The Nutritional Qualities of Walnuts and Their Planted Soils from China—Level and Relationship
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Collection
2.3. Nutritional Components Analysis: Walnut
2.3.1. Fatty Acid
2.3.2. Tocopherol
2.3.3. Mineral Elements
2.3.4. Amino Acids
2.4. Soil Samples Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Walnut Oil
3.2. Elements in Walnut Flour
3.3. Amino Acids in Walnut Flour
3.4. Correlation between the Nutritional Qualities of Walnuts
3.5. Soil Qualities and Their Correlations
3.6. The Impact of Soil on the Nutritional Qualities of Walnuts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hayes, D.; Angove, M.J.; Tucci, J.; Dennis, C. Walnuts (Juglans regia) chemical composition and research in human health. Crit. Rev. Food Sci. Nutr. 2016, 56, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Ros, E.; Izquierdo-Pulido, M.; Sala-Vila, A. Beneficial effects of walnut consumption on human health: Role of micronutrients. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, B.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Cosme, F. Composition of nuts and their potential health benefits-an overview. Foods 2023, 12, 942. [Google Scholar] [CrossRef] [PubMed]
- Takumi, H.; Kato, K.; Ohto-N, T.; Nakanishi, H.; Kamasaka, H.; Kuriki, T. Analysis of fatty acid esters of hydroxyl fatty acid in nut oils and other plant oils. J. Oleo Sci. 2021, 70, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Maestri, D.; Cittadini, M.C.; Bodoira, R.; Martinez, M. Tree nut oils: Chemical profiles, extraction, stability, and quality concerns. Eur. J. Lipid Sci. Technol. 2020, 122, 1900450. [Google Scholar] [CrossRef]
- Cecilia, C.M.; Martin, D.; Gallo, S.; Fuente, G.; Bodoira, R.; Martinez, M.; Maestri, D. Evaluation of hazelnut and walnut oil chemical traits from conventional cultivars and native genetic resources in a non-traditional crop environment from Argentina. Eur. Food Res. Technol. 2020, 246, 833–843. [Google Scholar] [CrossRef]
- Rabadan, A.; Pardo, J.E.; Pardo-Gimenez, A.; Alvarez-Orti, M. Effect of genotype and crop year on the nutritional value of walnut virgin oil and defatted flour. Sci. Total Environ. 2018, 634, 1092–1099. [Google Scholar] [CrossRef]
- Simsek, M. Chemical, mineral, and fatty acid compositions of various types of walnut (Juglans regia L.) in Turkey. Bulg. Chem. Commun. 2016, 48, 66–70. [Google Scholar]
- Tapia, M.I.; Sánchez-Morgado, J.R.; García-Parra, J.; Ramírez, R.; Hernández, T.; González-Gómez, D. Comparative study of the nutritional and bioactive compounds content of four walnut (Juglans regia L.) cultivars. J. Food Compos. Anal. 2013, 31, 232–237. [Google Scholar] [CrossRef]
- Rabrenovic, B.; Dimic, E.; Maksimovic, M.; Sobajic, S.; Gajic-Krstajic, L. Determination of fatty acid and tocopherol compositions and the oxidative stability of walnut (Juglans regia L.) cultivars grown in serbia. Czech J. Food Sci. 2011, 29, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wu, S.; Jin, X. Fatty acid stable carbon isotope ratios combined with oxidation kinetics for characterization and authentication of walnut oils. J. Agric. Food Chem. 2021, 69, 6701–6709. [Google Scholar] [CrossRef]
