Strategy Trade-Off of Predominant Stress Tolerance Relative to Competition and Reproduction Associated with Plant Functional Traits under Karst Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Community Survey
2.2. Plant Trait Determinations and Community-Weighted Mean
2.3. CSR Component Calculations
2.4. Data Analysis
3. Result
3.1. CSR Strategies for Individuals and Communities in the Karst Forest
3.2. Variation and Differentiation of Plant Functional Traits of Karst Forests
3.3. CSR Components Associated with Plant Functional Traits
3.4. Mantel’s Tests for CSR Strategies Associated with Functional Trait Combinations
4. Discussion
4.1. The Ecological Strategy in the Karst Forests
4.2. Functional Trait Differentiation Associated with Plant Resource Strategy
4.3. Trade-Offs of CSR Strategy Associated with Plant Functional Traits in the Karst Forest
4.4. Strategy Mechanisms of Karst Forests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grime, J.P. Vegetation classification by reference to strategies. Nature 1974, 250, 26–31. [Google Scholar] [CrossRef]
- Grime, J.P. Evidence for the existence of three primary strategies in plants and Its relevance to ecological and evolutionary theory. Am. Nat. 1977, 111, 1169–1194. [Google Scholar] [CrossRef]
- Grime, J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Li, Q.; Umer, M.; Guo, Y.; Shen, K.; Xia, T.; Xu, X.; Han, X.; Ren, W.; Sun, Y.; Wu, B.; et al. Karst Soil Patch Heterogeneity with Gravels Promotes Plant Root Development and Nutrient Utilization Associated with Arbuscular Mycorrhizal Fungi. Agronomy 2022, 12, 1063. [Google Scholar] [CrossRef]
- Zanzottera, M.; Dalle Fratte, M.; Caccianiga, M.; Pierce, S.; Cerabolini, B.E.L. Community-level variation in plant functional traits and ecological strategies shapes habitat structure along succession gradients in alpine environment. Community Ecol. 2020, 21, 55–65. [Google Scholar] [CrossRef]
- Caccianiga, M.; Luzzaro, A.; Pierce, S.; Ceriani, R.M.; Cerabolini, B. The functional basis of a primary succession resolved by CSR classification. Oikos 2006, 112, 10–20. [Google Scholar] [CrossRef]
- Albuquerque, A.C.; Rodrigues-Filho, C.A.d.S.; Matias, L.Q. Influence of climatic variables on CSR strategies of aquatic plants in a semiarid region. Hydrobiologia 2019, 847, 61–74. [Google Scholar] [CrossRef]
- Vicente, J.; Alves, P.; Randin, C.; Guisan, A.; Honrado, J. What drives invasibility? A multi-model inference test and spatial modelling of alien plant species richness patterns in northern Portugal. Ecography 2010, 33, 1081–1092. [Google Scholar] [CrossRef]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Prentice, I.C.; et al. The global spectrum of plant form and function. Nature 2016, 529, 167–171. [Google Scholar] [CrossRef]
- Chai, Y.; Yue, M.; Wang, M.; Xu, J.; Liu, X.; Zhang, R.; Wan, P. Plant functional traits suggest a change in novel ecological strategies for dominant species in the stages of forest succession. Oecologia 2016, 180, 771–783. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2016, 64, 715–716. [Google Scholar] [CrossRef] [Green Version]
- Pierce, S.; Negreiros, D.; Cerabolini, B.E.L.; Kattge, J.; Díaz, S.; Kleyer, M.; Shipley, B.; Wright, S.J.; Soudzilovskaia, N.A.; Onipchenko, V.G.; et al. A global method for calculating plant CSR ecologicalstrategies applied across biomes world-wide. Funct. Ecol. 2017, 31, 444–457. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.; Diemer, M. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, J.H.C.; Lavorel, S.; Garnier, E. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 2003, 51, 335–380. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Martin, R.E. Contrasting leaf chemical traits in tropical lianas and trees: Implications for future forest composition. Ecol. Lett. 2012, 15, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B.J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Falster, D.S.; Westoby, M. Plant height and evolutionary games. Trends Ecol. Evol. 2003, 18, 337–343. [Google Scholar] [CrossRef]
- Price, C.A.; Wright, I.J.; Ackerly, D.D.; Niinemets, Ü.; Reich, P.B.; Veneklaas, E.J. Are leaf functional traits ‘invariant’with plant size and what is ‘invariance’anyway? Funct. Ecol. 2014, 28, 1330–1343. [Google Scholar] [CrossRef] [Green Version]
- Zotz, G.; Schmidt, G.; Mikona, C. What is the proximate cause for size-dependent ecophysiological differences in vascular epiphytes? Plant Biol. 2011, 13, 902–908. [Google Scholar] [CrossRef]
- Gratani, L. Plant phenotypic plasticity in response to environmental factors. Adv. Bot. 2014, 2014, 208747. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhu, H.; Cao, Y.; Li, J.; Zhu, Q.; Yao, J.; Xu, C. Effect of simulated warming on leaf functional traits of urban greening plants. BMC Plant Biol. 2020, 20, 139. [Google Scholar] [CrossRef] [Green Version]
- Santiago, L.S.; Wright, S.J. Leaf functional traits of tropical forest plants in relation to growth form. Funct. Ecol. 2007, 21, 19–27. [Google Scholar] [CrossRef]
- Suding, K.N.; Lavorel, S.; Chapin, F.S.; Cornelissen, J.H.C.; DÍAz, S.; Garnier, E.; Goldberg, D.; Hooper, D.U.; Jackson, S.T.; Navas, M.-L. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Glob. Chang. Biol. 2008, 14, 1125–1140. [Google Scholar] [CrossRef] [Green Version]
- Muscarella, R.; Uriarte, M. Do community-weighted mean functional traits reflect optimal strategies? Proc. Biol. Sci. 2016, 283, 20152434. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Hu, J.; Chen, X.; Xu, X.; Yang, Y.; Ni, J. Adaptation strategy of karst forests: Evidence from the community-weighted mean of plant functional traits. Ecol. Evol. 2022, 12, e8680. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Huang, J.; Zang, R. Soil nutrients and climate seasonality drive differentiation of ecological strategies of species in forests across four climatic zones. Plant Soil. 2022, 473, 517–531. [Google Scholar] [CrossRef]
- Yu, J.; Hou, G.; Zhou, T.; Shi, P.; Zong, N.; Sun, J. Variation of plant CSR strategies across a precipitation gradient in the alpine grasslands on the northern Tibet Plateau. Sci. Total. Environ. 2022, 838, 156512. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, V.M.; Rios, R.S.; Gianoli, E. Interactive effects of shading and disturbance on plant invasion in an arid shrubland: Assembly processes and CSR-strategies. J. Ecol. 2021, 109, 2405–2420. [Google Scholar] [CrossRef]
- Han, X.; Huang, J.; Yao, J.; Xu, Y.; Ding, Y.; Zang, R. Effects of logging on the ecological strategy spectrum of a tropical montane rain forest. Ecol. Indic. 2021, 128, 107812. [Google Scholar] [CrossRef]
- Huang, Q.; Cai, Y.; Xing, X. Rocky desertification, antidesertification, and sustainable development in the karst mountain region of Southwest China. AMBIO A J. Hum. Environ. 2008, 37, 390–392. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Wang, G.H.; Pan, Y.; Qin, G.L.; Tan, W.N.; Lu, C.H. Effects of microhabitat on rodent-mediated seed removal of endangered Kmeria septentrionalis in the karst habitat. PeerJ 2020, 8, e10378. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Long, J.; Liao, H.; Liu, L.; Li, J.; Wu, J.; Xiao, X. Soil bacterial community characteristics under different microhabitat types on Maolan karst forest, Guizhou, Southwest China. Yingyong Shengtai Xuebao 2019, 30, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Xu, X.; Liao, X.; Liu, J.; Chen, J. Ampelocalamus luodianensis (Poaceae), a plant endemic to karst, adapts to resource heterogeneity in differing microhabitats by adjusting its biomass allocation. Glob. Ecol. Conserv. 2023, 41, e02374. [Google Scholar] [CrossRef]
- He, Y. Ecological Adaptability of Karst Plants Regulated by Arbuscular Mycorrhizae; Science Press: Beijing, China, 2019; p. 206. [Google Scholar]
