Future Range Dynamics Suggest Increasing Threats of Grey Squirrels (Sciurus carolinensis) against Red Squirrels (Sciurus vulgaris) in Europe: A Perspective on Climatic Suitability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Species Occurrence Records
2.2. Climatic Predictors
2.3. Climatic Predictors in the Ecological Niche Models (ENMs)
2.4. Potential Ranges of Grey Squirrels and Red Squirrels
2.5. Range Shifts and Overlap of Grey Squirrels and Red Squirrels
3. Results
3.1. Performance of Ecological Niche Models and the Maximization Sensitivity-Specificity Sum Threshold
3.2. Predictors Responsible for the Potential Ranges of Grey Squirrels and Red Squirrels
3.3. Potential Ranges of Grey Squirrels and Red Squirrels
3.4. Range Dynamics of Grey Squirrels and Red Squirrels
3.5. Range Overlap between Grey Squirrel and Red Squirrel
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vila, M.; Basnou, C.; Pyšek, P.; Josefsson, M.; Genovesi, P.; Gollasch, S.; Hulme, P.E. How well do we understand the impacts of alien species on ecosystem services? A pan–European, cross–taxa assessment. Front. Ecol. Environ. 2010, 8, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Vila, M.; Hulme, P.E. Impact of Biological Invasions on Ecosystem Services. Invading Nature–Springer Series in Invasion Ecology, 1st ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef] [Green Version]
- Diagne, C.; Leroy, B.; Vaissiere, A.C.; Gozlan, R.E.; Roize, D.; Jarić, I.; Salles, J.M.; Bradshaw, C.J.A.; Courchamp, F. High and rising economic costs of biological invasions worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Barney, J.N.; Tekiela, D.R.; Barrios-Garcia, M.N.; Dimarco, R.D.; Hufbauer, R.A.; Leipzig-Scott, P.; Nuñez, M.A.; Pauchard, A.; Pyšek, P.; Vítková, M.; et al. Global Invader Impact Network (GIIN): Toward standardized evaluation of the ecological impacts of invasive plants. Ecol. Evol. 2015, 5, 2878–2889. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, T.M.; Bellard, C.; Ricciardi, A. Alien versus native species as drivers of recent extinctions. Front. Ecol. Environ. 2019, 17, 203–207. [Google Scholar] [CrossRef]
- Van Kleunen, M.; Dawson, W.; Maurel, N. Characteristics of successful alien plants. Mol. Ecol. 2015, 24, 1954–1968. [Google Scholar] [CrossRef] [Green Version]
- Bellard, C.; Thuiller, W.; Leroy, B.; Genovesi, P.; Bakkenes, M.; Courchamp, F. Will climate change promote future invasions? Glob. Chang. Biol. 2013, 19, 3740–3748. [Google Scholar] [CrossRef]
- Bellard, C.; Jeschke, J.M.; Leroy, B.; Mace, G.M. Insights from modelling studies on how climate change affects invasive alien species geography. Ecol. Evol. 2018, 8, 5688–5700. [Google Scholar] [CrossRef]
- Jia, J.; Dai, Z.; Li, F.; Liu, Y. How will global environmental changes affect the growth of alien plants? Front. Plant Sci. 2016, 7, 1623. [Google Scholar] [CrossRef] [Green Version]
- Hulme, P.E. Climate change and biological invasions: Evidence, expectations, and response options. Biol. Rev. 2017, 92, 1297–1313. [Google Scholar] [CrossRef]
- Hernández-Lambraño, R.E.; González-Moreno, P.; Sánchez-Agudo, J.Á. Towards the top: Niche expansion of Taraxacum officinale and Ulex europaeus in mountain regions of South America. Austral Ecol. 2017, 42, 577–589. [Google Scholar] [CrossRef]
- Christina, M.; Limbada, F.; Atlan, A. Climatic niche shift of an invasive shrub (Ulex europaeus): A global scale comparison in native and introduced regions. J. Plant Ecol. 2019, 13, 42–50. [Google Scholar] [CrossRef]