- Kafkas, E.; Burgut, A.; Ozcan, H.; Ozcan, A.; Sutyemez, M.; Kafkas, S.; Türemis, N. Fatty acid, total phenol and tocopherol profiles of some walnut cultivars: A comparative study. Food Sci. Nutr. 2017, 08, 1074–1084. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Yin, R.; Zhang, Q.R.; Wang, X.P.; Hu, X.J.; Gao, Z.D.; Duan, Z.M. Chemometrics analysis on the content of fatty acid compositions in different walnut (Juglans regia L.) varieties. Eur. Food Res. Technol. 2017, 243, 2235–2242. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, X.; Li, J.; Wang, F.; Mi, J.; Shi, Y.; He, F.; Chen, L.; Zhang, F.; Wan, X. Chemical compositions of walnut (Juglans Spp.) oil: Combined effects of genetic and climatic factors. Forests 2022, 13, 962. [Google Scholar] [CrossRef]
- Rébufa, C.; Artaud, J.; Le Dréau, Y. Walnut (Juglans regia L.) oil chemical composition depending on variety, locality, extraction process and storage conditions: A comprehensive review. J. Food Compos. Anal. 2022, 110, 104534. [Google Scholar] [CrossRef]
- Wu, S.; Ni, Z.; Wang, R.; Zhao, B.; Han, Y.; Zheng, Y.; Liu, F.; Gong, Y.; Tang, F.; Liu, Y. The effects of cultivar and climate zone on phytochemical components of walnut (Juglans regia L.). Food Energy Secur. 2020, 9, e196. [Google Scholar] [CrossRef] [Green Version]
- Gould, R.L.; Pazdro, R. Impact of supplementary amino acids, micronutrients, and overall diet on glutathione homeostasis. Nutrients 2019, 11, 1056. [Google Scholar] [CrossRef] [Green Version]
- Burbano, J.J.; Correa, M.J. Composition and physicochemical characterization of walnut flour, a by-product of oil extraction. Plant Foods Hum. Nutr. 2021, 76, 233–239. [Google Scholar] [CrossRef]
- Abenavoli, M.R.; Lucisano, M.; Princi, M.P.; Gelsomino, A.; Petrovicova, B.; Guidi, L.; Landi, M.; Lupini, A.; Sorgona, A. Soil and management factors differentially affect kiwifruit quality: A multivariate approach. Agrochimica 2019, 63, 211–230. [Google Scholar] [CrossRef]
- Dai, Q.; Deng, Z.; Pan, L.; Nie, L.; Yang, Y.; Huang, Y.; Huang, J. Effects of trace elements on traits and functional active compounds of camellia oleifera in nutrient-poor forests. Forests 2023, 14, 830. [Google Scholar] [CrossRef]
- Niwayama, S.; Higuchi, H. Passion fruit quality under acidic soil conditions. Hort. J. 2019, 88, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Shen, D.; Wang, R.; Han, Y.; Zheng, Y.; Ni, Z.; Tang, F.; Mo, R.; Liu, Y. Evaluation of risk levels of trace elements in walnuts from China and their influence factors: Planting area and cultivar. Ecotoxicol. Environ. Saf. 2020, 203, 110996. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ni, Z.; Li, S.; Qu, M.; Tang, F.; Mo, R.; Ye, C.; Liu, Y. Distribution, relationship, and risk assessment of toxic heavy metals in walnuts and growth soil. Environ. Sci. Pollut. Res. 2018, 25, 17434–17443. [Google Scholar] [CrossRef] [PubMed]
- Kornsteiner-Krenn, M.; Wagner, K.-H.; Elmadfa, I. Phytosterol content and fatty acid pattern of ten different nut types. Int. J. Vitam. Nutr. Res. 2013, 83, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Ozcan, M.M.; Osman, M.A.; Gassem, M.A.; Salih, H.A.A. Effects of cold-press and soxhlet extraction systems on antioxidant activity, total phenol c ontents, fatty acids, and tocopherol contents of walnut kernel oils. J. Oleo Sci. 2019, 68, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, P.; Liu, R.; Jin, Q.; Wang, X. Comparative study of chemical compositions and antioxidant capacities of oils obtained from two species of walnut: Juglans regia and Juglans sigillata. Food Chem. 2019, 279, 279–287. [Google Scholar] [CrossRef]
- Maestri, D. Groundnut and tree nuts: A comprehensive review on their lipid components, phytochemicals, and nutraceutical properties. Crit. Rev. Food Sci. Nutr. 2023. [Google Scholar] [CrossRef]
- Wang, J.; Hasanalieva, G.; Wood, L.; Markellou, E.; Iversen, P.O.; Bernhoft, A.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of wheat species (Triticum aestivum vs T. spelta), farming system (organic vs conventional) and flour type (wholegrain vs white) on composition of wheat flour; results of a retail survey in the UK and Germany-1. Mycotoxin content. Food Chem. 2020, 327, 127011. [Google Scholar] [CrossRef]
- Hager, A.S.; Wolter, A.; Jacob, F.; Zannini, E.; Arendt, E.K. Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. J. Cereal Sci. 2012, 56, 239–247. [Google Scholar] [CrossRef]
- Ossai, E.K. Comparative study on essential and trace metals in plant nuts consumed in Nigeria. Pak. J. Nutr. 2015, 14, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Juranovic Cindric, I.; Zeiner, M.; Hlebec, D. Mineral composition of elements in walnuts and walnut oils. Int. J. Environ. Res. Public Health 2018, 15, 2674. [Google Scholar] [CrossRef] [Green Version]
- Ozyigit, I.I.; Uras, M.E.; Yalcin, I.E.; Severoglu, Z.; Demir, G.; Borkoev, B.; Salieva, K.; Yucel, S.; Erturk, U.; Solak, A.O. Heavy metal levels and mineral nutrient status of natural walnut (Juglans regia L.) populations in Kyrgyzstan: Nutritional values of kernels. Biol. Trace Elem. Res. 2019, 189, 277–290. [Google Scholar] [CrossRef]
- Tosic, S.B.; Mitic, S.S.; Velimirovic, D.S.; Stojanovic, G.S.; Pavlovic, A.N.; Pecev-Marinkovic, E.T. Elemental composition of edible nuts: Fast optimization and validation procedure of an ICP-OES method. J. Sci. Food Agric. 2015, 95, 2271–2278. [Google Scholar] [CrossRef]
- Lavedrine, F.; Ravel, A.; Villet, A.; Ducros, V.; Alary, J. Mineral composition of two walnut cultivars originating in France and California. Food Chem. 2000, 68, 347–351. [Google Scholar] [CrossRef]
- Aljuraiban, G.S.; Jose, A.P.; Gupta, P.; Shridhar, K.; Prabhakaran, D. Sodium intake, health implications, and the role of population-level strategies. Nutr. Rev. 2021, 79, 351–359. [Google Scholar] [CrossRef]