- Guo, Y.; Wang, B.; Li, D.; Mallik, A.U.; Xiang, W.; Ding, T.; Wen, S.; Lu, S.; Huang, F.; He, Y. Effects of topography and spatial processes on structuring tree species composition in a diverse heterogeneous tropical karst seasonal rainforest. Flora 2017, 231, 21–28. [Google Scholar] [CrossRef]
- García-Palacios, P.; Maestre, F.T.; Milla, R. Community-aggregated plant traits interact with soil nutrient heterogeneity to determine ecosystem functioning. Plant Soil. 2012, 364, 119–129. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, G.; Zhu, J.; Ni, J. Aggregated spatial distributions of species in a subtropical karst forest, southwestern China. J. Plant Ecol. 2013, 6, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-C.; Liu, Y.-G.; Fan, D.-Y.; Guo, K. Plant drought tolerance assessment for re-vegetation in heterogeneous karst landscapes of southwestern China. Flora-Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 30–38. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Chen, J.; Feng, L.; Li, F.; Yu, L. Study on the relationship between functional characteristics and environmental factors in karst plant communities. Ecol. Evol. 2022, 12, e9335. [Google Scholar] [CrossRef]
- Fu, P.-L.; Zhu, S.-D.; Zhang, J.-L.; Finnegan, P.M.; Jiang, Y.-J.; Lin, H.; Fan, Z.-X.; Cao, K.-F. The contrasting leaf functional traits between a karst forest and a nearby non-karst forest in south-west China. Funct. Plant Biol. 2019, 46, 907–915. [Google Scholar] [CrossRef]
- Zhou, T.; Hou, G.; Sun, J.; Zong, N.; Shi, P. Degradation shifts plant communities from S- to R-strategy in an alpine meadow, Tibetan Plateau. Sci. Total. Env. 2021, 800, 149572. [Google Scholar] [CrossRef]
- Rios, C.O.; Pimentel, P.A.; Živčák, M.; Brestič, M.; Pereira, E.G. Can ecological strategies be explained by photochemical efficiency in ironstone outcrops vegetation? Plant Soil. 2022, 480, 105–120. [Google Scholar] [CrossRef]
- Lienin, P.; Kleyer, M. Plant trait responses to the environment and effects on ecosystem properties. Basic Appl. Ecol. 2012, 13, 301–311. [Google Scholar] [CrossRef]
- Araujo da Costa, H.d.J.; Gurgel, E.S.C.; Amaral, D.D.d.; Vasconcelos, L.V.; Rebelo, L.G.B.; Teodoro, G.S. CSR ecological strategies, functional traits and trade-offs of woody species in Amazon sandplain forest. Flora 2020, 273, 151710. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide ‘fast–slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Lebrija-Trejos, E.; Reich, P.B.; Hernández, A.; Wright, S.J. Species with greater seed mass are more tolerant of conspecific neighbours: A key driver of early survival and future abundances in a tropical forest. Ecol. Lett. 2016, 19, 1071–1080. [Google Scholar] [CrossRef]
- Zhang, Y. Physicochemical Analysis of Soil, Water and Plant; China Forestry Publishing House: Beijing, China, 2011; pp. 222–232. [Google Scholar]
- Garnier, E.; Cortze, J.; Billes, G.; Navas, M.-L. Plant Functional markers capture ecosystem properties during secondary succession. Ecology 2004, 85, 2630–2637. [Google Scholar] [CrossRef]
- Li, Y.; Shipley, B. An experimental test of CSR theory using a globally calibrated ordination method. PLoS ONE 2017, 12, e0175404. [Google Scholar] [CrossRef] [Green Version]
- Novakovskiy, A.B.; Dubrovskiy, Y.A.; Dalke, I.V.; Maslova, S.P. Plant CSR types in the north: Comparing the morphological and morpho-physiological approaches. Physiol. Mol. Biol. Plants 2021, 27, 665–673. [Google Scholar] [CrossRef]
- Rosenfield, M.F.; Müller, S.C.; Overbeck, G.E. Short gradient, but distinct plant strategies The CSR scheme applied to subtropical forests. J. Veg. Sci. 2019, 30, 984–993. [Google Scholar] [CrossRef]
- Liao, H.; Pal, R.W.; Niinemets, Ü.; Bahn, M.; Cerabolini, B.E.L.; Peng, S.; Catford, J. Different functional characteristics can explain different dimensions of plant invasion success. J. Ecol. 2021, 109, 1524–1536. [Google Scholar] [CrossRef]
- Kozak, M. Visualizing adaptation of genotypes with a ternary plot. Chil. J. Agric. Res. 2010, 70, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Sunagawa, S.; Coelho, L.P.; Chaffron, S.; Kultima, J.R.; Labadie, K.; Salazar, G.; Djahanschiri, B.; Zeller, G.; Mende, D.R.; Alberti, A.; et al. Structure and function of the global ocean microbiome. Science 2015, 348, 1261359. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Chen, C.; He, B.; Lu, X. CSR Ecological Strategies and Functional Traits of the Co-Existing Species along the Succession in the Tropical Lowland Rain Forest. Forests 2022, 13, 1272. [Google Scholar] [CrossRef]
- Shen, K.; He, Y.; Xu, X.; Umer, M.; Liu, X.; Xia, T.; Guo, Y.; Wu, B.; Xu, H.; Zang, L.; et al. Effects of AMF on plant nutrition and growth depend on substrate gravel content and patchiness in the karst species Bidens pilosa L. Front. Plant Sci. 2022, 13, 968719. [Google Scholar] [CrossRef]
- He, M.; He, Y.; Wu, C.; Ou, J.; Lin, Y.; Fang, Z.; Han, X.; Xu, X. Effects of rocky desertification intensity on soil fungal composition and diversity during karst vegetation succession. Mycosystema 2019, 38, 471–484. [Google Scholar] [CrossRef]
- Wang, L.; He, Y.; Umer, M.; Guo, Y.; Tan, Q.; Kang, L.; Fang, Z.; Shen, K.; Xia, T.; Wu, P.; et al. Strategic differentiation of subcommunities composed of evergreen and deciduous woody species associated with leaf functional traits in the subtropical mixed forest. Ecol. Indic. 2023, 150, 110281. [Google Scholar] [CrossRef]
- Cerabolini, B.E.; Brusa, G.; Ceriani, R.M.; De Andreis, R.; Luzzaro, A.; Pierce, S. Can CSR classification be generally applied outside Britain? Plant Ecol. 2010, 210, 253–261. [Google Scholar] [CrossRef]
- Pierce, S.; Brusa, G.; Vagge, I.; Cerabolini, B.E. Allocating CSR plant functional types: The use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 2013, 27, 1002–1010. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Jiang, C.; Yang, H.; Wang, Y.; Zhong, Z. Arbuscular mycorrhizal fungal composition affects the growth and nutrient acquisition of two plants from a karst area. Sains Malays. 2017, 46, 1701–1708. [Google Scholar] [CrossRef]
- He, Y.; Cornelissen, J.H.C.; Zhong, Z.; Dong, M.; Jiang, C. How interacting fungal species and mineral nitrogen inputs affect transfer of nitrogen from litter via arbuscular mycorrhizal mycelium. Environ. Sci. Pollut. Res. 2017, 24, 9791–9801. [Google Scholar] [CrossRef]
- Fujita, Y.; Venterink, H.O.; van Bodegom, P.M.; Douma, J.C.; Heil, G.W.; Holzel, N.; Jablonska, E.; Kotowski, W.; Okruszko, T.; Pawlikowski, P.; et al. Low investment in sexual reproduction threatens plants adapted to phosphorus limitation. Nature 2014, 505, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Eichenberg, D.; Trogisch, S.; Huang, Y.; He, J.-S.; Bruelheide, H. Shifts in community leaf functional traits are related to litter decomposition along a secondary forest succession series in subtropical China. J. Plant Ecol. 2014, 8, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Chai, Y.; Liu, X.; Yue, M.; Guo, J.; Wang, M.; Wan, P.; Zhang, X.; Zhang, C. Leaf traits in dominant species from different secondary successional stages of deciduous forest on the Loess Plateau of northern China. Appl. Veg. Sci. 2015, 18, 50–63. [Google Scholar] [CrossRef]
- Reich, P.B.; Wright, I.J.; Cavender-Bares, J.; Craine, J.M.; Oleksyn, J.; Westoby, M.; Walters, M.B. The Evolution of Plant Functional Variation: Traits, Spectra, and Strategies. Int. J. Plant Sci. 2003, 164, S143–S164. [Google Scholar] [CrossRef]
- Lavorel, S.; Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 2002, 16, 545–556. [Google Scholar] [CrossRef]
- Novakovskiy, A.B.; Maslova, S.P.; Dalke, I.V.; Dubrovskiy, Y. Patterns of Allocation CSR Plant Functional Types in Northern Europe. Int. J. Ecol. 2016, 2016, 1323614. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Q.; Liu, L.; Xu, X.; Yang, Y.; Guo, Y.; Xu, H.; Cai, X.; Ni, J. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China. Chin. J. Plant Ecol. 2018, 42, 562–572. [Google Scholar] [CrossRef]
- Geekiyanage, N.; Goodale, U.M.; Cao, K.; Kitajima, K. Plant ecology of tropical and subtropical karst ecosystems. Biotropica 2019, 51, 626–640. [Google Scholar] [CrossRef]
- Gerard, M.; El Kahloun, M.; Rymen, J.; Beauchard, O.; Meire, P. Importance of mowing and flood frequency in promoting species richness in restored floodplains. J. Appl. Ecol. 2008, 45, 1780–1789. [Google Scholar] [CrossRef]
- Shen, K.; Cornelissen, J.H.C.; Wang, Y.; Wu, C.; He, Y.; Ou, J.; Tan, Q.; Xia, T.; Kang, L.; Guo, Y. AM fungi alleviate phosphorus limitation and enhance nutrient competitiveness of invasive plants via mycorrhizal networks in karst areas. Front. Ecol. Evol. 2020, 8, 125. [Google Scholar] [CrossRef]
- He, Y.; Cornelissen, J.H.; Wang, P.; Dong, M.; Ou, J. Nitrogen transfer from one plant to another depends on plant biomass production between conspecific and heterospecific species via a common arbuscular mycorrhizal network. Environ. Sci. Pollut. Res. 2019, 26, 8828–8837. [Google Scholar] [CrossRef] [PubMed]
- Frenette-Dussault, C.; Shipley, B.; Léger, J.F.; Meziane, D.; Hingrat, Y. Functional structure of an arid steppe plant community reveals similarities with Grime’s C-S-R theory. J. Veg. Sci. 2012, 23, 208–222. [Google Scholar] [CrossRef]
- Pierce, S.; Cerabolini, B.E. Plant economics and size trait spectra are both explained by one theory. Econ. Size Ecol. 2018. [Google Scholar]
- Koerselman, W.; Meuleman, A.F.M. The Vegetation N:P Ratio: A New Tool to Detect the Nature of Nutrient Limitation. Br. Ecol. Soc. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
Plant Traits | Mean ± SD | Minimum | Maximum | CV (%) |
---|---|---|---|---|
LA (cm2) | 25.78 ± 9.99 | 8.14 | 56.58 | 38.77 |
SLA (cm2/g) | 123.74 ± 22.30 | 77.88 | 191.97 | 18.02 |
LDMC (%) | 45.24 ± 2.98 | 37.04 | 54.45 | 6.58 |
LWC (%) | 54.84 ± 3.01 | 45.68 | 63.13 | 5.48 |
DBH (cm) | 2.65 ± 0.86 | 1.27 | 6.29 | 32.45 |
Height (m) | 2.83 ± 0.90 | 1.20 | 6.03 | 31.87 |
LC (mg/g) | 435.60 ± 12.88 | 399.96 | 475.15 | 2.96 |
LN (mg/g) | 15.44 ± 1.67 | 12.57 | 22.29 | 10.78 |
LP (mg/g) | 0.83 ± 0.20 | 0.47 | 1.79 | 24.19 |
C:N ratio | 30.94 ± 3.40 | 20.42 | 37.34 | 10.99 |
C:P ratio | 606.09 ± 139.60 | 311.61 | 1019.29 | 23.03 |
N:P ratio | 20.32 ± 4.61 | 13.92 | 36.30 | 22.69 |
Strategy Components | PC1 Score | PC2 Score |
---|---|---|
Component C | 0.440 *** | 0.110 |
Component S | −0.810 *** | −0.018 |
Component R | 0.790 *** | −0.140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; He, Y.; Gao, L.; Umer, M.; Guo, Y.; Tan, Q.; Kang, L.; Fang, Z.; Shen, K.; Xia, T. Strategy Trade-Off of Predominant Stress Tolerance Relative to Competition and Reproduction Associated with Plant Functional Traits under Karst Forests. Forests 2023, 14, 1258. https://doi.org/10.3390/f14061258
Hu X, He Y, Gao L, Umer M, Guo Y, Tan Q, Kang L, Fang Z, Shen K, Xia T. Strategy Trade-Off of Predominant Stress Tolerance Relative to Competition and Reproduction Associated with Plant Functional Traits under Karst Forests. Forests. 2023; 14(6):1258. https://doi.org/10.3390/f14061258
Chicago/Turabian StyleHu, Xiaorun, Yuejun He, Lu Gao, Muhammad Umer, Yun Guo, Qiyu Tan, Liling Kang, Zhengyuan Fang, Kaiping Shen, and Tingting Xia. 2023. "Strategy Trade-Off of Predominant Stress Tolerance Relative to Competition and Reproduction Associated with Plant Functional Traits under Karst Forests" Forests 14, no. 6: 1258. https://doi.org/10.3390/f14061258
APA StyleHu, X., He, Y., Gao, L., Umer, M., Guo, Y., Tan, Q., Kang, L., Fang, Z., Shen, K., & Xia, T. (2023). Strategy Trade-Off of Predominant Stress Tolerance Relative to Competition and Reproduction Associated with Plant Functional Traits under Karst Forests. Forests, 14(6), 1258. https://doi.org/10.3390/f14061258