Thin Cell Layer Tissue Culture Technology with Emphasis on Tree Species
Abstract
:1. Introduction
2. Methodology of TCL Technology
2.1. Explant Selection and Preparation of Thin Sections
2.2. Culture of Thin Sections
2.3. Regeneration of Roots and Shoots
2.4. Acclimation and Hardening of Plantlets
3. Applications of Thin Cell Layer Technology
3.1. Why Is TCL Successful?
- i.
- The surface area of TCL explants in contact with the media is relatively larger than that of conventional explants, which increases the efficiency of transporting the media components because they can reach more receptor or target cells. This further enhances the organogenic response compared to conventional techniques.
- ii.
- TCLs may be advantageous when limited plant material is available for subculture and culture establishment in in vitro cultures, as TCL explants increase the number of explants and also improve the effectiveness of subculture establishment.
- iii.
- Depending on the changes in the morphological and anatomical features of a plant, the preparation of a sample for light or electron microscopy by the TCL explant is much easier than the thicker conventional plants. This is because we can observe the histological condition of a plant and have the origin of an organ confirmed.
- iv.
- When it comes to the number of regenerating organs per initial organ, TCL technology can be more efficient than a conventional explant. Although the actual productivity of TCL explants is lower than that of conventional explant techniques, the relative productivity of TCL explants when the geometric factor (GF) and growth correction factor (GCF) were applied (as demonstrated in cymbidium hybrids, chrysanthemum, and apples) was 10- and 13-fold higher in plant species, respectively, than by conventional methods [5].
- v.
- The total area of stress-induced wounds in a plant is much larger in TCL explants than in conventional explants. This is also the reason that TCL explants have a higher efficiency in inducing callus formation and improving morphogenesis. When we use some organs as conventional explants, the potential of morphogenesis and organogenesis is very low. However, these conventional explants can be used to prepare TCLs for mass propagation and regeneration.
- vi.
- TCL technology is an excellent method for producing culturable thin sections that can be used in in vitro plant–microbe interaction assays. The use of large shoot propagule for explants in in vitro plant–microbe interaction assays is limited when used with fast growing bacteria due to the risk of infection of growing plants in vitro. However, thin sections can overcome this limitation of in vitro bioassays developed for the screening of beneficial plant–microbe interactions [27].
3.2. Summary of TCL Applications on Tree Species
3.3. Gymnospermae
3.4. Angiospermae
3.5. Problems and Troubleshooting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bidabadi, S.S.; Jain, S.M. Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration. Plants 2020, 9, 702. [Google Scholar] [CrossRef]
- Ibáñez, S.; Carneros, E.; Testillano, P.S.; Pérez-Pérez, J.M. Ad-vances in plant regeneration: Shake, rattle and roll. Plants 2020, 9, 897. [Google Scholar] [CrossRef]
- Tran Thanh Van, K.; Gendy, C. Thin cell layer (TCL) method to programme morphogenetic patterns. In Plant Tissue Culture Manual; Lindsey, K., Ed.; Springer: Dordrecht, The Netherlands, 1996; pp. 137–161. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Dobránszki, J. Plant thin cell layers: Update and perspectives. Folia Hortic. 2012, 27, 183–190. [Google Scholar] [CrossRef] [Green Version]
