Automatic Extraction of the Spatial Distribution of Picea schrenkiana in the Tianshan Mountains Based on Google Earth Engine and the Jeffries–Matusita Distance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Remote-Sensing Data
2.3. Training and Validation Sample Points
2.4. Classification Feature Input
2.5. The Method for Eliminating Abnormal Samples
2.6. The Method for Classification Feature Optimization
2.7. Random Forest-Based Classifier
2.8. Description of Different Scenarios
2.9. The Method for Accuracy Assessment
3. Results
3.1. The Result of Eliminating Abnormal Samples
3.2. Classification Results of Single Seasonal Images
3.3. The Results of Feature Optimization
3.4. Accuracy Analysis under Different Scenarios
3.5. Spatial Distribution of Picea schrenkiana in the Best Scenario
4. Discussion
4.1. The Influence of Feature Selection on Classification Results
4.2. The Spatial Distribution of Picea schrenkiana
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Woodwell, G.M.; Whitaker, R.H.; Reiners, W.A.; Likens, G.E.; Botkin, D.B. The Biota and the World Carbon Budget: The terrestrial biomass appears to be a net source of carbon dioxide for the atmosphere. Science 1978, 199, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, X.; Lu, F.; Ouyang, Z. Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review. Chin. J. Appl. Ecol. 2015, 26, 2881–2890. [Google Scholar]
- Prichard, S.J.; Stevens-Rumann, C.S.; Hessburg, P.F. Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs. For. Ecol. Manag. 2017, 396, 217–233. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s glaciers are a regionally important buffer against drought. Nature 2017, 545, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yang, L.; Chen, X.; Gao, Y.; Wang, L. Carbon storage, spatial distribution and the influence factors in Tianshan forests. Chin. J. Plant Ecol. 2016, 40, 364–373. [Google Scholar]
- Zhang, B.; Zhou, C.; Chen, S. The Geo-info-spectrum of Montane Altitudinal Belts in China. Acta Geogr. Sin. 2003, 58, 163–171. [Google Scholar]
- Li, C.; Zhang, C.; Luo, G.; Chen, X.; Maisupova, B.; Madaminov, A.A.; Han, Q.; Djenbaev, B.M. Carbon stock and its responses to climate change in Central Asia. Glob. Chang. Biol. 2015, 21, 1951–1967. [Google Scholar] [CrossRef]
- Wang, T.; Ren, G.; Chen, F.; Yuan, Y. An analysis of precipitation variations in the west-central Tianshan Mountains over the last 300 years. Quat. Int. 2015, 358, 48–57. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Fang, G.; Li, Y. Multivariate assessment and attribution of droughts in Central Asia. Sci. Rep. 2017, 7, 1316. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, Y.; Li, W.; Deng, H.; Fang, G. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys. Res. Atmos. 2015, 120, 12345–12356. [Google Scholar] [CrossRef]
- Jiao, L.; Chen, K.; Wang, S.-J.; Liu, X.-P. Stability evaluation of radial growth of Picea schrenkiana in different age groups in response to climate change in the eastern Tianshan Mountains. J. Mt. Sci. 2020, 17, 1735–1748. [Google Scholar] [CrossRef]
- Gong, P. Remote sensing of environmental change over China: A review. Chin. Sci. Bull. 2012, 57, 2793–2801. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Potapov, P.V.; Turubanova, S.A.; Hansen, M.C.; Adusei, B.; Broich, M.; Altstatt, A.; Mane, L.; Justice, C.O. Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data. Remote Sens. Environ. 2012, 122, 106–116. [Google Scholar] [CrossRef]
- Hao, S.; Chen, Y.; Liu, H.; Zhu, X.; Dawa, Z.; Li, W. Object-oriented Forest Classification of Linzhi County based on CART Decision Tree with Texture Information. Remote Sens. Technol. Appl. 2017, 32, 386–394. [Google Scholar]
- Zhang, D.; Yang, W.; Kang, D.; Zhang, H. Spatial-temporal characteristics and policy implication for non-grain production of cultivated land in Guanzhong Region. Land Use Policy 2023, 125, 106466. [Google Scholar] [CrossRef]
- Feng, G.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Walker, J.J.; de Beurs, K.M.; Wynne, R.H.; Gao, F. Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sens. Environ. 2012, 117, 381–393. [Google Scholar] [CrossRef]
- Baumann, P.; Mazzetti, P.; Ungar, J.; Barbera, R.; Wagner, S. Big Data Analytics for Earth Sciences: The EarthServer approach. Int. J. Digit. Earth 2015, 9, 3–29. [Google Scholar] [CrossRef]
- Liu, C.; Xiong, T.; Gong, P.; Qi, S. Improving large-scale moso bamboo mapping based on dense Landsat time series and auxiliary data: A case study in Fujian Province, China. Remote Sens. Lett. 2017, 9, 1–10. [Google Scholar] [CrossRef]
- Wang, S.; Di Tommaso, S.; Deines, J.M.; Lobell, D.B. Mapping twenty years of corn and soybean across the US Midwest using the Landsat archive. Sci. Data 2020, 7, 307. [Google Scholar] [CrossRef]
- Tan, S.; Wu, B.; Zhang, X. Mapping paddy rice in the Hainan Province using both Google Earth Engine and remote sensing images. J. Geo-Inf. Sci. 2019, 21, 937–947. [Google Scholar]
- Amani, M.; Mahdavi, S.; Afshar, M.; Brisco, B.; Huang, W.; Mohammad Javad Mirzadeh, S.; White, L.; Banks, S.; Montgomery, J.; Hopkinson, C. Canadian Wetland Inventory using Google Earth Engine: The First Map and Preliminary Results. Remote Sens. 2019, 11, 842. [Google Scholar] [CrossRef] [Green Version]
- Venkatappa, M.; Sasaki, N.; Han, P.; Abe, I. Impacts of droughts and floods on croplands and crop production in Southeast Asia—An application of Google Earth Engine. Sci. Total Environ. 2021, 795, 148829. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Du, P.; Meng, Y.; Wang, X.; Tang, P.; Lin, C.; Xia, J. Dynamic monitoring on flooding situation in the Middle and Lower Reaches of the Yangtze River Region using Sentinel-1A time series. Natl. Remote Sens. Bull. 2021, 25, 2127–2141. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Jiang, M. Automatically Monitoring Impervious Surfaces Using Spectral Generalization and Time Series Landsat Imagery from 1985 to 2020 in the Yangtze River Delta. J. Remote Sens. 2021, 2021, 9873816. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, J.; Gong, E.; Liu, M.; Ren, J.; Wang, Y. Analysis of spatio-temporal land-use patterns and the driving forces in Xi’an City using GEE and multi-source data. Trans. Chin. Soc. Agric. Eng. 2022, 38, 279–288. [Google Scholar]
- Liu, K.; Peng, L.; LI, X.; Tan, M.; Wang, S. Monitoring the Inter-annual Change of Mangroves based on the Google Earth Engine. J. Geo-Inf. Sci. 2019, 21, 731–739. [Google Scholar]
- Li, W.; Zhang, J.; Liu, S.; Chen, X.; Zou, H.; Bai, R.; Lyu, R. GEE-based Extraction of Rubber Forest Distribution in Main Producing Areas of Southeast Asia. Chin. J. Trop. Crops 2021, 42, 3345–3350. [Google Scholar]
- Xu, H.; Liu, C.; Wang, J.; QI, S. Study on extraction of citrus orchard in Gannan region based on google earth engine platform. J. Geo-Inf. Sci. 2018, 20, 396–404. [Google Scholar]
- Zhang, H.; Cong, L.; Liu, X.; Shao, K.; Li, X.-Z.; Li, R.-X. Soil Enzyme Activity in Picea schrenkiana and Its Relationship with Environmental Factors in the Tianshan Mountains, Xinjiang. Huanjing Kexue 2021, 42, 403–410. [Google Scholar] [PubMed]
- Li, D.-L.; Yang, Y.; Yang, S.; Chen, Y.-K. The complete chloroplast genome sequence of Keteleeria hainanensis (Pinaceae). Mitochondrial DNA Part B 2019, 4, 2934–2935. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Chang, Y.; Xu, Z. Stoichiometric characteristics of Picea schrenkiana forests with a hydrothermal gradient and their correlation with soil physicochemical factors on Tianshan Mountain. Acta Ecol. Sin. 2018, 38, 8139–8148. [Google Scholar]
- Wang, T.; Ren, H.; Ma, K. A preliminary study on Picea schrenkiana population dynamics in the central Tianshan Mountains, northwestern China. Ecol. Environ. 2006, 3, 564–571. [Google Scholar]
- Luo, Q.; Xu, Z.; Xu, Z. Estimation and spatial pattern analysis of biomass of Picea schrenkiana forests. Acta Ecol. Sin. 2020, 40, 5288–5297. [Google Scholar]
- Ding, X.; Xu, Z.; Wang, Y. Application of MaxEnt Model in Biomass Estimation: An Example of Spruce Forest in the Tianshan Mountains of the Central-Western Part of Xinjiang, China. Forests 2023, 14, 953. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Fang, G.; Deng, H. Impact of climate change on water resources in the Tianshan Mountians, Central Asia. Acta Geogr. Sin. 2017, 72, 18–26. [Google Scholar]
- Cai, X.; Li, Z.; Zhang, H.; Xu, C. Vulnerability of glacier change in Chinese Tianshan Mountains. Acta Geogr. Sin. 2021, 76, 2253–2268. [Google Scholar]
- Liu, C.; Ding, L. A Primary Calculation of Temperature and Precipitation in Tianshan Mountains, China. J. Glaciol. Geocryol. 1988, 10, 151–159. [Google Scholar]
- Lan, J.; Xiao, Z.; Li, J.; Zhang, Y. Biomass allocation and allometric growth of Picea schrenkiana in Tianshan Mountains. J. Zhejiang AF Univ. 2020, 37, 416–423. [Google Scholar]
- Li, Z.; Luo, Q.; Xu, Z. Effects of stand density on the biomass allocation and tree height-diameter allometric growth of Picea schrenkiana forest on the northern slope of the western TS. Arid Zone Res. 2021, 38, 545–552. [Google Scholar]
- Jiang, J.; Zhu, W.; Qiao, K.; Jiang, Y. An Identification Method for Mountains Coniferous in Tian- shan with Sentinel-2 Data. Remote Sens. Technol. Appl. 2021, 36, 847–856. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Gulácsi, A.; Kovács, F. Sentinel-1-Imagery-Based High-Resolution Water Cover Detection on Wetlands, Aided by Google Earth Engine. Remote Sens. 2020, 12, 1614. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, Z.; Wang, Q.; Jin, D.; Wang, X. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images. J. Remote Sens. 2019, 23, 313–326. [Google Scholar]
