Considering Soil Biota and Symbioses in Forest Management and Ecosystem Restoration
Abstract
:1. Introduction
2. Symposium Findings: Key Principles Emerging from Soil Biota and Forest Restoration Research
2.1. Diverse, Native Mixes of Appropriate Soil Biota Can Meaningfully Shift Forests and Plantings towards More Successful and Ecologically Appropriate Conditions
2.2. Context Is Important to Consider, including Site History, Machinery Use, Inter- and Intra-Specific Plant Diversity, and Source Material and Work Site Characteristics
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, S.E.; Read, D.J. The Roles of Mycorrhizas in Successional Processes and in Selected Biomes. In Mycorrhizal Symbiosis; Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2008; p. 48. ISBN 978-0-12-370526-6. [Google Scholar]
- Aislabie, J.; Deslippe, J.R. Soil Microbes and Their Contribution to Soil Services. In Ecosystem Services in New Zealand–Conditions and Trends; Manaaki Whenua Press: Lincoln, New Zealand, 2013. [Google Scholar]
- Markovchick, L.M.; Carrasco-Denney, V.; Sharma, J.; Querejeta, J.I.; Gibson, K.S.; Swaty, R.; Uhey, D.A.; Belgara-Andrew, A.; Kovacs, Z.I.; Johnson, N.C.; et al. The Gap between Mycorrhizal Science and Application: Existence, Origins, and Relevance during the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 2023, 31, e13866. [Google Scholar] [CrossRef]
- Philippot, L.; Spor, A.; Hénault, C.; Bru, D.; Bizouard, F.; Jones, C.M.; Sarr, A.; Maron, P.-A. Loss in Microbial Diversity Affects Nitrogen Cycling in Soil. ISME J. 2013, 7, 1609–1619. [Google Scholar] [CrossRef]
- van der Heijden, M.G.A.; Bardgett, R.D.; van Straalen, N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Graham, L.L.B.; Turjaman, M.; Page, S.E. Shorea Balangeran and Dyera Polyphylla (Syn. Dyera Lowii) as Tropical Peat Swamp Forest Restoration Transplant Species: Effects of Mycorrhizae and Level of Disturbance. Wetl. Ecol. Manag. 2013, 21, 307–321. [Google Scholar] [CrossRef]
- Neuenkamp, L.; Prober, S.M.; Price, J.N.; Zobel, M.; Standish, R.J. Benefits of Mycorrhizal Inoculation to Ecological Restoration Depend on Plant Functional Type, Restoration Context and Time. Fungal Ecol. 2019, 40, 140–149. [Google Scholar] [CrossRef]
- Wolfsdorf, G.; Abrahão, A.; D’Angioli, A.M.; Dechoum, M.D.S.; Meirelles, S.T.; Pecoral, L.F.L.; Rowland, L.; Verona, L.D.S.; Schmidt, I.B.; Sampaio, A.B.; et al. Inoculum Origin and Soil Legacy Can Shape Plant–Soil Feedback Outcomes for Tropical Grassland Restoration. Restor. Ecol. 2021, 29, e13455. [Google Scholar] [CrossRef]
- Wubs, E.R.J.; van der Putten, W.H.; Bosch, M.; Bezemer, T.M. Soil Inoculation Steers Restoration of Terrestrial Ecosystems. Nat. Plants 2016, 2, 16107. [Google Scholar] [CrossRef] [Green Version]
- Koziol, L.; Bever, J.D. AMF, Phylogeny, and Succession: Specificity of Response to Mycorrhizal Fungi Increases for Late-successional Plants. Ecosphere 2016, 7, e01555. [Google Scholar] [CrossRef]
- Piñeiro, J.; Maestre, F.T.; Bartolomé, L.; Valdecantos, A. Ecotechnology as a Tool for Restoring Degraded Drylands: A Meta-Analysis of Field Experiments. Ecol. Eng. 2013, 61, 133–144. [Google Scholar] [CrossRef]