- Chung, K.H.; Shin, K.O.; Hwang, H.J.; Choi, K.S. Chemical composition of nuts and seeds sold in Korea. Nutr. Res. Pract. 2013, 7, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Ijarotimi, O.S.; Ogunjobi, O.G.; Oluwajuyitan, T.D. Gluten free and high protein-fiber wheat flour blends: Macro-micronutrient, dietary fiber, functional properties, and sensory attributes. Food Chem. Adv. 2022, 1, 100134. [Google Scholar] [CrossRef]
- Warrington, C.V.; Abdel-Haleem, H.; Hyten, D.L.; Cregan, P.B.; Orf, J.H.; Killam, A.S.; Bajjalieh, N.; Li, Z.; Boerma, H.R. QTL for seed protein and amino acids in the benning x danbaekkong soybean population. Theor. Appl. Genet. 2015, 128, 839–850. [Google Scholar] [CrossRef] [Green Version]
- Toubiana, D.; Semel, Y.; Tohge, T.; Beleggia, R.; Cattivelli, L.; Rosental, L.; Nikoloski, Z.; Zamir, D.; Fernie, A.R.; Fait, A. Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations. PLoS Genet. 2012, 8, e1002612. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Jarquin, S.; Moreno-Pedraza, A.; Cazarez-Garcia, D.; Winkler, R. Automated chemical fingerprinting of Mexican spirits derived from Agave (tequila and mezcal) using direct-injection electrospray ionisation (DIESI) and low-temperature plasma (LTP) mass spectrometry. Anal. Methods-UK 2017, 9, 5023–5028. [Google Scholar] [CrossRef]
- Nemeth, T.; Mathe-Gaspar, G. Element content of young canola grown on different nitrogen supply levels. Cereal Res. Commun. 2008, 36, 1927–1930. [Google Scholar]
- Baldantoni, D.; Saviello, G.; Alfani, A. Nutrients and non-essential elements in edible crops following long-term mineral and compost fertilization of a Mediterranean agricultural soil. Environ. Sci. Pollut. Res. 2019, 26, 35353–35364. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Shi, Z.; Wan, R.; Li, Y.; Wang, Y.; An, W.; Qin, K.; Cao, Y.; Chen, X.; Wang, X.; et al. Impact of phosphorus fertilizer level on the yield and metabolome of goji fruit. Sci. Rep. 2020, 10, 14656. [Google Scholar] [CrossRef]
- Mancini, E.; Garcia-Molina, A. Analysis of alternative splicing during the combinatorial response to simultaneous copper and iron deficiency in arabidopsis reveals differential events in genes involved in amino acid metabolism. Front. Plant Sci. 2022, 13, 827828. [Google Scholar] [CrossRef]
- Ahmed, S.O.; Abdalla, A.W.H.; Inoue, T.; Ping, A.; Babiker, E.E. Nutritional quality of grains of sorghum cultivar grown under different levels of micronutrients fertilization. Food Chem. 2014, 159, 374–380. [Google Scholar] [CrossRef]
- Masciandaro, G.; Macci, C.; Peruzzi, E.; Ceccanti, B.; Doni, S. Organic matter-microorganism-plant in soil bioremediation: A synergic approach. Rev. Environ. Sci. Bio/Technol. 2013, 12, 399–419. [Google Scholar] [CrossRef]
- He, Z.L.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef]