- Erasmi, S.; Twele, A. Regional land cover mapping in the humid tropics using combined optical and SAR satellite data—A case study from Central Sulawesi, Indonesia. Int. J. Remote Sens. 2009, 30, 2465–2478. [Google Scholar] [CrossRef]
- Haralick, R.M. Textural features for image classification. IEEE Trans.Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Stromann, O.; Nascetti, A.; Yousif, O.; Ban, Y. Dimensionality Reduction and Feature Selection for Object-Based Land Cover Classification based on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine. Remote Sens. 2019, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- David, F.N.; Tukey, J.W. Exploratory Data Analysis. Biometrics 1977, 33, 768. [Google Scholar] [CrossRef]
- Frigge, M.; Hoaglin, D.C.; Iglewicz, B. Some Implementations of the Boxplot. Am. Stat. 1989, 43, 50–54. [Google Scholar]
- Grönroos, C. The perceived service quality concept—A mistake? Manag. Serv. Qual. 2001, 11, 150–152. [Google Scholar] [CrossRef]
- Bellman, R. Dynamic Programming. Science 1966, 153, 34–37. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P. Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests. Remote Sens. Environ. 2013, 136, 14–27. [Google Scholar] [CrossRef]
- Hu, Q.; Sulla-Menashe, D.; Xu, B.; Yin, H.; Tang, H.; Yang, P.; Wu, W. A phenology-based spectral and temporal feature selection method for crop mapping from satellite time series. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 218–229. [Google Scholar] [CrossRef]
- Chen, L.; Jin, Z.; Michishita, R.; Cai, J.; Yue, T.; Chen, B.; Xu, B. Dynamic monitoring of wetland cover changes using time-series remote sensing imagery. Ecol. Inform. 2014, 24, 17–26. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef] [Green Version]
- Arvor, D.; Jonathan, M.; Meirelles, M.S.P.; Dubreuil, V.; Durieux, L. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens. 2011, 32, 7847–7871. [Google Scholar] [CrossRef]
- Vanniel, T.; McVicar, T.; Datt, B. On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification. Remote Sens. Environ. 2005, 98, 468–480. [Google Scholar] [CrossRef]
- Murakami, T.; Ogawa, S.; Ishitsuka, N.; Kumagai, K.; Saito, G. Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan. Int. J. Remote Sens. 2010, 22, 1335–1348. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Tateishi, T.P.R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation cover and vegetation indices. Int. J. Remote Sens. 1998, 19, 3519–3535. [Google Scholar]
- Zhu, M.; Li, G.; Peng, Z. Remote sensing crop classification method based on feature selection. Sci. Surv. Mapp. 2022, 47, 122–128. [Google Scholar]
- Ning, X.; Chang, W.; Wang, H.; Zhang, H.; Zhu, Q. Extraction of marsh wetland in Heilongjiang Basin based on GEE and multi-source remote sensing data. Natl. Remote Sens. Bull. 2022, 26, 386–396. [Google Scholar] [CrossRef]
