Evaluation of Litter Flammability from Dominated Artificial Forests in Southwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Flammability Characteristics Measurement
2.4. Data Analysis
3. Results
3.1. The Flammability Characteristics of Litter Varied Significant across Forest Types
3.2. Evaluation of the Flammability of Litters from the Nine Forest Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Ellis, T.M.; Bowman, D.M.J.S.; Jain, P.; Flannigan, M.D.; Williamson, G.J. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Chang. Biol. 2022, 28, 1544–1559. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Di Virgilio, G.; Evans, J.P.; Blake, S.A.P.; Armstrong, M.; Dowdy, A.J.; Sharples, J.; McRae, R. Climate Change Increases the Potential for Extreme Wildfires. Geophys. Res. Lett. 2019, 46, 8517–8526. [Google Scholar] [CrossRef]
- Williams, A.P.; Abatzoglou, J.T.; Gershunov, A.; Guzman-Morales, J.; Bishop, D.A.; Balch, J.K.; Lettenmaier, D.P. Observed Impacts of Anthropogenic Climate Change on Wildfire in California. Earths Future 2019, 7, 892–910. [Google Scholar] [CrossRef] [Green Version]
- Bladon, K.D.; Emelko, M.B.; Silins, U.; Stone, M. Wildfire and the Future of Water Supply. Environ. Sci. Technol. 2014, 48, 8936–8943. [Google Scholar] [CrossRef]
- Santín, C.; Doerr, S.H. Fire effects on soils: The human dimension. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150171. [Google Scholar] [CrossRef] [Green Version]
- Filkov, A.I.; Ngo, T.; Matthews, S.; Telfer, S.; Penman, T.D. Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. J. Saf. Sci. Resil. 2020, 1, 44–56. [Google Scholar] [CrossRef]
- Khan, S.J. Ecological consequences of Australian “Black Summer” (2019–20) fires: A synthesis of Australian Commonwealth Government report findings. Integr. Environ. Assess. Manag. 2021, 17, 1136–1140. [Google Scholar] [CrossRef]
- Calkin, D.E.; Thompson, M.P.; Finney, M.A. Negative consequences of positive feedbacks in US wildfire management. For. Ecosyst. 2015, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Lydersen, J.M.; Collins, B.M.; Brooks, M.L.; Matchett, J.R.; Shive, K.L.; Povak, N.A.; Kane, V.R.; Smith, D.F. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 2017, 27, 2013–2030. [Google Scholar] [CrossRef] [PubMed]
- Varner, J.M.; Kane, J.M.; Kreye, J.K.; Engber, E. The Flammability of Forest and Woodland Litter: A Synthesis. Curr. For. Rep. 2015, 1, 91–99. [Google Scholar] [CrossRef]
- Thompson, M.P.; Vaillant, N.M.; Haas, J.R.; Gebert, K.M.; Stockmann, K.D. Quantifying the Potential Impacts of Fuel Treatments on Wildfire Suppression Costs. J. For. 2013, 111, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Agee, J.K.; Skinner, C.N. Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Stephens, S.L.; Moghaddas, J.J. Experimental fuel treatment impacts on forest structure, potential fire behavior, and predicted tree mortality in a California mixed conifer forest. For. Ecol. Manag. 2005, 215, 21–36. [Google Scholar] [CrossRef]