- Sutherland, W.J.; Armstrong-Brown, S.; Armsworth, P.R.; Tom, B.; Brickland, J.; Campbell, C.D.; Chamberlain, D.E.; Cooke, A.I.; Dulvy, N.K.; Dusic, N.R.; et al. The identification of 100 ecological questions of high policy relevance in the UK. J. Appl. Ecol. 2006, 43, 617–627. [Google Scholar] [CrossRef]
- Chapman, D.S.; Haynes, T.; Beal, S.; Essl, F.; Bullock, J.M. Phenology predicts the native and invasive range limits of common ragweed. Glob. Chang. Biol. 2014, 20, 192–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, N.K.; Ochocki, B.M.; Crawford, K.M.; Compagnoni, A.; Miller, T.E.X. Genetic mixture of multiple source populations accelerates invasive range expansion. J. Anim. Ecol. 2017, 86, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.M.; Wang, J.M.; Hu, X.K.; Feng, J.M. Land–use change drives present and future distributions of Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Sci. Total Environ. 2020, 706, 135872. [Google Scholar] [CrossRef]
- Tang, X.G.; Yuan, Y.D.; Liu, X.F.; Zhang, J.C. Potential range expansion and niche shift of the invasive Hyphantria cunea between native and invasive countries. Ecol. Entomol. 2021, 46, 910–925. [Google Scholar] [CrossRef]
- Thomas, S.M.; Moloney, K.A. Combining the effects of surrounding land–use and propagule pressure to predict the distribution of an invasive plant. Biol. Invasions 2015, 17, 477–495. [Google Scholar] [CrossRef]
- Gong, X.; Chen, Y.J.; Wang, T.; Jiang, X.F.; Hu, X.K.; Feng, J.M. Double–edged effects of climate change on plant invasions: Ecological niche modeling global distributions of two invasive alien plants. Sci. Total Environ. 2020, 740, 139933. [Google Scholar] [CrossRef]
- Cao, R.Y.; Gong, X.; Feng, J.M.; Yang, R.J. Niche and range dynamics of Tasmanian blue gum (Eucalyptus globulus Labill.) a globally cultivated invasive tree. Ecol. Evol. 2022, 12, e9305. [Google Scholar] [CrossRef]
- Colautti, R.I.; Barrett, S.C.H. Rapid Adaptation to Climate Facilitates Range Expansion of an Invasive Plant. Science 2013, 342, 364–366. [Google Scholar] [CrossRef]
- Jourdan, J.; Riesch, R.; Cunze, S. Off to new shores: Climate niche expansion in invasive mosquitofish (Gambusia spp.). Ecol. Evol. 2021, 11, 18369–18400. [Google Scholar] [CrossRef] [PubMed]
- Osland, M.J.; Feher, L.C. Winter climate change and the poleward range expansion of a tropical invasive tree (Brazilian pepper–Schinus terebinthifolius). Glob. Chang. Biol. 2020, 26, 607–615. [Google Scholar] [CrossRef] [PubMed]
- de Albuquerque, F.S.; Macias-Rodriguez, M.A.; Burquez, A.; Astudillo-Scalia, Y. Climate change and the potential expansion of buffelgrass (Cenchrus ciliaris L., Poaceae) in biotic communities of Southwest United States and northern Mexico. Biol. Invasions 2019, 21, 3335–3347. [Google Scholar] [CrossRef]
- Kelly, B.P.; Whiteley, A.; Tallmon, D. The arctic melting pot. Nature 2010, 468, 891. [Google Scholar] [CrossRef]
- Schmidt, N.M.; Hardwick, B.; Gilg, O.; Høye, T.T.; Krogh, P.H.; Meltofte, H.; Michelsen, A.; Mosbacher, J.B.; Raundrup, K.; Reneerkens, J.; et al. Interaction webs in arctic ecosystems: Determinants of arctic change? Ambio 2017, 46, 12–25. [Google Scholar] [CrossRef] [Green Version]
- Bryce, S.J.; Johnson, P.J.; Macdonald, D.W. Can niche use in red and grey squirrels offer clues for their apparent coexistence? J. Appl. Ecol. 2002, 39, 875–887. [Google Scholar] [CrossRef]
- Elsen, M.P.R.; Monahan, W.B.; Dougherty, E.R.; Merenlender, A.M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 2020, 6, e0814. [Google Scholar] [CrossRef]