- Lei, Z.; Pengtao, Y.; Yanhui, W.; Shunli, W.; Xiande, L. Biomass Change of Middle Aged Forest of Qinghai Spruce along an Altitudinal Gradient on the North Slope of Qilian Mountains. Sci. Silvae Sin. 2015, 51, 4–10. [Google Scholar]
- Wang, X. Picea schrenkiana survey on the north slope of Tianshan Mountains. Xinjiang Agric. Sci. 1963, 7, 285–289. [Google Scholar]
Elevation | Reference |
---|---|
1500–2700 m | Wang, Ren et al. [34] |
1600–2800 m | Li, Chang et al. [33] |
1600–2800 m | Lan, Xiao et al. [40] |
1500–2800 m | Luo, Xu et al. [35] |
1500–2800 m | Li, Luo et al. [41] |
1400–2800 m | Jiang, Zhu et al. [42] |
Seasons | Years | Months | Cloudy _Pixel_Percentage |
---|---|---|---|
Spring | 2019–2020 | 4–6 | 30 |
Summer | 2019–2020 | 7–9 | 20 |
Autumn | 2019–2020 | 10–12 | 35 |
Winter | 2019–2020 | 1–3 | 60 |
Type | Picea schrenkiana | Grassland | Cropland | Built | Bare Land | Snow and Ice | Waterbody |
---|---|---|---|---|---|---|---|
Numbers | 1524 | 3036 | 533 | 517 | 1704 | 275 | 570 |
Categories | Features | Central Wavelength/Indices Formula | Data Source |
---|---|---|---|
Radar features | VV | vertical transmit/vertical receive | Sentinel-1 |
VH | vertical transmit/horizontal receive | Sentinel-1 | |
Spectral features | AEROS | 443 nm | Sentinel-2 |
BLUE | 490 nm | Sentinel-2 | |
GREEN | 560 nm | Sentinel-2 | |
RED | 665 nm | Sentinel-2 | |
RDED1 | 705 nm | Sentinel-2 | |
RDED2 | 740 nm | Sentinel-2 | |
RDED3 | 783 nm | Sentinel-2 | |
NIR | 842 nm | Sentinel-2 | |
RDED4 | 865 nm | Sentinel-2 | |
VAPOR | 940 nm | Sentinel-2 | |
CIRRU | 1375 nm | Sentinel-2 | |
SWIR1 | 1610 nm | Sentinel-2 | |
SWIR2 | 2190 nm | Sentinel-2 | |
Red-edge features | NDVIre1 | (RDED4 − RDED1)/(RDED4 + RDED1) | Sentinel-2 |
NDVIre2 | (RDED4 − RDED2)/(RDED4 + RDED2) | Sentinel-2 | |
NDVIre3 | (RDED4 − RDED3)/(RDED4 + RDED3) | Sentinel-2 | |
NDre1 | (RDED2 − RDED1)/(RDED2 + RDED1) | Sentinel-2 | |
NDre2 | (RDED3 − RDED1)/(RDED3 + RDED1) | Sentinel-2 | |
Spectral indices | NDVI | (NIR − RED)/(NIR + RED) | Sentinel-2 |
EVI | 2.5 × (NIR − RED)/(NIR + 6.0 × RED −7.5 × BLUE + 1) | Sentinel-2 | |
MNDVI | (RED − GREEN)/(RED + GREEN) | Sentinel-2 | |
NDWI | (GREEN − NIR)/(GREEN + NIR) | Sentinel-2 | |
LSWI | (NIR − SWIR1)/(NIR + SWIR1) | Sentinel-2 | |
MNDWI | (GREEN − SWIR1)/(GREEN + SWIR1) | Sentinel-2 | |
NDTI | (SWIR1 − SWIR2)/(SWIR1 + SWIR2) | Sentinel-2 | |
NDI45 | (RDED1 − RED)/(RDED1 + RED) | Sentinel-2 | |
Texture features | VV ASM | VV Angular Second Moment | Sentinel-1 |
VV CON | VV Contrast | Sentinel-1 | |
VV CORR | VV Correlation | Sentinel-1 | |
VV SVAR | VV Sum Variance | Sentinel-1 | |
VV ENT | VV Entropy | Sentinel-1 | |
VH ASM | VH Angular Second Moment | Sentinel-1 | |
VHCON | VH Contrast | Sentinel-1 | |
VH CORR | VH Correlation | Sentinel-1 | |
VH SVAR | VH Sum Variance | Sentinel-1 | |
VH ENT | VH Entropy | Sentinel-1 | |
Terrain features | ELE | ELEVATION | SRTM |
SLO | SLOPE | SRTM | |
ASP | ASPECT | SRTM | |
SHA | HILL SHADE | SRTM |
Scenarios | Radar Features | Spectral Features | Red-Edge Features | Spectral Indices | Texture Features | Terrain Features | Features Optimization |
---|---|---|---|---|---|---|---|
S1 | √ | ||||||
S2 | √ | √ | |||||
S3 | √ | √ | |||||
S4 | √ | √ | |||||
S5 | √ | √ | |||||
S6 | √ | √ | |||||
S7 | √ | ||||||
S8 | √ | √ | √ | √ | √ | √ |
Type | Picea schrenkiana | Grassland | Cropland | Built | Bare Land | Snow and Ice | Waterbody | OA | Kappa | |
---|---|---|---|---|---|---|---|---|---|---|
Before | PA/% | 93.93 | 89.93 | 66.88 | 81.40 | 85.89 | 70.00 | 91.52 | 87.10% | 0.83 |
UA/% | 95.43 | 84.52 | 79.85 | 90.32 | 83.47 | 78.87 | 96.79 | |||
After | PA/% | 96.88 | 89.89 | 62.94 | 80.69 | 86.94 | 83.13 | 94.80 | 88.53% | 0.85 |
UA/% | 93.75 | 87.65 | 81.08 | 81.82 | 85.78 | 90.79 | 95.35 |
Type | Picea schrenkiana | Grassland | Cropland | Built | Bare Land | Snow and Ice | Waterbody | OA | Kappa | |
---|---|---|---|---|---|---|---|---|---|---|
Spring | PA/% | 95.80 | 93.85 | 79.61 | 88.10 | 88.24 | 73.56 | 96.89 | 91.19% | 0.88 |
UA/% | 96.71 | 89.91 | 90.98 | 93.28 | 87.88 | 81.01 | 97.50 | |||
Summer | PA/% | 96.04 | 94.91 | 74.34 | 89.68 | 87.63 | 85.06 | 96.89 | 91.67% | 0.89 |
UA/% | 96.26 | 88.52 | 91.87 | 91.13 | 91.53 | 90.24 | 98.73 | |||
Autumn | PA/% | 93.94 | 91.48 | 75.00 | 92.06 | 84.79 | 70.11 | 87.58 | 88.36% | 0.85 |
UA/% | 95.95 | 85.32 | 90.48 | 85.93 | 85.48 | 82.43 | 98.60 | |||
Winter | PA/% | 95.34 | 93.14 | 69.74 | 87.30 | 78.09 | 62.07 | 80.75 | 86.39% | 0.82 |
UA/% | 96.24 | 80.97 | 88.33 | 88.71 | 84.06 | 87.10 | 98.48 |
Feature | JM Distance | Kappa | Numbers |
---|---|---|---|
RED | 1.01 | 0.41 | 1 |
SWIR2 | 0.94 | 0.608 | 2 |
GREEN | 0.9 | 0.659 | 3 |
BLUE | 0.89 | 0.73 | 4 |
RDED1 | 0.87 | 0.764 | 5 |
CIRRU | 0.82 | 0.793 | 6 |
SWIR1 | 0.81 | 0.821 | 7 |
MNDVI | 0.72 | 0.821 | 8 |
AEROS | 0.7 | 0.828 | 9 |
VH ASM | 0.68 | 0.829 | 10 |
VH ENT | 0.6 | 0.836 | 11 |
LSWI | 0.6 | 0.837 | 12 |
MNDWI | 0.59 | 0.848 | 13 |
EVI | 0.58 | 0.856 | 14 |
VAPOR | 0.58 | 0.858 | 15 |
RDED2 | 0.56 | 0.864 | 16 |
NDTI | 0.54 | 0.869 | 17 |
NIR | 0.52 | 0.869 | 18 |
VV ASM | 0.52 | 0.862 | 19 |
RDED4 | 0.51 | 0.868 | 20 |
RDED3 | 0.51 | 0.871 | 21 |
NDre2 | 0.49 | 0.873 | 22 |
NDre1 | 0.49 | 0.869 | 23 |
NDVIre1 | 0.47 | 0.87 | 24 |
NDVI | 0.47 | 0.866 | 25 |
VV ENT | 0.46 | 0.863 | 26 |
VH | 0.39 | 0.873 | 27 |
NDVIre3 | 0.3 | 0.87 | 28 |
NDI45 | 0.3 | 0.869 | 29 |
SLOPE | 0.28 | 0.886 | 30 |
VV | 0.26 | 0.89 | 31 |
ELEVATION | 0.24 | 0.894 | 32 |
VV CON | 0.23 | 0.889 | 33 |
VV SVAR | 0.22 | 0.89 | 34 |
NDVIre2 | 0.18 | 0.884 | 35 |
ASPECT | 0.13 | 0.894 | 36 |
VH CON | 0.11 | 0.892 | 37 |
VH SVAR | 0.1 | 0.894 | 38 |
NDWI | 0.09 | 0.89 | 39 |
HILL SHADE | 0.07 | 0.894 | 40 |
VH CORR | 0.02 | 0.89 | 41 |
VV CORR | 0.02 | 0.898 | 42 |
Type of Feature | The Feature with the Highest Degree of Separation (Ranking) | The Feature with the Lowest Degree of Separation (Ranking) | The Average JM Distance |
---|---|---|---|
Spectral features | RED (1) | RDED3 (21) | 0.74 |
Texture features | VH ASM (10) | VV ENT (26) | 0.57 |
Spectral indices | MNDVI (8) | NDI45 (29) | 0.54 |
Red-edge features | NDre2 (22) | NDVIre3 (28) | 0.44 |
Radar features | VH (27) | VV (31) | 0.32 |
Terrain features | SLOPE (30) | ELEVATION (32) | 0.26 |