- da Silva, J.A.T.; Dobránszki, J. Plant Thin Cell Layers: A 40-Year Celebration. J. Plant Growth Regul. 2013, 32, 922–943. [Google Scholar] [CrossRef]
- Van, M.T.T. Direct flower neoformation from superficial tissue of small explants of Nicotiana tabacum L. Planta 1973, 115, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Nhut, D.T.; Teixeira da Silva, J.A.; Thorpe, T.; Van Le, B.; Van, K.T.T. Woody plant micropropagation and morphogenesis by thin cell layers. In Thin Cell Layer Culture System: Regeneration and Trans-formation Applications; Nhut, D.T., Van Le, B., Tran Thanh Van, K., Thorpe, T., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 473–493. [Google Scholar] [CrossRef]
- Nhut, D.T.; Van Le, B.; Teixeira da Silva, J.A.; Aswath, C.R. Thin cell layer culture system in Lilium: Regeneration and transfor-mation perspectives. Vitr. Cell Dev. Bio-Plant 2001, 37, 516. [Google Scholar] [CrossRef]
- Stefania, F.; Fabio, P.; Francesco, C.; Maurizio, S. Effect of 2,4-D and 4-CPPU on somatic embryogenesis from stigma and style transverse thin cell layers of Citrus. Plant Cell Tissue Organ Cult. 2002, 68, 57–63. [Google Scholar] [CrossRef]
- Croom, L.A.; Jackson, C.L.; Vaidya, B.N.; Parajuli, P.; Joshee, N. Thin cell layer (TCL) Culture system for herbal biomass produc-tion and genetic transformation of Bacopa monnieri L. Wettst. Am. J. Plant Sci. 2016, 7, 1232–1245. [Google Scholar] [CrossRef] [Green Version]
- Vudala, S.M.; Padial, A.A.; Ribas, L.L.F. Micropropagation of Hadrolaelia grandis through transverse and longitudinal thin cell layer culture. S. Afr. J. Bot. 2019, 121, 76–82. [Google Scholar] [CrossRef]
- Wattanapan, N.; Nualsri, C.; Meesawat, U. In vitro propagation through transverse thin cell layer (tTCL) culture system of lady’s slipper orchid: Paphiopedilum callosum var. sublaeve. Songklan J. Sci. Technol. 2018, 40, 306–313. [Google Scholar]
- Bravo-Ruiz, I.N.; González-Arnao, M.; Castañeda-Castro, O.; Pastelín-Solano, M.C.; Cruz-Cruz, C.A. Use of thin cell layer (TCL) to obtain somatic embryogenesis. In Somatic Embryogene-sis; Humana: New York, NY, USA, 2022; pp. 183–201. [Google Scholar]
- Tung, H.T.; Van, H.T.; Bao, H.G.; Bien, L.T.; Khai, H.D.; Luan, V.Q.; Cuong, D.M.; Phong, T.H.; Nhut, D.T. Silver nanoparticles enhanced efficiency of explant surface disinfection and somatic embryogenesis in Begonia tuberous via thin cell layer culture. Viet. J. Biotech. 2021, 19, 337–347. [Google Scholar] [CrossRef]
- Lo, K.-C.; Gansau, J.A.; Shih, C.-H.; Kao, C.-Y. Shoot Development through Modified Transverse Thin Cell Layer (tTCL) Culture of Phalaenopsis Hybrid Protocorms. Horticulturae 2022, 8, 206. [Google Scholar] [CrossRef]
- Dobránszki, J.; Teixeira da Silva, J.A. Adventitious shoot regener-ation from leaf thin cell layers in apple. Sci. Hortic. 2011, 127, 460–463. [Google Scholar] [CrossRef]
- Dobránszki, J.; Teixeira da Silva, J.A. In vitro shoot regeneration from transverse thin cell layers of apple leaves in response to various factors. J. Hortic. Sci. Biotechn. 2013, 88, 60–66. [Google Scholar] [CrossRef]
- Mendoza-Pena, C.N.; Hvoslef-Eide, A.K. A novel geno-type-independent technique for successful induction of somatic embryogenesis of adult plants of Jatropha curcas L. using petiole transverse Thin Cell Layer (TCL). Afr. J. Biotech. 2021, 20, 85–91. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physio. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Nhut, D.; Khiet, B.L.; Thi, N.N.; Thuy, D.T.T.; Duy, N.; Hai, N.T.; Huyen, P.X. High frequency shoot formation of yellow passion fruit (Passiflora edulis F. flavicarpa) via thin cell layer (TCL) tech-nology. In Protocols for Micropropa-Gation of Woody Trees and Fruits; Jain, S.M., Häggman, H., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 417–426. [Google Scholar] [CrossRef]
