Spatial–Temporal Distribution Pattern of Ormosia hosiei in Sichuan under Different Climate Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Geographical Data
2.2.2. Bioclimatic Data
2.3. Models Analysis
3. Results
3.1. Geographic Distribution Pattern
3.2. Restrictive Climatic Factors
3.3. Current Potential Distribution
3.4. Predicting Changes in Suitable Habitats
3.5. Model Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shitara, T.; Fukui, S.; Matsui, T.; Momohara, A.; Tsuyama, I.; Ohashi, H.; Tanaka, N.; Kamijo, T. Climate change impacts on migration of Pinus koraiensis during the Quaternary using species distribution models. Plant Ecol. 2021, 222, 843–859. [Google Scholar] [CrossRef]
- Fang, J.; Lechowicz, M.J. Climatic limits for the present distribution of beech (Fagus L.) species in the world. J. Biogeogr. 2006, 33, 1804–1819. [Google Scholar] [CrossRef]
- Wang, F.; Xiong, Z.; Yan, X.; Dai, X.; Wang, L.; Li, Y. Geographical distribution pattern of species diversity of the genus Populus L. in China. Acta Ecol. Sin. 2018, 38, 282–290. [Google Scholar] [CrossRef]
- Sintayehu, D.W. Impact of climate change on biodiversity and associated key ecosystem services in Africa: A systematic review. Ecosyst. Health Sustain. 2018, 4, 225–239. [Google Scholar] [CrossRef] [Green Version]
- Warren, R.; Price, J.; Graham, E.; Forstenhaeusler, N.; VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 2018, 360, 791–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez-Preciado, R.P.; Gasca-Pineda, J.; Arteaga, M.C. Effects of global warming on the potential distribution ranges of six Quercus species (Fagaceae). Flora 2019, 251, 32–38. [Google Scholar] [CrossRef]
- Sarquis, J.A.; Cristaldi, M.A.; Arzamendia, V.; Bellini, G.; Giraudo, A.R. Species distribution models and empirical test: Comparing predictions with well-understood geographical distribution of Bothrops alternatus in Argentina. Ecol. Evol. 2018, 8, 10497–10509. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Jiang, P.; Huang, Y.; Yang, Y.; Wang, R.; Yang, Y. Potential geographic distribution of relict plant Pteroceltis tatarinowii in China under climate change scenarios. PLoS ONE 2022, 17, e0266133. [Google Scholar] [CrossRef] [PubMed]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef]
- Booth, T.H.; Nix, H.A.; Busby, J.R.; Hutchinson, M.F. Bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 2014, 20, 1–9. [Google Scholar] [CrossRef]
- Booth, T.H. Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral Ecol. 2018, 43, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Semwal, D.P.; Pandey, A.; Gore, P.G.; Ahlawat, S.P.; Yadav, S.K.; Kumar, A. Habitat prediction mapping using BioClim model for prioritizing germplasm collection and conservation of an aquatic cash crop ‘makhana’ (Euryale ferox Salisb.) in India. Genet. Resour. Crop Evol. 2021, 68, 3445–3456. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, G.; Jim, C.; Liu, X.; Zhang, P.; Qiu, J.; Liu, D. Bioclimatic suitability of actual and potential cultivation areas for Jacaranda mimosifolia in Chinese cities. Forests 2021, 12, 951. [Google Scholar] [CrossRef]
- Wisz, M.S.; Hijmans, R.J.; Li, J.; Peterson, A.T.; Graham, C.H.; Guisan, A.; Group, N.P.S.D.W. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008, 14, 763–773. [Google Scholar] [CrossRef]