- Plucinski, M.P. Fighting Flames and Forging Firelines: Wildfire Suppression Effectiveness at the Fire Edge. Curr. For. Rep. 2019, 5, 1–19. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E.; Fernandes, P.M. Evidence for lack of a fuel effect on forest and shrubland fire rates of spread under elevated fire danger conditions: Implications for modelling and management. Int. J. Wildland Fire 2022, 31, 471–479. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Rigolot, E. The fire ecology and management of maritime pine (Pinus pinaster Ait.). For. Ecol. Manag. 2007, 241, 1–13. [Google Scholar] [CrossRef]
- Stevens, R. Fuel Loading, Fuel Moisture Are Important Components of Prescribed Fire. Rangelands 2005, 27, 20–21. [Google Scholar] [CrossRef]
- Shen, L.; Yi, L.; Yu, S.; Li, X.; Liu, M.; Wang, S. The Comparison of the Combustibility Research on the Leaf Litter of 4 Common Evergreen Broadleaved Tree Species in Zhejiang Province. For. Res. Manag. 2012, 3, 107–112. (In Chinese) [Google Scholar] [CrossRef]
- Hély, C.; Flannigan, M.; Bergeron, Y.; McRae, D. Role of vegetation and weather on fire behavior in the Canadian mixedwood boreal forest using two fire behavior prediction systems. Can. J. For. Res. 2001, 31, 430–441. [Google Scholar] [CrossRef]
- Scarff, F.R.; Westoby, M. Leaf Litter Flammability in Some Semi-Arid Australian Woodlands. Funct. Ecol. 2006, 20, 745–752. [Google Scholar] [CrossRef]
- Loudermilk, E.L.; O’Brien, J.J.; Mitchell, R.J.; Cropper, W.P.; Hiers, J.K.; Grunwald, S.; Grego, J.; Fernandez-Diaz, J.C.; Loudermilk, E.L.; O’Brien, J.J.; et al. Linking complex forest fuel structure and fire behaviour at fine scales. Int. J. Wildland Fire 2012, 21, 882–893. [Google Scholar] [CrossRef]
- Wyse, S.V.; Perry, G.L.W.; O’Connell, D.M.; Holland, P.S.; Wright, M.J.; Hosted, C.L.; Whitelock, S.L.; Geary, I.J.; Maurin, K.J.L.; Curran, T.J.; et al. A quantitative assessment of shoot flammability for 60 tree and shrub species supports rankings based on expert opinion. Int. J. Wildland Fire 2016, 25, 466–477. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Paterson, A.M.; Wyse, S.V.; Alam, M.A.; Maurin, K.J.L.; Pieper, R.; Padullés Cubino, J.; O’Connell, D.M.; Donkers, D.; Bréda, J.; et al. Shoot flammability of vascular plants is phylogenetically conserved and related to habitat fire-proneness and growth form. Nat. Plants 2020, 6, 355–359. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, X.; Zhang, Q. Flammability of surface dead fuels under typical forests in Daxing’anling Mountains, Inner Mongolia. J. Fujian Agric. For. Univ. Nat. Sci. Ed. 2020, 49, 486–491. [Google Scholar] [CrossRef]
- Curt, T.; Schaffhauser, A.; Borgniet, L.; Dumas, C.; Estève, R.; Ganteaume, A.; Jappiot, M.; Martin, W.; N’Diaye, A.; Poilvet, B. Litter flammability in oak woodlands and shrublands of southeastern France. For. Ecol. Manag. 2011, 261, 2214–2222. [Google Scholar] [CrossRef]
- Zhang, G.; Lin, W.; Hua, K.; Lin, D. Study on the Moisture Change of Surface Easy Fuel of Chinese fir Plantation. J. Fujian Coll. For. 2000, 20, 77–79. (In Chinese) [Google Scholar] [CrossRef]
- Macias Fauria, M.; Michaletz, S.T.; Johnson, E.A. Predicting climate change effects on wildfires requires linking processes across scales. WIREs Clim. Change 2011, 2, 99–112. [Google Scholar] [CrossRef]
- Matthews, S. Dead fuel moisture research: 1991–2012. Int. J. Wildland Fire 2014, 23, 78. [Google Scholar] [CrossRef] [Green Version]