- Hang, N.T.T.; Khiem, D.V.; Huyen, P.X.; Huong, N.T.D.; Duy, N.; Nhut, D.T. Application of TCL technology for artichoke micro-propagation. Proc. Natl. Conf. Life Sci. 2005, 508–510. [Google Scholar]
- Winarto, B.; Yuniarto, K.; Wegadara, D.M. Axillary Shoots De-rived from thin cell layer and adenine sulphate application in in vitro mass propagation of gerbera [Gerbera jamesonii (H. Bolus ex Bolus f.)]. Not. Sci. Biol. 2019, 11, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Sandal, I.; Bhattacharya, A.; Ahuja, P.S. An efficient liquid culture system for tea shoot proliferation. Plant Cell Tissue Organ Cult. 2001, 65, 75–80. [Google Scholar] [CrossRef]
- Abdolinejad, R.; Shekafandeh, A.; Jowkar, A.; Gharaghani, A.; Alemzadeh, A. Indirect regeneration of Ficus carica by the TCL technique and genetic fidelity evaluation of the regenerated plants using flow cytometry and ISSR. Plant Cell Tissue Organ Cult. 2020, 143, 131–144. [Google Scholar] [CrossRef]
- Nhut, D.T.; Hai, N.T.; Don, N.T.; Teixeira da Silva, J.A.; Tran Thanh Van, K. Latest applications of thin cell layer (TCL) culture systems in plant regeneration and morphogenesis. In Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, Vol II; Teixeira da Silva, J.A., Ed.; Global Science Books: Isleworth, UK, 2006; pp. 465–471. [Google Scholar]
- Nhung, N.H.; Kitaya, Y.; Shibuya, T.; Endo, R. Effects of supporting materials in in vitro acclimatization stage on ex vitro growth of wasabi plants. Sci. Hort. 2020, 261, 109042. [Google Scholar] [CrossRef]
- Sharma, V.; Kamal, B.; Srivastava, N.; Negi, Y.; Dobriyal, A.K.; Jadon, V.S. Enhancement of in vitro growth of Swertia chirayita Roxb. Ex Fleming co-cultured with plant growth promoting rhizobacteria. Plant. Cell. Tiss. Organ. Cult. 2015, 121, 215–225. [Google Scholar] [CrossRef]
- Malabadi, R.B.; Choudhury, H.; Tandon, P. Initiation, maintenance and maturation of somatic embryos from thin apical dome sections in Pinus kesiya (Royle ex. Gord) promoted by partial desiccation and Gellan gum. Sci. Hortic. 2004, 102, 449–459. [Google Scholar] [CrossRef]
- Malabadi, R.; Teixeira da Silva, J.; Nataraja, K. Salicylic acid in-duces somatic embryogenesis from mature trees of Pinus rox-burghii (Chir pine) using TCL technology. Tree For. Sci Bio-Tech. 2008, 2, 34–39. [Google Scholar]
- Bonetti, K.A.P.; Nesi, J.; Quisen, R.C.; Quoirin, M. Somatic em-bryogenesis from zygotic embryos and thin cell layers (TCLs) of Brazilian oil palm (Elaeis guineensis × Elaeis oleifera). Afr. J. Biotech. 2016, 15, 2028–2037. [Google Scholar] [CrossRef] [Green Version]
- Malabadi, R.B.; van Staden, J. Somatic embryogenesis from vege-tative shoot apices of mature trees of Pinus patula. Tree Physiol. 2005, 25, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Mosqueda, M.A.; Iglesias-Andreu, L.G.; Armas-Silva, A.A.; Cruz-Gutiérrez, E.J.; de la Torre-Sánchez, J.F.; Leyva-Ovalle, O.R.; Galán-Páez, C.M. Effect of the thin cell layer technique in the induction of somatic embryos in Pinus patula Schl. et Cham. J. For. Res. 2019, 30, 1535–1539. [Google Scholar] [CrossRef]
- Malabadi, R.B.; Nataraja, K. Smoke-saturated water influences somatic embryogenesis using vegetative shoot apices of mature trees of Pinus wallichiana A.B. Jacks. J. Plant Sci. 2007, 2, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Giacomolli Polesi, L.; Pacheco de Freitas Fraga, H.; Goeten, D.; Panato Back, F.; de Medeiros Oliveira, E.; Steiner, N.; Guerra, M.P. Morphohistological and biochemical features of the Guadua chacoensis (Bambusoideae; Poaceae) somatic embryogenesis. Plant Cell Tissue Organ Cult. 2022, 148, 479–499. [Google Scholar] [CrossRef]