- Carpenter, G.; Gillison, A.N.; Winter, J. DOMAIN: A flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers. Conserv. 1993, 2, 667–680. [Google Scholar] [CrossRef]
- Wang, G.; Gen, Q.; Xiao, M.; Zhang, M.; Zhang, Y.; Wang, Z. Predicting Pseudolarix amabilis potential habitat based on four Niche models. Acta Ecol. Sin. 2020, 40, 6096–6104. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Guarino, L.; Cruz, M.; Rojas, E. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet. Resour. Newsl. 2001, 127, 15–19. [Google Scholar]
- Chu, X.; Fu, Y.; Yan, W. Genetic conservation for rare plant of Ormosia hosiei and research progress in its fine silviculture. Chin. Wild Plant Resour. 2021, 40, 61–65. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, Z.; Du, K. Genetic diversity of natural populations of endangered Ormosia hosiei, endemic to China. Biochem. Syst. Ecol. 2012, 40, 13–18. [Google Scholar] [CrossRef]
- Zhai, D.; Fang, Z.; Wu, J.; Yao, Q.; Bai, X.; Yang, L.; Gao, Q.; Zhang, Y. Analysis on the character diversity of Ormosia hosiei seeds from different producing regions. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2019, 62, 63–69. [Google Scholar] [CrossRef]
- Liu, P.; Que, S.; Liu, L.; Huang, X. Research status and endangered conservation strategy of Ormosia hosiei. Subtrop. Plant Sci. 2017, 46, 96–100. [Google Scholar] [CrossRef]
- Zhang, J.-Q.; Jiang, M.-Y.; Zhu, D.-D.; Zhang, J.-L.; Zheng, J.-Z.; Deng, C.-Y. Characterization of the complete chloroplast genome of an endemic species of pea family in China, Ormosia hosiei (Fabaceae). Conserv. Genet. Resour. 2019, 11, 443–446. [Google Scholar] [CrossRef]
- Xu, H.; Qiu, Y.; Chen, J.; Shi, Y.; Zhang, X.; Song, Q.; Huang, M.; Wu, Z.; Ni, L. Chemical constituents and their activities from the seeds of Ormosia hosiei. Nat. Prod. Commun. 2019, 14, 1–4. [Google Scholar] [CrossRef]
- Pouny, I.; Batut, M.; Vendier, L.; David, B.; Yi, S.; Sautel, F.; Arimondo, P.B.; Massiot, G. Cytisine-like alkaloids from Ormosia hosiei Hemsl. & E.H. Wilson. Phytochemistry 2014, 107, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Luo, X.; Zhou, Z. Exponential fertilization on red-seed tree (Ormosia hosiei) seedlings subjected to contrasting light conditions: Do we really need intensive nutrient loading? Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12244. [Google Scholar] [CrossRef]
- Xiao, D.; Deng, Z.; Luo, Q.; Xu, Z.; Shen, B.; Chen, H.; Xu, H.; Zhou, Z. Growth and form-quality traits diversity analysis of young Ormosia hosiei family. For. Res. 2021, 34, 152–157. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Xiao, Z. Patterns of seed predation and dispersal of an endangered rare plant Ormosia hosiei by Edward’s long-tailed rats and Chinese white-bellied rats. Biodivers. Sci. 2011, 19, 93–96. [Google Scholar] [CrossRef]
- Qiu, H.; Sun, J.; Xu, D.; Jiao, J.; Xue, M.; Yuan, W.; Shen, A.; Jiang, B.; Li, S. The distribution dynamics of Ormosia hosiei under different climate change scenarios since the Last Glacial Maximum. Acta Ecol. Sin. 2020, 40, 3016–3026. [Google Scholar] [CrossRef]
- Almas, A.D.; Conway, T.M. The role of native species in urban forest planning and practice: A case study of Carolinian Canada. Urban For. Urban Green. 2016, 17, 54–62. [Google Scholar] [CrossRef]