- Cornelissen, J.H.C.; Grootemaat, S.; Verheijen, L.M.; Cornwell, W.K.; Bodegom, P.M.; Wal, R.; Aerts, R. Are litter decomposition and fire linked through plant species traits? New Phytol. 2017, 216, 653–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menning, K.M.; Stephens, S.L. Fire Climbing in the Forest: A Semiqualitative, Semiquantitative Approach to Assessing Ladder Fuel Hazards. West. J. Appl. For. 2007, 22, 88–93. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Niu, S. Fuel Classes in Conifer Forests of Southwest Sichuan, China, and Their Implications for Fire Susceptibility. Forests 2016, 7, 52. [Google Scholar] [CrossRef]
- Li, D.; Niu, S.; Long, X.; Xu, G.; Wang, S.; Chen, F. Relationship of forest fires and meteorological factors in Sichuan province. J. Northwest AF Univ. Nat. Sci. Ed. 2013, 41, 67–74. [Google Scholar]
- Wang, S.; Li, H.; Niu, S. Empirical Research on Climate Warming Risks for Forest Fires: A Case Study of Grade I Forest Fire Danger Zone, Sichuan Province, China. Sustainability 2021, 13, 7773. [Google Scholar] [CrossRef]
- Vel’as, R.; Lieskovský, M.; Majlingová, A.; Kačíková, D. Determination of Gross Calorific Value and Net Calorific Value of Fine Forest Fuel Sampled in Selected Forest Stands. Delta 2020, 14, 5–13. [Google Scholar]
- Zeng, W.; Tang, S.; Xiao, Q. Calorific values and ash contents of different parts of Masson pine trees in southern China. J. For. Res. 2014, 25, 779–786. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, J.; Li, X.; Xu, Y.; Wu, C.-Y. Comprehensive evaluation of powder flowability for additive manufacturing using principal component analysis. Powder Technol. 2021, 393, 154–164. [Google Scholar] [CrossRef]
- Li, S.; Zhao, J.; Zhang, Y.; Zhou, J.; Li, L.; Wang, Q.; Shu, L. Fire resistance of live leaves of 11 woody species in Central Yunnan Province. Univ.J. Huazhong Agric. 2015, 34, 25–30. (In Chinese) [Google Scholar] [CrossRef]
- Wang, K.; Hou, X.; Jiang, T.; Ma, R.; Wang, Q.; Li, S. A Comparison of Fresh Leaves Combustibility of 12 Landscaping Tree Species in Kunming Area. For. Resour. Manag. 2019, 6, 97. (In Chinese) [Google Scholar] [CrossRef]
- Stephens, S.L.; McIver, J.D.; Boerner, R.E.J.; Fettig, C.J.; Fontaine, J.B.; Hartsough, B.R.; Kennedy, P.L.; Schwilk, D.W. The Effects of Forest Fuel-Reduction Treatments in the United States. BioScience 2012, 62, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Feng, J. Experimental study on fire spread rate characteristics of forest surface fuels in South China. Fire Sci. Technol. 2022, 41, 832–835. (In Chinese) [Google Scholar]
- Sah, J.P.; Ross, M.S.; Snyder, J.R.; Koptur, S.; Cooley, H.C. Fuel loads, fire regimes, and post-fire fuel dynamics in Florida Keys pine forests. Int. J. Wildland Fire 2006, 15, 463–478. [Google Scholar] [CrossRef]
- Kreye, J.K.; Kobziar, L.N.; Zipperer, W.C.; Kreye, J.K.; Kobziar, L.N.; Zipperer, W.C. Effects of fuel load and moisture content on fire behaviour and heating in masticated litter-dominated fuels. Int. J. Wildland Fire 2012, 22, 440–445. [Google Scholar] [CrossRef]