Type | Picea schrenkiana | Grassland | Cropland | Built | Bare Land | Snow and Ice | Waterbody | OA | Kappa | |
---|---|---|---|---|---|---|---|---|---|---|
Scenario 1 | PA/% | 96.27 | 92.90 | 61.84 | 75.4 | 86.00 | 81.61 | 95.03 | 88.75% | 0.85 |
UA/% | 96.27 | 85.33 | 83.19 | 86.36 | 88.15 | 87.65 | 96.23 | |||
Scenario 2 | PA/% | 95.57 | 92.9 | 62.5 | 76.19 | 88.03 | 82.76 | 94.41 | 89.14% | 0.86 |
UA/% | 95.79 | 86.36 | 85.59 | 84.96 | 87.50 | 91.14 | 96.82 | |||
Scenario 3 | PA/% | 96.50 | 94.08 | 65.79 | 75.40 | 87.63 | 81.61 | 95.03 | 89.84% | 0.87 |
UA/% | 95.83 | 87.17 | 85.47 | 84.82 | 88.89 | 93.42 | 96.84 | |||
Scenario 4 | PA/% | 96.74 | 93.73 | 63.82 | 79.37 | 85.80 | 81.61 | 95.03 | 89.45% | 0.86 |
UA/% | 95.62 | 86.46 | 88.18 | 82.64 | 89.62 | 87.65 | 96.23 | |||
Scenario 5 | PA/% | 96.74 | 92.54 | 66.45 | 78.57 | 87.02 | 80.46 | 95.03 | 89.36% | 0.86 |
UA/% | 95.40 | 86.70 | 86.32 | 86.84 | 87.73 | 89.74 | 96.84 | |||
Scenario 6 | PA/% | 97.44 | 93.73 | 74.34 | 84.92 | 88.24 | 79.31 | 96.27 | 91.10% | 0.88 |
UA/% | 95.87 | 89.19 | 90.40 | 89.17 | 88.41 | 94.52 | 97.48 | |||
Scenario 7 | PA/% | 96.74 | 95.50 | 73.68 | 91.27 | 87.63 | 83.91 | 95.65 | 91.93% | 0.89 |
UA/% | 96.96 | 89.17 | 94.12 | 89.15 | 91.72 | 86.9 | 98.09 | |||
Scenario 8 | PA/% | 97.20 | 95.62 | 73.03 | 86.51 | 88.03 | 83.91 | 95.65 | 91.84% | 0.89 |
UA/% | 96.53 | 88.79 | 93.28 | 88.62 | 91.75 | 91.25 | 98.72 |
Picea schrenkiana | Grassland | Cropland | Built | Bare Land | Snow and Ice | Waterbody | |
---|---|---|---|---|---|---|---|
Picea schrenkiana | 415 | 13 | 0 | 0 | 0 | 0 | 0 |
Grassland | 13 | 807 | 33 | 4 | 43 | 0 | 5 |
Cropland | 0 | 5 | 112 | 2 | 0 | 0 | 0 |
Built | 0 | 2 | 7 | 115 | 5 | 0 | 0 |
Bare Land | 0 | 18 | 0 | 5 | 432 | 14 | 2 |
Snow and Ice | 0 | 0 | 0 | 0 | 11 | 73 | 0 |
Waterbody | 1 | 0 | 0 | 0 | 2 | 0 | 154 |
PA/% | 96.74 | 95.5 | 73.68 | 91.27 | 87.63 | 83.91 | 95.65 |
UA/% | 96.96 | 89.17 | 94.12 | 89.15 | 91.72 | 86.90 | 98.09 |
OA = 91.93% | Kappa = 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, F.; Xu, Z.; Xu, C.; Yu, T. Automatic Extraction of the Spatial Distribution of Picea schrenkiana in the Tianshan Mountains Based on Google Earth Engine and the Jeffries–Matusita Distance. Forests 2023, 14, 1373. https://doi.org/10.3390/f14071373
Xu F, Xu Z, Xu C, Yu T. Automatic Extraction of the Spatial Distribution of Picea schrenkiana in the Tianshan Mountains Based on Google Earth Engine and the Jeffries–Matusita Distance. Forests. 2023; 14(7):1373. https://doi.org/10.3390/f14071373
Chicago/Turabian StyleXu, Fujin, Zhonglin Xu, Changchun Xu, and Tingting Yu. 2023. "Automatic Extraction of the Spatial Distribution of Picea schrenkiana in the Tianshan Mountains Based on Google Earth Engine and the Jeffries–Matusita Distance" Forests 14, no. 7: 1373. https://doi.org/10.3390/f14071373
APA StyleXu, F., Xu, Z., Xu, C., & Yu, T. (2023). Automatic Extraction of the Spatial Distribution of Picea schrenkiana in the Tianshan Mountains Based on Google Earth Engine and the Jeffries–Matusita Distance. Forests, 14(7), 1373. https://doi.org/10.3390/f14071373