- Wu, Z.; Raven, P.H. Flora Reipublicae Popularis Sinicae; Science Press: Beijing, China, 1994; Volume 40. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Bazzato, E.; Rosati, L.; Canu, S.; Fiori, M.; Farris, E.; Marignani, M. High spatial resolution bioclimatic variables to support ecological modelling in a Mediterranean biodiversity hotspot. Ecol. Model. 2021, 441, 109354. [Google Scholar] [CrossRef]
- Rodríguez-Núñez, J.R.; Campos-Rojas, E.; Andrés-Agustín, J.; Alia-Tejacal, I.; Ortega-Acosta, S.A.; Peña-Caballero, V.; Madera-Santana, T.J.; Núñez-Colín, C.A. Distribution, eco-climatic characterisation, and potential growing regions of Annona cherimola Mill. (Annonaceae) in Mexico. Ethnobiol. Conserv. 2021, 10, 1–17. [Google Scholar] [CrossRef]
- Huang, Z.; Xie, L.; Wang, H.; Zhong, J.; Li, Y.; Liu, J.; Ou, Z.; Liang, X.; Li, Y.; Huang, H.; et al. Geographic distribution and impacts of climate change on the suitable habitats of Zingiber species in China. Ind. Crops Prod. 2019, 138, 111429. [Google Scholar] [CrossRef]
- Abdelaal, M.; Fois, M.; Fenu, G.; Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecol. Inform. 2019, 50, 68–75. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Duan, R.-Y.; Kong, X.-Q.; Huang, M.-Y.; Fan, W.-Y.; Wang, Z.-G. The predictive performance and stability of six species distribution Models. PLoS ONE 2014, 9, e112764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moyroud, N.; Portet, F. Introduction to QGIS. In QGIS and Generic Tools; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 1–17. [Google Scholar]
- Sheng, Q.; Wang, C.; Wang, L.; Liu, Y.; Geng, X.; Zhu, Z. Prediction of suitable habitat of Paeonia suffruticosa Andr. in China by DIVA-GIS. Nonwood For. Res. 2022, 40, 205–213, 248. [Google Scholar] [CrossRef]
- Xie, C.; Huang, B.; Jim, C.Y.; Han, W.; Liu, D. Predicting differential habitat suitability of Rhodomyrtus tomentosa under current and future climate scenarios in China. For. Ecol. Manag. 2021, 501, 119696. [Google Scholar] [CrossRef]
- Foden, W.B.; Young, B.E.; Akçakaya, H.R.; Garcia, R.A.; Hoffmann, A.A.; Stein, B.A.; Thomas, C.D.; Wheatley, C.J.; Bickford, D.; Carr, J.A.; et al. Climate change vulnerability assessment of species. WIREs Clim. Chang. 2019, 10, e551. [Google Scholar] [CrossRef] [Green Version]
- Santika, T.; Hutchinson, M.F. The effect of species response form on species distribution model prediction and inference. Ecol. Model. 2009, 220, 2365–2379. [Google Scholar] [CrossRef]
- Hijmans, R.J. Cross-validation of species distribution models: Removing spatial sorting bias and calibration with a null model. Ecology 2012, 93, 679–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, P.A.; Graham, C.H.; Master, L.L.; Albert, D.L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 2006, 29, 773–785. [Google Scholar] [CrossRef]
- Körner, C. Significance of temperature in plant life. Plant Growth Clim. Chang. 2006, 100, 48–66. [Google Scholar]
- Strimbeck, G.R.; Schaberg, P.G.; Fossdal, C.G.; Schröder, W.P.; Kjellsen, T.D. Extreme low temperature tolerance in woody plants. Front. Plant Sci. 2015, 6, 884. [Google Scholar] [CrossRef] [PubMed]