- Ferguson, S.A.; Ruthford, J.E.; McKay, S.J.; Wright, D.; Wright, C.; Ottmar, R. Measuring moisture dynamics to predict fire severity in longleaf pine forests. Int. J. Wildland Fire 2002, 11, 267–279. [Google Scholar] [CrossRef]
- Raymond, C.L.; Peterson, D.L. Fuel treatments alter the effects of wildfire in a mixed-evergreen forest, Oregon, USA. Can. J. For. Res. 2005, 35, 2981–2995. [Google Scholar] [CrossRef]
- Xuan, Z.; Wei, Y.; Zhi, C.; Shuxue, L.; Yongmin, L.; Yue, P.; Puxia, W.; Dexiang, W. Surface Fuel Load sand Influencing Factors on Aerial Seeding Pinus tabuliformis Forests with Different Densities in the Eastern Qinling Montains. J. Northwest For. Univ. 2022, 37, 159–165. (In Chinese) [Google Scholar] [CrossRef]
- Richardson, D.M.; Williams, P.A.; Hobbs, R.J. Pine Invasions in the Southern Hemisphere: Determinants of Spread and Invadability. J. Biogeogr. 1994, 21, 511–527. [Google Scholar] [CrossRef]
- Simberloff, D.; Nuñez, M.A.; Ledgard, N.J.; Pauchard, A.; Richardson, D.M.; Sarasola, M.; Van Wilgen, B.W.; Zalba, S.M.; Zenni, R.D.; Bustamante, R.; et al. Spread and impact of introduced conifers in South America: Lessons from other southern hemisphere regions. Austral Ecol. 2010, 35, 489–504. [Google Scholar] [CrossRef]
- Su, W.-H.; Shi, Z.; Zhou, R.; Zhao, Y.-J.; Zhang, G.-F. The role of fire in the Central Yunnan Plateau ecosystem, southwestern China. For. Ecol. Manag. 2015, 356, 22–30. [Google Scholar] [CrossRef]
- Veblen, T.T.; Kitzberger, T.; Raffaele, E.; Lorenz, D.C. Fire History and Vegetation Changes in Northern Patagonia, Argentina. In Fire and Climatic Change in Temperate Ecosystems of the Western Americas; Ecological Studies; Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W., Eds.; Springer: New York, NY, USA, 2003; Volume 160, pp. 265–295. ISBN 978-0-387-95455-4. [Google Scholar]
- Knapp, E.E.; Valachovic, Y.S.; Quarles, S.L.; Johnson, N.G. Housing arrangement and vegetation factors associated with single-family home survival in the 2018 Camp Fire, California. Fire Ecol. 2021, 17, 25. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Elvira, A.; van Kempen, L.; van Logtestijn, R.S.P.; Aptroot, A.; Cornelissen, J.H.C. Flammability across the gymnosperm phylogeny: The importance of litter particle size. New Phytol. 2015, 206, 672–681. [Google Scholar] [CrossRef] [PubMed]
- De Groot, W.J.; Flannigan, M.D.; Cantin, A.S. Climate change impacts on future boreal fire regimes. For. Ecol. Manag. 2013, 294, 35–44. [Google Scholar] [CrossRef]
- Anderson, H.E. Forest fuel ignitibility. Fire Technol. 1970, 6, 312–319. [Google Scholar] [CrossRef]
- Martin, R.E.; Gordon, D.A.; Gutierrez, M.A.; Lee, D.S.; Molina, D.M.; Schroeder, R.A.; Sapsis, D.B.; Stephens, S.L.; Chambers, M. Assessing the flammability of domestic and wildland vegetation. In Proceedings of the 12th Conference on Fire and Forest Meteorology, Jekyll Island, GA, USA, 26–28 October 1993; pp. 26–28. [Google Scholar]
- Pausas, J.G.; Keeley, J.E.; Schwilk, D.W. Flammability as an ecological and evolutionary driver. J. Ecol. 2017, 105, 289–297. [Google Scholar] [CrossRef]
- Varner, J.M.; Kuljian, H.G.; Kreye, J.K. Fires without tanoak: The effects of a non-native disease on future community flammability. Biol. Invasions 2017, 19, 2307–2317. [Google Scholar] [CrossRef] [Green Version]
Forest Type | Location | Ignition Point | Organic Matter Content | Calorific Value |
---|---|---|---|---|
(°C) | (%) | (KJ·kg−1) | ||
Abies fabri | 101.4711° E, 31.2967° N | 266.86 ± 1.02 b | 95.79 ± 1.02 a | 21.82 ± 0.50 ab |
Abies fabri-Picea asperata | 99.4237° E, 30.2610° N | 266.47 ± 0.88 b | 91.31 ± 2.04 abc | 21.10 ± 0.05 b |
Abies fabri-Populus simonii | 101.0231° E, 30.7741° N | 271.65 ± 3.09 a | 95.87 ± 0.47 a | 23.27 ± 0.75 a |
Larix gmelini | 99.8472° E, 28.6820° N | 263.94 ± 1.18 b | 86.82 ± 4.62 bc | 21.38 ± 0.48 b |
Pinus armandii | 101.8556° E, 30.9240° N | 265.79 ± 0.88 b | 86.22 ± 2.03 c | 21.09 ± 1.27 b |
Pinus densata | 102.0771° E, 30.5617° N | 264.69 ± 0.70 b | 93.35 ± 2.10 ab | 22.43 ± 0.23 ab |
Pinus densata-Populus simonii | 99.6015° E, 29.1319° N | 264.97 ± 1.49 b | 92.47 ± 1.01 abc | 21.85 ± 0.37 ab |
Pinus yunnanensis | 101.8244° E, 28.5245° N | 265.62 ± 2.04 b | 92.68 ± 2.47 abc | 21.45 ± 0.21 b |
Platycladus orientalis | 101.8334° E, 30.8963° N | 268.08 ± 1.64 ab | 78.18 ± 2.63 d | 21.27 ± 0.35 b |
Ignition Point | Organic Matter Content | Calorific Value | ||
---|---|---|---|---|
(°C) | (%) | (KJ·Kg−1) | ||
Ignition point (°C) | Pearson’s | 1 | ||
p value | - | |||
Organic matter content (%) | Pearson’s | −0.12 | 1 | |
p value | 0.76 | - | ||
calorific value (KJ·Kg−1) | Pearson’s | −0.56 | 0.60 | 1 |
p value | 0.12 | 0.09 | - |
Forest Type | PC 1 | PC 2 | Group | Flammability Ranking |
---|---|---|---|---|
Pinus densata | 0.41 | 0.10 | Highly susceptible to ignition with low fire intensity | 1 |
Abies fabri | 0.49 | 0.57 | Median ignitibility and fire intensity | 2 |
Abies fabri-Populus simonii | 2.27 | −1.02 | Less susceptible to ignition with high fire intensity | 3 |
Pinus densata-Populus simonii | −0.01 | 0.78 | Highly susceptible to ignition with low fire intensity | 4 |
Pinus yunnanensis | −0.17 | 0.58 | Highly susceptible to ignition with low fire intensity | 5 |
Abies fabri-Picea asperata | −0.37 | 0.11 | Median ignitibility and fire intensity | 6 |
Larix gmelini | −0.89 | 0.40 | Highly susceptible to ignition with low fire intensity | 7 |
Pinus armandii | −0.83 | −0.31 | Highly susceptible to ignition with low fire intensity | 8 |
Platycladus orientalis | −0.90 | −2.11 | Median ignitibility and fire intensity | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhang, Z.; Zheng, J.; Hou, G.; Liu, H.; Cui, X. Evaluation of Litter Flammability from Dominated Artificial Forests in Southwestern China. Forests 2023, 14, 1229. https://doi.org/10.3390/f14061229
Li S, Zhang Z, Zheng J, Hou G, Liu H, Cui X. Evaluation of Litter Flammability from Dominated Artificial Forests in Southwestern China. Forests. 2023; 14(6):1229. https://doi.org/10.3390/f14061229
Chicago/Turabian StyleLi, Shuting, Zihan Zhang, Jiangkun Zheng, Guirong Hou, Han Liu, and Xinglei Cui. 2023. "Evaluation of Litter Flammability from Dominated Artificial Forests in Southwestern China" Forests 14, no. 6: 1229. https://doi.org/10.3390/f14061229
APA StyleLi, S., Zhang, Z., Zheng, J., Hou, G., Liu, H., & Cui, X. (2023). Evaluation of Litter Flammability from Dominated Artificial Forests in Southwestern China. Forests, 14(6), 1229. https://doi.org/10.3390/f14061229