- Bamber, J.A.; Shuttleworth, C.M.; Hayward, M.W.; Everest, D.J. Reinstating trophic cascades as an applied conservation tool to protect forest ecosystems from invasive grey squirrels (Sciurus carolinensis). Food Webs 2020, 25, 00164. [Google Scholar] [CrossRef]
- Middleton, A.D. The grey squirrel: The introduction and spread of the American grey squirrel in the British Isles, its habits, food, and relations with the native fauna of the country. Nature 1933, 131, 45. [Google Scholar] [CrossRef]
- Wauters, L.A.; Gurnell, J.; Martinoli, A.; Tosi, G. Interspecific competition between native Eurasian red squirrels and alien grey squirrels: Does resource partitioning occur? Behav. Ecol. Sociobiol. 2002, 52, 332–341. [Google Scholar] [CrossRef]
- Wauters, L.A.; Mazzamuto, M.V.; Santicchia, F.; Van, D.; Preatoni, D.G.; Martinoli, A. Interspecific competition affects the expression of personality–traits in natural populations. Sci. Rep. 2019, 9, 11189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, A.N.; Vander Haegen, W.M.; West, S.D. Differential Resource Use between Native and Introduced Gray Squirrels. J. Wildl. Manag. 2020, 84, 726–738. [Google Scholar] [CrossRef]
- Santicchia, F.; Wauters, L.A.; Piscitelli, A.P.; Dongen, S.V.; Martinoli, A.; Preatoni, D.; Romeo, C.; Ferrari, N. Spillover of an alien parasite reduces expression of costly behaviour in native host species. J. Anim. Ecol. 2020, 89, 1559–1569. [Google Scholar] [CrossRef] [Green Version]
- Romeo, C.; Piscitelli, A.P.; Santicchia, F.; Martinoli, A.; Ferrari, N.; Wauters, L.A. Invading parasites: Spillover of an alien nematode reduces survival in a native species. Biol. Invasions 2021, 23, 3847–3857. [Google Scholar] [CrossRef]
- White, A.; Bell, S.S.; Lurz, P.W.W.; Boots, M. Conservation management within strongholds in the face of disease–mediated invasions: Red and grey squirrels as a case study. J. Appl. Ecol. 2014, 51, 1631–1642. [Google Scholar] [CrossRef] [Green Version]
- Chantrey, J.; Dale, T.; Jones, D.; Begon, M.; Fenton, A. The drivers of squirrelpox virus dynamics in its grey squirrel reservoir host. Epidemics 2019, 28, 100352. [Google Scholar] [CrossRef] [PubMed]
- Shuttleworth, C.M.; Robinson, N.; Halliwell, E.C.; Clews-Roberts, R.; Peek, H.; Podgornik, G.; Stinson, M.; Rice, S.; Finlay, C.; McKinney, C.; et al. Evolving grey squirrel management techniques in Europe. Manag. Biol. Invasions 2020, 11, 747–761. [Google Scholar] [CrossRef]
- Schuchert, P.; Shuttleworth, C.M.; McInnes, C.J.; Everest, D.J.; Rushton, S.P. Landscape scale impacts of culling upon a European grey squirrel population: Can trapping reduce population size and decrease the threat of squirrelpox virus infection for the native red squirrel? Biol. Invasions 2014, 16, 2381–2391. [Google Scholar] [CrossRef]
- Goldstein, E.A.; Butler, F.; Lawton, C. Modeling future range expansion and management strategies for an invasive squirrel species. Biol. Invasions 2016, 18, 1431–1450. [Google Scholar] [CrossRef] [Green Version]
- Jessen, T.; Wang, Y.; Wilmers, C.C. Habitat fragmentation provides a competitive advantage to an invasive tree squirrel, Sciurus carolinensis. Biol. Invasions 2018, 20, 607–618. [Google Scholar] [CrossRef]
- Wauters, L.A.; Lurz, P.W.W.; Santicchia, F.; Romeo, C.; Ferrari, N.; Martinoli, A.; Gurnell, J. Interactions between native and invasive species: A systematic review of the red squirrel-gray squirrel paradigm. Front. Ecol. Evol. 2023, 11, 1083008. [Google Scholar] [CrossRef]