- Woodward, F.I.; Fogg, G.E.; Heber, U.; Laws, R.M.; Franks, F. The impact of low temperatures in controlling the geographical distribution of plants. Philos. Trans. R. Soc. London B Biol. Sci. 1997, 326, 585–593. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Q.; Huang, J.; Zhou, P. Geographic distribution and potential distribution of Vaccinium bracteatum. J. Jiangsu For. Sci. Technol. 2019, 46, 1–8. [Google Scholar] [CrossRef]
- Matthews, H.D.; Wynes, S. Current global efforts are insufficient to limit warming to 1.5 °C. Science 2022, 376, 1404–1409. [Google Scholar] [CrossRef] [PubMed]
- Ming, A.; Rowell, I.; Lewin, S.; Rouse, R.; Aubry, T.; Boland, E. Key Messages from the IPCC AR6 Climate Science Report; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Mycoo, M.A. Beyond 1.5 °C: Vulnerabilities and adaptation strategies for Caribbean Small Island Developing States. Reg. Environ. Chang. 2018, 18, 2341–2353. [Google Scholar] [CrossRef] [Green Version]
- Rangel, T.F.; Edwards, N.R.; Holden, P.B.; Diniz-Filho, J.A.F.; Gosling, W.D.; Coelho, M.T.P.; Cassemiro, F.A.S.; Rahbek, C.; Colwell, R.K. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science 2018, 361, eaar5452. [Google Scholar] [CrossRef] [Green Version]
- Lippmann, R.; Babben, S.; Menger, A.; Delker, C.; Quint, M. Development of wild and cultivated plants under global warming conditions. Curr. Biol. 2019, 29, R1326–R1338. [Google Scholar] [CrossRef] [PubMed]
- Kempel, A.; Bornand, C.N.; Gygax, A.; Juillerat, P.; Jutzi, M.; Sager, L.; Bäumler, B.; Eggenberg, S.; Fischer, M. Nationwide revisitation reveals thousands of local extinctions across the ranges of 713 threatened and rare plant species. Conserv. Lett. 2020, 13, e12749. [Google Scholar] [CrossRef]
- Shishir, S.; Mollah, T.H.; Tsuyuzaki, S.; Wada, N. Predicting the probable impact of climate change on the distribution of threatened Shorea robusta forest in Purbachal, Bangladesh. Glob. Ecol. Conserv. 2020, 24, e01250. [Google Scholar] [CrossRef]
- Garza, G.; Rivera, A.; Venegas Barrera, C.S.; Martinez-Ávalos, J.G.; Dale, J.; Feria Arroyo, T.P. Potential effects of climate change on the geographic distribution of the endangered plant species Manihot walkerae. Forests 2020, 11, 689. [Google Scholar] [CrossRef]
- Varol, T.; Canturk, U.; Cetin, M.; Ozel, H.B.; Sevik, H. Impacts of climate change scenarios on European ash tree (Fraxinus excelsior L.) in Turkey. For. Ecol. Manag. 2021, 491, 119199. [Google Scholar] [CrossRef]
- Natale, E.; Zalba, S.M.; Reinoso, H. Presence—Absence versus invasive status data for modelling potential distribution of invasive plants: Saltcedar in Argentina. Ecoscience 2013, 20, 161–171. [Google Scholar] [CrossRef]
- Zhu, H.; You, L.; Li, Y.; Wang, H.; Wang, X. Modeling the geographical distribution pattern and climatic limited factors of Cerasus schneideriana. J. Trop. Subtrop. Bot. 2017, 25, 315–322. [Google Scholar] [CrossRef]
Bioclimatic Variable | Factor Loading | ||||
---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | |
bio1 Annual mean temperature | 0.29 | −0.06 | −0.11 | 0.26 | 0.03 |
bio2 Mean diurnal range a | −0.28 | 0.04 | 0.00 | 0.06 | 0.54 |
bio3 Isothermality b | −0.17 | 0.25 | −0.31 | −0.03 | 0.63 |
bio4 Temperature seasonality c | −0.19 | −0.23 | 0.44 | 0.14 | −0.09 |
bio5 Max. temperature of warmest month | 0.20 | −0.29 | 0.20 | 0.24 | 0.27 |
bio6 Min. temperature of coldest month | 0.30 | −0.02 | −0.13 | 0.03 | 0.02 |
bio7 Annual temperature range d | −0.24 | −0.19 | 0.32 | 0.13 | 0.18 |
bio8 Mean temperature of wettest quarter | 0.25 | −0.17 | −0.03 | 0.26 | 0.24 |
bio9 Mean temperature of driest quarter | 0.29 | 0.01 | −0.20 | 0.16 | 0.07 |
bio10 Mean temperature of warmest quarter | 0.23 | −0.22 | 0.15 | 0.38 | 0.02 |
bio11 Mean temperature of coldest quarter | 0.29 | 0.01 | −0.20 | 0.16 | 0.07 |
bio12 Annual precipitation | 0.16 | 0.27 | 0.47 | −0.06 | 0.17 |
bio13 Precipitation of wettest month | 0.10 | 0.40 | 0.23 | 0.14 | 0.00 |
bio14 Precipitation of driest month | 0.27 | −0.07 | 0.08 | −0.36 | 0.08 |
bio15 Precipitation seasonality e | −0.07 | 0.37 | −0.19 | 0.38 | −0.28 |
bio16 Precipitation of wettest quarter | 0.10 | 0.39 | 0.27 | 0.09 | 0.02 |
bio17 Precipitation of driest quarter | 0.28 | −0.01 | 0.08 | −0.36 | 0.07 |
bio18 Precipitation of warmest quarter | 0.14 | 0.38 | 0.19 | 0.07 | 0.02 |
bio19 Precipitation of coldest quarter | 0.28 | −0.01 | 0.08 | −0.36 | 0.07 |
Eigenvalue | 10.65 | 4.86 | 1.61 | 1.19 | 0.54 |
Variance % | 56.05 | 25.59 | 8.46 | 6.25 | 2.84 |
Cumulative variance % | 56.05 | 81.64 | 90.10 | 96.34 | 99.18 |
Bioclimatic Variable | Minimum | Maximum | Mean ± SD | Coefficient of Variation | 95% Confidence Interval |
---|---|---|---|---|---|
bio1 Annual mean temperature | 13.84 | 18.53 | 16.88 ± 1.16 | 14.51 | 16.36~17.40 |
bio6 Min. temperature of coldest month | −1.00 | 5.80 | 3.06 ± 1.93 | 1.58 | 2.20~3.92 |
bio9 Mean temperature of driest quarter | 3.91 | 9.72 | 7.41 ± 1.57 | 6.15 | 6.22~7.81 |
bio11 Mean temperature of coldest quarter | 3.93 | 9.42 | 7.36 ± 1.46 | 5.05 | 6.72~8.01 |
bio13 Precipitation of wettest month | 165.00 | 447.00 | 234.23 ± 71.89 | 3.26 | 202.35~266.10 |
bio16 Precipitation of wettest quarter | 481.00 | 1099.00 | 617.27 ± 158.39 | 3.90 | 547.04~687.50 |
Suitability Category | BIOCLIM | DOMAIN | ||||
---|---|---|---|---|---|---|
Current | Future | Area Change % | Current | Future | Area Change % | |
Excellent | 42,218 | 30,709 | −27.26 | 738 | 728 | −1.36 |
Very high | 50,832 | 63,909 | 25.73 | 30,304 | 23,387 | −22.82 |
High | 28,717 | 34,048 | 18.56 | 51,569 | 47,456 | −7.98 |
Medium | 26,762 | 27,943 | 4.41 | 58,265 | 67,597 | 16.02 |
Low | 0 | 0 | 0.00 | 87,056 | 90,984 | 4.51 |
Unsuitable | 337,470 | 329,392 | −2.39 | 258,069 | 255,847 | −0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, C.; Chen, L.; Li, M.; Liu, D.; Jim, C.-Y. Spatial–Temporal Distribution Pattern of Ormosia hosiei in Sichuan under Different Climate Scenarios. Forests 2023, 14, 1261. https://doi.org/10.3390/f14061261
Xie C, Chen L, Li M, Liu D, Jim C-Y. Spatial–Temporal Distribution Pattern of Ormosia hosiei in Sichuan under Different Climate Scenarios. Forests. 2023; 14(6):1261. https://doi.org/10.3390/f14061261
Chicago/Turabian StyleXie, Chunping, Lin Chen, Meng Li, Dawei Liu, and Chi-Yung Jim. 2023. "Spatial–Temporal Distribution Pattern of Ormosia hosiei in Sichuan under Different Climate Scenarios" Forests 14, no. 6: 1261. https://doi.org/10.3390/f14061261
APA StyleXie, C., Chen, L., Li, M., Liu, D., & Jim, C. -Y. (2023). Spatial–Temporal Distribution Pattern of Ormosia hosiei in Sichuan under Different Climate Scenarios. Forests, 14(6), 1261. https://doi.org/10.3390/f14061261