- Hanh, N.T.M.; Tung, H.T.; Khai, H.D.; Luan, V.Q.; Mai, N.T.N.; Anh, T.T.L.; Nhut, D.T. Efficient somatic embryogenesis and re-generation from leaf main vein and petiole of Actinidia chinensis planch. via thin cell layer culture technology. Sci. Horticul-Turae 2022, 298, 110986. [Google Scholar] [CrossRef]
- Campos-Boza, S.; Vinas, M.; Solórzano-Cascante, P.; Holst, A.; Steinmacher, D.A.; Guerra, M.P.; Jiménez, V.M. Somatic embryo-genesis and plant regeneration from transverse thin cell layers of adult peach palm (Bactris gasipaes) lateral offshoots. Front. Plant Sci. 2022, 13, 995307. [Google Scholar] [CrossRef] [PubMed]
- Ree, J.F.; Guerra, M.P. Exogenous inorganic ions, partial dehydra-tion, and high rewarming temperatures improve peach palm (Bactris gasipaes Kunth) embryogenic cluster post-vitrification re-growth. Plant Cell Tissue Organ Cult. 2021, 144, 157–169. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Malabadi, R.B. Factors affecting somatic embryogenesis in conifers. J. For. Res. 2012, 23, 503–515. [Google Scholar] [CrossRef]
- Gupta, P.K.; Durzan, D.J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lam-bertiana). Plant Cell Rep. 1985, 4, 177–179.37. [Google Scholar] [CrossRef] [PubMed]
lTCL | tTCL |
---|---|
|
|
|
|
|
|
Plant Species | Type of TCL | Size | References |
---|---|---|---|
Gymnospermae | |||
Pinus kesiya (Royle ex. Gord) | tTCL | 1.5–2.0 mm thick | [27] |
Pinus patula Scheide et Deppe | tTCL | 0.5–1.0 mm thick | [31] |
Pinus patula Schl. et Cham | tTCL | 0.3–0.5 mm | [32] |
Pinus roxburghii | tTCL | 0.5–1.0 mm | [28] |
Pinus wallichiana | tTCL | 0.5–1.0 mm | [33] |
Angiospermae | |||
Citrus spp. | tTCL | 0.4–0.5 mm | [9] |
Malus spp. | tTCL | 0.1–0.3 mm | [16,17] |
Jatropha curcas L. | tTCL | 0.8–1.0 mm | [18] |
Passiflora edulis Sims | tTCL | 0.5 mm thick | [20] |
Camellia sinensis L. | lTCL | 0.5 mm | [26] |
Elaeis guineensis × Elaeis oleifera | tTCL | 1 mm thick | [2] |
Guadua chacoensis (Rojas) Londoño and P.M. | tTCL | 0.5–1.0 mm | [34] |
Actinidia chinensis | tTCL | 0.5–1.0 mm thick | [35] |
Bactris gasipaes Kunth | tTCL | 0.3 mm | [36] |
Bactris gasipaes Kunth | tTCL | 7.0–9.0 mm | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, V.; Magotra, T.; Chourasia, A.; Mittal, D.; Prathap Singh, U.; Sharma, S.; Sharma, S.; García Ramírez, Y.; Dobránszki, J.; Martinez-Montero, M.E. Thin Cell Layer Tissue Culture Technology with Emphasis on Tree Species. Forests 2023, 14, 1212. https://doi.org/10.3390/f14061212
Sharma V, Magotra T, Chourasia A, Mittal D, Prathap Singh U, Sharma S, Sharma S, García Ramírez Y, Dobránszki J, Martinez-Montero ME. Thin Cell Layer Tissue Culture Technology with Emphasis on Tree Species. Forests. 2023; 14(6):1212. https://doi.org/10.3390/f14061212
Chicago/Turabian StyleSharma, Vikas, Tanvi Magotra, Ananya Chourasia, Divye Mittal, Ujjwal Prathap Singh, Saksham Sharma, Shivika Sharma, Yudith García Ramírez, Judit Dobránszki, and Marcos Edel Martinez-Montero. 2023. "Thin Cell Layer Tissue Culture Technology with Emphasis on Tree Species" Forests 14, no. 6: 1212. https://doi.org/10.3390/f14061212
APA StyleSharma, V., Magotra, T., Chourasia, A., Mittal, D., Prathap Singh, U., Sharma, S., Sharma, S., García Ramírez, Y., Dobránszki, J., & Martinez-Montero, M. E. (2023). Thin Cell Layer Tissue Culture Technology with Emphasis on Tree Species. Forests, 14(6), 1212. https://doi.org/10.3390/f14061212