- Di Febbraro, M.; Martinoli, A.; Russo, D.; Preatoni, D.; Bertolino, S. Modelling the effects of climate change on the risk of invasion by alien squirrels. Hystrix 2016, 27, 1–8. [Google Scholar] [CrossRef]
- Di Febbraro, M.; Menchetti, M.; Russo, D.; Ancillotto, L.; Aloise, G.; Roscioni, F.; Preatoni, D.G.; Loy, A.; Martinoli, A.; Bertolino, S.; et al. Integrating climate and land–use change scenarios in modelling the future spread of invasive squirrels in Italy. Divers. Distrib. 2019, 25, 644–659. [Google Scholar] [CrossRef] [Green Version]
- Gurnell, J.; Clark, M.J.; Lurz, P.W.W.; Shirley, M.D.F.; Rushton, S.P. Conserving red squirrels (Sciurus vulgaris): Mapping and forecasting habitat suitability using a Geographic Information Systems Approach. Biol. Conserv. 2002, 105, 53–64. [Google Scholar] [CrossRef]
- Rushton, S.P.; Lurz, P.W.W.; Fuller, R.; Garson, P.J. Modelling the distribution of the red and grey squirrel at the landscape scale: A combined GIS and population dynamics approach. J. Appl. Ecol. 1997, 34, 1137–1154. [Google Scholar] [CrossRef]
- Rushton, S.P.; Lurz, P.W.W.; South, A.B.; Mitchell-Jones, A. Modelling the distribution of red squirrels (Sciurus vulgaris) on the Isle of Wight. Anim. Conserv. 1999, 2, 111–120. [Google Scholar] [CrossRef]
- Lurz, P.W.W.; Rushton, S.P.; Wauters, L.A.; Bertolino, S.; Currado, I.; Mazzoglio, P.; Shirley, M.D.F. Predicting grey squirrel expansion in North Italy: A spatially explicit modelling approach. Landsc. Ecol. 2001, 16, 407–420. [Google Scholar] [CrossRef]
- Tattoni, C.; Preatoni, D.G.; Lurz, P.W.W.; Rushton, S.P.; Tosi, G.; Bertolino, S.; Martinoli, A.; Wauters, L.A. Modelling the expansion of a grey squirrel population: Implications for squirrel control. Biol. Invasions 2006, 8, 1605–1619. [Google Scholar] [CrossRef]
- Bertolino, S.; Lurz, P.W.W.; Sanderson, R.; Rushton, S. Predicting the spread of the American grey squirrel (Sciurus carolinensis) in Europe: A call for a co–ordinated European approach. Biol. Conserv. 2008, 141, 2564–2575. [Google Scholar] [CrossRef]
- Anav, A.; Mariotti, A. Sensitivity of natural vegetation to climate change in the Euro–Mediterranean area. Clim. Res. 2011, 46, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Garamvoelgyi, A.; Hufnagel, L. Impacts of climate change on vegetation distribution No. 1 climate change induced vegetation shifts in the palearctic region. Appl. Ecol. Environ. Res. 2013, 11, 79–122. [Google Scholar] [CrossRef]
- Ward, D.S.; Mahowald, N.M.; Kloster, S. Potential climate forcing of land use and land cover change. Atmos. Chem. Phys. 2014, 14, 12701–12724. [Google Scholar] [CrossRef] [Green Version]
- Gurnell, J. The Natural History of Squirrels, 1st ed.; Christopher Helm Publishers: Bromley, UK, 1987. [Google Scholar]
- Wauters, L.A.; Gurnell, J.; Currado, I.; Mazzoglio, P. Grey squirrel Sciurus carolinensis management in Italy–squirrel distribution in a highly fragmented landscape. Wildl. Biol. 1997, 3, 117–124. [Google Scholar] [CrossRef]
- Brown, J.L. SDMtoolbox: A python–based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python–based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef] [Green Version]
- Fick, S.E.; Hijmans, R.J. WorldClim2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Xu, Z.F.; Han, Y.; Guo, W.D. Evaluation of CMIP6 models toward dynamical downscaling over 14 CORDEX domains. Clim. Dyn. 2022, 2022, 1–15. [Google Scholar] [CrossRef]
