Do All Types of Restorative Environments in the Urban Park Provide the Same Level of Benefits for Young Adults? A Field Experiment in Nanjing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Sites
2.3. Stress Induction
2.4. Measurements
2.4.1. Psychological Measurements
2.4.2. Physiological Measurements
2.5. Experimental Procedure
2.6. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Psychological and Physiological Restorative Effects
3.2.1. Psychological Restorative Effects
3.2.2. Physiological Restorative Effects
3.3. Variability in Recovery Benefits
3.3.1. Differences in Psychological Recovery Benefits
3.3.2. Variability of Physiological Indicators during the Restoration
3.4. