products 2022: Collection of Papers from the International Scientific and Professional Seminar, Online, 29–33 September 2022. [Google Scholar]
- Čudinov, B.S.; Stepanov, V.L. Phasenzusammensetzung der Wassers in gefrorenem Holz. Holztechnologie 1968, 9, 14–18. [Google Scholar]
- Blažej, A.; Šutý, L.; Košík, M.; Krkoška, P.; Golis, E. Chemistry of Wood; ALFA: Bratislava, Slovakia, 1975; p. 221. [Google Scholar]
- Zevenhoven, M. Ash-Forming Matter in Biomass Fuels; Faculty of Chemical Engineering, Akademi University: Turku, Finland, 2001; p. 88. [Google Scholar]
- Pňakovič, Ľ.; Dzurenda, L. Combustion characteristics of fallen fall leaves from ornamental trees in city and forest parks. BioResources 2015, 10, 5563–5572. [Google Scholar] [CrossRef]
- Lexa, J.; Nečesaný, V.; Paclt, J.; Tesařová, D.; Štofko, J. Mechanical and Physical Properties of Wood; Práca ROH: Bratislava, Slovakia, 1952; p. 436. [Google Scholar]
- Račko, V.; Čunderlík, I. Mature wood as a limiting factor in the formation of a false heartwood beech (Fagus sylvatica L.). Acta Fac. Xylologiae Zvolen 2010, 52, 15–24. [Google Scholar]
- Gülsoy, S.K.; Aksoy, H.; Türkmen, H.G.; Çanakçi, G. Fiber Morphology and Chemical Composition of Heartwood and Sapwood of Red Gum, Black Willow, and Oriental Beech. J. Bartin Fac. For. 2021, 23, 119–124. [Google Scholar] [CrossRef]
- Vek, V.; Oven, P.; Poljanšek, I.; Ters, T. Contribution to Understanding the Occurrence of Extractives in Red Heart of Beech. Bioresources 2015, 10, 970–985. [Google Scholar] [CrossRef] [Green Version]
- Kučerová, V.; Hrčka, R.; Hýrošová, T. Relation of Chemical Composition and Colour of Spruce Wood. Polymers 2022, 14, 5333. [Google Scholar] [CrossRef]
- Esteves, B.; Marques, A.V.; Domingos, I.; Pereira, H. Chemical changes of heat-treated pine and eucalypt wood monitored by FTIR. Maderas Cienc. Tecnol. 2013, 15, 245–258. [Google Scholar] [CrossRef] [Green Version]
Zones of Wood | Number of Measurements | Density of Wood | Variation Coefficient |
---|---|---|---|
False heartwood | 70 | ρ0 = 704.2 ± 28.4 kg·m−3 | 4.03% |
Mature wood | 70 | ρ0 = 670.8 ± 30.1 kg·m−3 | 4.49% |
Sapwood | 70 | ρ0 = 617.4 ± 35.4 kg·m−3 | 5.73% |
Beechwood, False Heartwood | Color Coordinates | Chrome | ||
---|---|---|---|---|
L* | a* | b* | C* | |
Number of measurements [-] | 150 | 150 | 150 | 150 |
Measured value | 64.9 ± 4.9 | 12.9 ± 2.1 | 19.6 ± 1.7 | 23.5 ± 1.8 |
Value of variation coefficient [%] | 7.5 | 16.2 | 8.6 | 8.1 |
Beechwood, Mature Wood | Color Coordinates | Chrome | ||
---|---|---|---|---|
L* | a* | b* | C* | |
Number of measurements [-] | 150 | 150 | 150 | 150 |
Measured value | 78.9 ± 2.4 | 7.6 ± 1.7 | 18.9 ± 1.9 | 20.4 ± 1.9 |
Value of variation coefficient [%] | 3.0 | 22.3 | 10.0 | 9.3 |
Beechwood, Sapwood | Color Coordinates | Chrome | ||
---|---|---|---|---|
L* | a* | b* | C* | |
Number of measurements [-] | 150 | 150 | 150 | 150 |
Measured value | 82.4 ± 1.9 | 8.1 ± 1.5 | 19.1 ± 1.6 | 20.7 ± 1.7 |
Value of variation coefficient [%] | 2.3 | 18.5 | 8.3 | 8.2 |
Wood of Beech Blanks | Moisture Contentof Wood | Acidity of Wood |
---|---|---|
False heartwood | w = 59.87 ± 2.95% | 5.32 ± 0.13 |
Mature wood | w = 63.17 ± 3.05% | 5.46 ± 0.16 |
Sapwood | w = 82.87 ± 5.31% | 5.59 ± 0.18 |
Zones of Wood | Nonconjugated Carbonyl/Carbohydrates | Lignin/Carbohydrates | TCI | LOI |
---|---|---|---|---|
1730/1370 | 1506/1370 | 1370/2900 | 1423/894 | |
False heartwood | 2.088 | 1.265 | 1.085 | 1.189 |
Mature wood | 2.163 | 0.969 | 1.092 | 1.102 |
Sapwood | 1.497 | 0.772 | 0.960 | 0.886 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzurenda, L.; Dudiak, M.; Kučerová, V. Differences in Some Physical and Chemical Properties of Beechwood with False Heartwood, Mature Wood and Sapwood. Forests 2023, 14, 1123. https://doi.org/10.3390/f14061123
Dzurenda L, Dudiak M, Kučerová V. Differences in Some Physical and Chemical Properties of Beechwood with False Heartwood, Mature Wood and Sapwood. Forests. 2023; 14(6):1123. https://doi.org/10.3390/f14061123
Chicago/Turabian StyleDzurenda, Ladislav, Michal Dudiak, and Viera Kučerová. 2023. "Differences in Some Physical and Chemical Properties of Beechwood with False Heartwood, Mature Wood and Sapwood" Forests 14, no. 6: 1123. https://doi.org/10.3390/f14061123
APA StyleDzurenda, L., Dudiak, M., & Kučerová, V. (2023). Differences in Some Physical and Chemical Properties of Beechwood with False Heartwood, Mature Wood and Sapwood. Forests, 14(6), 1123. https://doi.org/10.3390/f14061123