- Duell, E.B.; O’Hare, A.; Wilson, G.W.T. Inoculation with Native Soil Improves Seedling Survival and Reduces Non-native Reinvasion in a Grassland Restoration. Restor. Ecol. 2023, 31, e13685. [Google Scholar] [CrossRef]
- Farrell, H.L.; Léger, A.; Breed, M.F.; Gornish, E.S. Restoration, Soil Organisms, and Soil Processes: Emerging Approaches. Restor. Ecol. 2020, 28, S307–S310. [Google Scholar] [CrossRef]
- Markovchick, L.M.; Schaefer, E.A.; Deringer, T.; Kovacs, Z.I.; Deckert, R.J.; Yazzie, J.; Dixit, A.; Propster, J.R.; Patterson, A.; Hultine, K.R.; et al. Post-Restoration Colonization Suggests Slow Regeneration, Plant Translocation Barriers, and Other Host/Symbiont Lessons during the United Nations’ Decade on Ecosystem Restoration. Restor. Ecol. 2023, e13940. [Google Scholar] [CrossRef]
- Remke, M.J.; Hoang, T.; Kolb, T.; Gehring, C.; Johnson, N.C.; Bowker, M.A. Familiar soil conditions help Pinus ponderosa seedlings cope with warming and drying climate. Restor. Ecol. 2020, 28, S344–S354. [Google Scholar] [CrossRef]
- Grman, E.; Allen, J.; Galloway, E.; McBride, J.; Bauer, J.T.; Price, P.A. Inoculation with Remnant Prairie Soils Increased the Growth of Three Native Prairie Legumes but Not Necessarily Their Associations with Beneficial Soil Microbes. Restor. Ecol. 2020, 28, S393–S399. [Google Scholar] [CrossRef]
- Remke, M.J.; Johnson, N.C.; Bowker, M.A. Sympatric Soil Biota Mitigate a Warmer-drier Climate for Bouteloua Gracilis. Glob. Chang. Biol. 2022, 28, 6280–6292. [Google Scholar] [CrossRef]
- Johnson, D.; Martin, F.; Cairney, J.W.G.; Anderson, I.C. The Importance of Individuals: Intraspecific Diversity of Mycorrhizal Plants and Fungi in Ecosystems. New Phytol. 2012, 194, 614–628. [Google Scholar] [CrossRef]
- Johnson, N.C.; Tilman, D.; Wedin, D. Plant and Soil Controls on Mycorrhizal Fungal Communities. Ecology 1992, 73, 2034–2042. [Google Scholar] [CrossRef]
- Johnson, N.C.; Wilson, G.W.T.; Bowker, M.A.; Wilson, J.A.; Miller, R.M. Resource Limitation Is a Driver of Local Adaptation in Mycorrhizal Symbioses. Proc. Natl. Acad. Sci. USA 2010, 107, 2093–2098. [Google Scholar] [CrossRef] [Green Version]
- Gehring, C.A.; Sthultz, C.M.; Flores-Rentería, L.; Whipple, A.V.; Whitham, T.G. Tree Genetics Defines Fungal Partner Communities That May Confer Drought Tolerance. Proc. Natl. Acad. Sci. USA 2017, 114, 11169–11174. [Google Scholar] [CrossRef] [Green Version]
- Hoeksema, J.D.; Hernandez, J.V.; Rogers, D.L.; Mendoza, L.L.; Thompson, J.N. Geographic Divergence in a Species-Rich Symbiosis: Interactions between Monterey Pines and Ectomycorrhizal Fungi. Ecology 2012, 93, 2274–2285. [Google Scholar] [CrossRef]
- Revillini, D.; Gehring, C.A.; Johnson, N.C. The Role of Locally Adapted Mycorrhizas and Rhizobacteria in Plant–Soil Feedback Systems. Funct. Ecol. 2016, 30, 1086–1098. [Google Scholar] [CrossRef] [Green Version]
- Connell, R.K.; Zeglin, L.H.; Blair, J.M. Plant Legacies and Soil Microbial Community Dynamics Control Soil Respiration. Soil Biol. Biochem. 2021, 160, 108350. [Google Scholar] [CrossRef]
- Hoeksema, J.D.; Chaudhary, V.B.; Gehring, C.A.; Johnson, N.C.; Karst, J.; Koide, R.T.; Pringle, A.; Zabinski, C.; Bever, J.D.; Moore, J.C.; et al. A Meta-Analysis of Context-Dependency in Plant Response to Inoculation with Mycorrhizal Fungi. Ecol. Lett. 2010, 13, 394–407. [Google Scholar] [CrossRef]
- Johnson, N.C.; Graham, J.H.; Smith, F.A. Functioning of Mycorrhizal Associations along the Mutualism-Parasitism Continuum. New Phytol. 1997, 135, 575–585. [Google Scholar] [CrossRef]
- Petipas, R.H.; Wruck, A.C.; Geber, M.A. Microbe-mediated Local Adaptation to Limestone Barrens Is Context Dependent. Ecology 2020, 101, e03092. [Google Scholar] [CrossRef]
- Smith, M.E.; Delean, S.; Cavagnaro, T.R.; Facelli, J.M. Evidence for Species-Specific Plant Responses to Soil Microbial Communities from Remnant and Degraded Land Provides Promise for Restoration. Austral Ecol. 2018, 43, 301–308. [Google Scholar] [CrossRef]
- Patterson, A.; Flores-Rentería, L.; Whipple, A.; Whitham, T.; Gehring, C. Common Garden Experiments Disentangle Plant Genetic and Environmental Contributions to Ectomycorrhizal Fungal Community Structure. New Phytol. 2019, 221, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Blasini, D.E.; Koepke, D.F.; Bush, S.E.; Allan, G.J.; Gehring, C.A.; Whitham, T.G.; Day, T.A.; Hultine, K.R. Tradeoffs between Leaf Cooling and Hydraulic Safety in a Dominant Arid Land Riparian Tree Species. Plant Cell Environ. 2022, 45, 1664–1681. [Google Scholar] [CrossRef]
- Blasini, D.E.; Koepke, D.F.; Grady, K.C.; Allan, G.J.; Gehring, C.A.; Whitham, T.G.; Cushman, S.A.; Hultine, K.R. Adaptive Trait Syndromes along Multiple Economic Spectra Define Cold and Warm Adapted Ecotypes in a Widely Distributed Foundation Tree Species. J. Ecol. 2021, 109, 1298–1318. [Google Scholar] [CrossRef]
- Rúa, M.A.; Antoninka, A.; Antunes, P.M.; Chaudhary, V.B.; Gehring, C.; Lamit, L.J.; Piculell, B.J.; Bever, J.D.; Zabinski, C.; Meadow, J.F.; et al. Home-Field Advantage? Evidence of Local Adaptation among Plants, Soil, and Arbuscular Mycorrhizal Fungi through Meta-Analysis. BMC Evol. Biol. 2016, 16, 122. [Google Scholar] [CrossRef] [Green Version]
- Maltz, M.R.; Treseder, K.K. Sources of Inocula Influence Mycorrhizal Colonization of Plants in Restoration Projects: A Meta-Analysis: Mycorrhizal Inoculation in Restoration. Restor. Ecol. 2015, 23, 625–634. [Google Scholar] [CrossRef]
- Mortimer, P.E.; Archer, E.; Valentine, A.J. Mycorrhizal C Costs and Nutritional Benefits in Developing Grapevines. Mycorrhiza 2005, 15, 159–165. [Google Scholar] [CrossRef]
- Corkidi, L.; Allen, E.B.; Merhaut, D.; Allen, M.F.; Downer, J.; Bohn, J.; Evans, M. Assessing the Infectivity of Commercial Mycorrhizal Inoculants in Plant Nursery Conditions. J. Environ. Hortic. 2004, 22, 149–154. [Google Scholar] [CrossRef]
- Kaminsky, L.M.; Trexler, R.V.; Malik, R.J.; Hockett, K.L.; Bell, T.H. The Inherent Conflicts in Developing Soil Microbial Inoculants. Trends Biotechnol. 2019, 37, 140–151. [Google Scholar] [CrossRef]
- Salomon, M.J.; Demarmels, R.; Watts-Williams, S.J.; McLaughlin, M.J.; Kafle, A.; Ketelsen, C.; Soupir, A.; Bücking, H.; Cavagnaro, T.R.; van der Heijden, M.G.A. Global Evaluation of Commercial Arbuscular Mycorrhizal Inoculants under Greenhouse and Field Conditions. Appl. Soil Ecol. 2022, 169, 104225. [Google Scholar] [CrossRef]
- FAO; IUCN CEM; SER. Principles for Ecosystem Restoration to Guide the United Nations Decade 2021–2030; FAO: Rome, Italy, 2021; Available online: https://www.fao.org/3/cb6591en/cb6591en.pdf (accessed on 11 June 2023).
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International Principles and Standards for the Practice of Ecological Restoration. Second Edition. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef] [Green Version]
- Janoušková, M.; Krak, K.; Vosátka, M.; Püschel, D.; Štorchová, H. Inoculation Effects on Root-Colonizing Arbuscular Mycorrhizal Fungal Communities Spread beyond Directly Inoculated Plants. PLoS ONE 2017, 12, e0181525. [Google Scholar] [CrossRef] [Green Version]
- Hayward, J.; Horton, T.R.; Pauchard, A.; Nuñez, M.A. A Single Ectomycorrhizal Fungal Species Can Enable a Pinus Invasion. Ecology 2015, 96, 1438–1444. [Google Scholar] [CrossRef]
- Hamza, M.A.; Anderson, W.K. Soil Compaction in Cropping Systems. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Jordan, D.; Ponder, F.; Hubbard, V.C. Effects of Soil Compaction, Forest Leaf Litter and Nitrogen Fertilizer on Two Oak Species and Microbial Activity. Appl. Soil Ecol. 2003, 23, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Mohieddinne, H.; Brasseur, B.; Spicher, F.; Gallet-Moron, E.; Buridant, J.; Kobaissi, A.; Horen, H. Physical Recovery of Forest Soil after Compaction by Heavy Machines, Revealed by Penetration Resistance over Multiple Decades. For. Ecol. Manag. 2019, 449, 117472. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil Compaction Impact and Modelling. A Review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Gibson, S.; Neher, D.A.; Jonhson, N.C.; Parmenter, R.R.; Antonika, J.A. Heavy Logging Machinery Impacts Soil Physical Properties More than Nematode Communities. Forests 2023, 14, 1205. [Google Scholar] [CrossRef]
- Alakukku, L.; Weisskopf, P.; Chamen, W.C.T.; Tijink, F.G.J.; van der Linden, J.P.; Pires, S.; Sommer, C.; Spoor, G. Prevention Strategies for Field Traffic-Induced Subsoil Compaction: A Review. Soil Tillage Res. 2003, 73, 145–160. [Google Scholar] [CrossRef]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The Impact of Heavy Traffic on Forest Soils: A Review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Frey, B.; Kremer, J.; Rüdt, A.; Sciacca, S.; Matthies, D.; Lüscher, P. Compaction of Forest Soils with Heavy Logging Machinery Affects Soil Bacterial Community Structure. Eur. J. Soil Biol. 2009, 45, 312–320. [Google Scholar] [CrossRef]
- Bassett, I.E.; Simcock, R.C.; Mitchell, N.D. Consequences of Soil Compaction for Seedling Establishment: Implications for Natural Regeneration and Restoration. Austral Ecol. 2005, 30, 827–833. [Google Scholar] [CrossRef]
- von Wilpert, K.; Schäffer, J. Ecological Effects of Soil Compaction and Initial Recovery Dynamics: A Preliminary Study. Eur. J. For. Res. 2006, 125, 129–138. [Google Scholar] [CrossRef]
- Meinhardt, K.A.; Gehring, C.A. Disrupting Mycorrhizal Mutualisms: A Potential Mechanism by Which Exotic Tamarisk Outcompetes Native Cottonwoods. Ecol. Appl. 2012, 22, 532–549. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhang, X.; Wang, X.; Fu, S.; Wu, S.; Lu, X.; Ren, C.; Han, X.; Yang, G. Soil Bacteria and Fungi Respond Differently to Plant Diversity and Plant Family Composition during the Secondary Succession of Abandoned Farmland on the Loess Plateau, China. Plant Soil 2020, 448, 183–200. [Google Scholar] [CrossRef]