- Myers, P.; Lundrigan, B.L.; Hoffman, S.M.G.; Haraminac, A.P.; Seto, S.H. Climate-induced changes in the small mammal communities of the Northern Great Lakes Region. Glob. Chang. Biol. 2009, 15, 1434–1454. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD–A platform for ensemble forecasting of species distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; García Marquéz, J.R.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 7–46. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo–absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 27–338. [Google Scholar] [CrossRef]
- Gallien, L.; Douzet, R.; Pratte, S.; Zimmermann, N.E.; Thuiller, W. Invasive species distribution models–how violating the equilibrium assumption can create new insights. Glob. Ecol. Biogeogr. 2012, 21, 1126–1136. [Google Scholar] [CrossRef]
- Cantor, S.B.; Sun, C.C.; Tortolero-Lunaet, G.; Richards-Kortum, R.; Follen, M. A comparison of C/B ratios from studies using receiver operating characteristic curve analysis. J. Clin. Epidemiol. 1999, 52, 885–892. [Google Scholar] [CrossRef]
- Liu, C.R.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 2005, 28, 385–393. [Google Scholar] [CrossRef]
- Yang, R.J.; Cao, R.Y.; Gong, X.; Feng, J.M. Large shifts of niche and range in the golden apple snail (Pomacea canaliculata), an aquatic invasive species. Ecosphere 2023, 14, e4391. [Google Scholar] [CrossRef]
- Stapp, P.; Pekins, P.J.; Mautz, W.W. Winter Energy-Expenditure and The Distribution Of Southern Flying Squirrels. Can. J. Zool. 1991, 69, 2548–2555. [Google Scholar] [CrossRef]
- Jokinen, M.; Hanski, I.; Numminen, E.; Valkama, J.; Selonen, V. Promoting species protection with predictive modelling: Effects of habitat, predators and climate on the occurrence of the Siberian flying squirrel. Biol. Conserv. 2019, 230, 37–46. [Google Scholar] [CrossRef]
- Aidoo, O.F.; Souza, P.G.C.; da Silva, R.S.; Santana, P.A.; Picanco, M.C.; Kyerematen, R.; Setamou, M.; Ekesi, S.; Borgemeister, C. Climate-induced range shifts of invasive species (Diaphorina citri Kuwayama). Pest Manag. Sci. 2022, 78, 2534–2549. [Google Scholar] [CrossRef]
- Johovic, I.; Gama, M.; Banha, F.; Tricarico, E.; Anastacio, P.M. A potential threat to amphibians in the European Natura 2000 network: Forecasting the distribution of the American bullfrog Lithobates catesbeianus. Biol. Conserv. 2020, 245, 108551. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, P.; Yang, R.; Feng, J. Future Range Dynamics Suggest Increasing Threats of Grey Squirrels (Sciurus carolinensis) against Red Squirrels (Sciurus vulgaris) in Europe: A Perspective on Climatic Suitability. Forests 2023, 14, 1150. https://doi.org/10.3390/f14061150
Nie P, Yang R, Feng J. Future Range Dynamics Suggest Increasing Threats of Grey Squirrels (Sciurus carolinensis) against Red Squirrels (Sciurus vulgaris) in Europe: A Perspective on Climatic Suitability. Forests. 2023; 14(6):1150. https://doi.org/10.3390/f14061150
Chicago/Turabian StyleNie, Peixiao, Rujing Yang, and Jianmeng Feng. 2023. "Future Range Dynamics Suggest Increasing Threats of Grey Squirrels (Sciurus carolinensis) against Red Squirrels (Sciurus vulgaris) in Europe: A Perspective on Climatic Suitability" Forests 14, no. 6: 1150. https://doi.org/10.3390/f14061150
APA StyleNie, P., Yang, R., & Feng, J. (2023). Future Range Dynamics Suggest Increasing Threats of Grey Squirrels (Sciurus carolinensis) against Red Squirrels (Sciurus vulgaris) in Europe: A Perspective on Climatic Suitability. Forests, 14(6), 1150. https://doi.org/10.3390/f14061150