- Tadesse, A.W.; Gereslassie, T.; Xu, Q.; Tang, X.; Wang, J. Concentrations, distribution, sources and ecological risk assessment of trace elements in soils from wuhan, central China. Int. J. Environ. Res. Public Health 2018, 15, 2873. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Luo, Y.; Zhang, L. Variability of copper availability in paddy fields in relation to selected soil properties in southeast China. Geoderma 2010, 156, 200–206. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Wang, Y.; Xu, X.; Han, Z. Key minerals influencing apple quality in Chinese orchard identified by nutritional diagnosis of leaf and soil analysis. J. Integr. Agric. 2015, 14, 864–874. [Google Scholar] [CrossRef]
- Guo, K.; Guo, Z.; Guo, Y.; Qiao, G. The effects of soil nutrient on fruit quality of ’Hayward’ kiwifruit (Actinidia chinensis) in Northwest China. Eur. J. Hortic. Sci. 2020, 85, 471–476. [Google Scholar] [CrossRef]
Country/Province | N | C16:0 (%) | C18:0 (%) | C18:1 (%) | C18:2 (%) | C18:3 (%) | Oil Ext. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mode | |||||||||||||||||
Mean | Mean ± SD | Min | Max | Mean ± SD | Min | Max | Mean ± SD | Min | Max | Mean ± SD | Min | Max | Mean ± SD | Min | Max | ||
China A (Present study) | 273 | 5.73 ± 0.65 | 4.51 | 7.28 | 2.88 ± 0.52 | 1.90 | 4.43 | 18.87 ± 3.84 | 11.90 | 28.89 | 62.36 ± 4.14 | 52.51 | 68.83 | 10.02 ± 1.79 | 6.37 | 13.55 | Solvent |
Shaanxi B (Present study) | 37 | 5.67 ± 0.41 | 5.21 | 6.79 | 3.17 ± 0.29 | 2.26 | 3.36 | 16.79 ± 3.18 | 13.59 | 27.72 | 64.83 ± 3.09 | 52.78 | 67.23 | 12.84 ± 1.05 | 8.33 | 13.29 | Solvent |
Shanxi B (Present study) | 26 | 5.78 ± 0.51 | 4.67 | 6.88 | 2.91 ± 0.44 | 2.16 | 3.81 | 21.92 ± 4.04 | 14.60 | 28.89 | 59.63 ± 3.20 | 54.22 | 65.34 | 9.43 ± 1.25 | 6.68 | 12.31 | Solvent |
Xinjiang B (Present study) | 55 | 6.17 ± 0.50 | 5.24 | 7.28 | 2.64 ± 0.04 | 2.05 | 3.49 | 19.57 ± 3.82 | 12.69 | 23.45 | 60.93 ± 3.26 | 52.51 | 68.54 | 10.46 ± 2.38 | 6.51 | 13.55 | Solvent |
Henan B (Present study) | 28 | 5.36 ± 0.46 | 4.64 | 6.22 | 2.93 ± 0.33 | 2.11 | 3.78 | 17.15 ± 3.01 | 12.32 | 25.35 | 64.82 ± 2.41 | 59.16 | 68.42 | 9.63 ± 0.83 | 7.71 | 11.54 | Solvent |
Hebei B (Present study) | 48 | 5.59 ± 0.70 | 4.51 | 7.06 | 2.91 ± 0.67 | 1.92 | 4.06 | 18.72 ± 3.46 | 14.13 | 27.72 | 61.38 ± 6.12 | 53.84 | 68.83 | 8.90 ± 1.78 | 6.73 | 12.78 | Solvent |
Liaoning B (Present study) | 20 | 5.69 ± 0.32 | 4.94 | 6.34 | 3.43 ± 0.41 | 2.86 | 4.43 | 21.38 ± 5.29 | 11.90 | 24.49 | 59.77 ± 3.78 | 53.73 | 66.95 | 9.40 ± 1.59 | 6.42 | 12.31 | Solvent |
Gansu B (Present study) | 39 | 5.61 ± 0.91 | 4.58 | 7.13 | 2.29 ± 0.27 | 1.90 | 3.01 | 19.19 ± 2.50 | 14.62 | 26.06 | 62.90 ± 2.66 | 57.51 | 68.01 | 9.88 ± 1.41 | 6.44 | 12.90 | Solvent |
Shandong B (Present study) | 20 | 5.68 ± 0.41 | 5.15 | 6.20 | 3.42 ± 0.28 | 3.06 | 3.99 | 16.46 ± 2.94 | 12.60 | 21.13 | 65.71 ± 1.78 | 62.31 | 68.29 | 8.48 ± 1.25 | 6.37 | 10.37 | Solvent |
Serbia [10] | 5 | 7.06 | 6.70 | 7.40 | 1.78 | 1.60 | 2.20 | 19.90 | 16.20 | 22.90 | 59.66 | 57.20 | 63.30 | 11.12 | 9.90 | 13.60 | Solvent |
Turkey [8] | 10 | 3.70 ± 0.25 | 1.80 | 4.74 | 1.53 ± 0.19 | 1.17 | 2.22 | 24.74 ± 2.71 | 20.70 | 28.33 | 55.40 ± 2.98 | 50.24 | 60.60 | 12.66 ± 1.49 | 10.93 | 15.04 | Soxhlet |