- Helander, M.; Saloniemi, I.; Omacini, M.; Druille, M.; Salminen, J.-P.; Saikkonen, K. Glyphosate Decreases Mycorrhizal Colonization and Affects Plant-Soil Feedback. Sci. Total Environ. 2018, 642, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Pánková, H.; Dostálek, T.; Vazačová, K.; Münzbergová, Z. Slow Recovery of Arbuscular Mycorrhizal Fungi and Plant Community after Fungicide Application: An Eight-Year Experiment. J. Veg. Sci. 2018, 29, 695–703. [Google Scholar] [CrossRef]
- Hawkes, C.V.; Belnap, J.; D’Antonio, C.; Firestone, M.K. Arbuscular Mycorrhizal Assemblages in Native Plant Roots Change in the Presence of Invasive Exotic Grasses. Plant Soil 2006, 281, 369–380. [Google Scholar] [CrossRef]
- Wilson, G.W.T.; Hickman, K.R.; Williamson, M.M. Invasive Warm-Season Grasses Reduce Mycorrhizal Root Colonization and Biomass Production of Native Prairie Grasses. Mycorrhiza 2012, 22, 327–336. [Google Scholar] [CrossRef]
- Lilleskov, E.A.; Kuyper, T.W.; Bidartondo, M.I.; Hobbie, E.A. Atmospheric Nitrogen Deposition Impacts on the Structure and Function of Forest Mycorrhizal Communities: A Review. Environ. Pollut. 2019, 246, 148–162. [Google Scholar] [CrossRef]
- Grünfeld, L.; Skias, G.; Rillig, M.C.; Veresoglou, S.D. Arbuscular Mycorrhizal Root Colonization Depends on the Spatial Distribution of the Host Plants. Mycorrhiza 2022, 32, 387–395. [Google Scholar] [CrossRef]
- Hart, M.; Klironomos, J. Colonization of Roots by Arbuscular Mycorrhizal Fungi Using Different Sources of Inoculum. Mycorrhiza 2002, 12, 181–184. [Google Scholar] [CrossRef]
- Hart, M.M.; Antunes, P.M.; Chaudhary, V.B.; Abbott, L.K. Fungal Inoculants in the Field: Is the Reward Greater than the Risk? Funct. Ecol. 2017, 32, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.D.; Durall, D.M.; Cairney, J.W.G. Ectomycorrhizal Fungal Communities in Young Forest Stands Regenerating after Clearcut Logging. New Phytol. 2003, 157, 399–422. [Google Scholar] [CrossRef] [Green Version]
- Peay, K.G.; Garbelotto, M.; Bruns, T.D. Evidence of Dispersal Limitation in Soil Microorganisms: Isolation Reduces Species Richness on Mycorrhizal Tree Islands. Ecology 2010, 91, 3631–3640. [Google Scholar] [CrossRef]
- Parsons, W.F.J.; Miller, S.L.; Knight, D.H. Root-Gap Dynamics in a Lodgepole Pine Forest: Ectomycorrhizal and Nonmycorrhizal Fine Root Activity after Experimental Gap Formation. Can. J. For. Res. 1994, 24, 1531–1538. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bock, B.; Markovchick, L. Considering Soil Biota and Symbioses in Forest Management and Ecosystem Restoration. Forests 2023, 14, 1236. https://doi.org/10.3390/f14061236
Bock B, Markovchick L. Considering Soil Biota and Symbioses in Forest Management and Ecosystem Restoration. Forests. 2023; 14(6):1236. https://doi.org/10.3390/f14061236
Chicago/Turabian StyleBock, Beatrice, and Lisa Markovchick. 2023. "Considering Soil Biota and Symbioses in Forest Management and Ecosystem Restoration" Forests 14, no. 6: 1236. https://doi.org/10.3390/f14061236
APA StyleBock, B., & Markovchick, L. (2023). Considering Soil Biota and Symbioses in Forest Management and Ecosystem Restoration. Forests, 14(6), 1236. https://doi.org/10.3390/f14061236