Spain [9] | 4 | 6.83 ± 0.30 | 6.40 | 7.10 | 2.45 ± 0.22 | 2.20 | 2.60 | 15.79 ± 1.17 | 13.07 | 17.66 | 60.00 ± 3.35 | 59.00 | 60.60 | 14.60 ± 0.95 | 13.60 | 17.40 | Soxhlet |
China [13] | 37 | 6.10 ± 0.66 | 4.98 | 8.73 | 2.67 ± 0.27 | 2.11 | 3.74 | 22.12 ± 1.96 | 11.78 | 37.39 | 58.55 ± 2.81 | 44.22 | 66.48 | 9.58 ± 0.95 | 6.50 | 12.33 | Soxhlet |
US [12] | 10 | 6.39 ± 0.71 | 5.82 | 6.98 | 3.65 ± 0.36 | 3.23 | 3.97 | 17.84 ± 1.45 | 12.95 | 27.57 | 60.33 ± 3.07 | 53.42 | 64.56 | 11.26 ± 1.13 | 7.83 | 13.16 | Soxhlet |
China [11] | 12 | 5.97 ± 0.43 | 4.61 | 7.91 | 2.23 ± 0.42 | 1.42 | 3.73 | 19.30 ± 2.23 | 13.84 | 35.08 | 64.13 ± 3.45 | 52.28 | 68.87 | 8.72 ± 0.92 | 5.04 | 10.58 | Press |
Argentina [6] | 6 | 7.12 ± 0.63 | 5.78 | 9.70 | 3.16 ± 0.47 | 2.47 | 5.79 | 16.82 ± 1.73 | 14.51 | 20.81 | 58.61 ± 2.98 | 52.17 | 60.93 | 14.24 ± 1.23 | 11.19 | 16.63 | Press |
Spain [14] | 20 | 7.44 | 6.87 | 8.11 | 3.09 | 2.38 | 4.04 | 22.82 | 14.56 | 32.32 | 55.42 | 47.49 | 62.13 | 10.52 | 8.21 | 13.09 | Press |
Element | Walnut Flour (mg kg−1) | Wheat Flour [29] (mg kg−1) | Rice Flour [30] (mg kg−1) | Recommended Nutrient Intakes (RNI) (mg) | Percentage of RNI Provided by 100 g of WF (%) | |
---|---|---|---|---|---|---|
Macro-elements | Ca | 1305.83 ± 304.57 | 660 | 58.10 | 1000 | 13.06 |
Mg | 1634.23 ± 162.79 | 210 | 387.60 | 260 | 62.85 | |
K | 3961.29 ± 638.69 | 900 | 1116.60 | 4700 | 8.43 | |
P | 3340.02 ± 473.31 | 830 | 1094.80 | 700 | 47.71 | |
Micro-elements | Na | 11.50 ± 9.02 | 20 | 17.30 | 2400 | 0.05 |
Mn | 42.34 ± 26.20 | 6.00 | 8.40 | 2.30 | 184.09 | |
Fe | 33.03 ± 10.28 | / | 6.90 | 14 | 23.59 | |
Cu | 15.22 ± 3.42 | 3.30 | 2.50 | 0.90 | 169.33 | |
Zn | 22.20 ± 5.82 | 8.00 | 20.40 | 7.00 | 31.71 | |
B | 11.57 ± 3.24 | / | / | / | / | |
Mo | 0.31 ± 0.21 | / | / | / | / | |
Ni | 1.56 ± 0.82 | / | / | / | / | |
Cr | 0.36 ± 0.19 | / | / | / | / | |
Co | 0.09 ± 0.04 | / | / | / | / | |
Se | 0.04 ± 0.03 | / | / | 0.04 | 11.76 | |
V | 0.01 ± 0.01 | / | / | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, M.; Li, Q.; Ni, Z.; Han, Y.; Zheng, Y.; Mo, R.; Shen, D.; Liu, Y. The Nutritional Qualities of Walnuts and Their Planted Soils from China—Level and Relationship. Forests 2023, 14, 1369. https://doi.org/10.3390/f14071369
Cui M, Li Q, Ni Z, Han Y, Zheng Y, Mo R, Shen D, Liu Y. The Nutritional Qualities of Walnuts and Their Planted Soils from China—Level and Relationship. Forests. 2023; 14(7):1369. https://doi.org/10.3390/f14071369
Chicago/Turabian StyleCui, Maokai, Qingyang Li, Zhanglin Ni, Yongxiang Han, Yuewen Zheng, Runhong Mo, Danyu Shen, and Yihua Liu. 2023. "The Nutritional Qualities of Walnuts and Their Planted Soils from China—Level and Relationship" Forests 14, no. 7: 1369. https://doi.org/10.3390/f14071369
APA StyleCui, M., Li, Q., Ni, Z., Han, Y., Zheng, Y., Mo, R., Shen, D., & Liu, Y. (2023). The Nutritional Qualities of Walnuts and Their Planted Soils from China—Level and Relationship. Forests, 14(7), 1369. https://doi.org/10.3390/f14071369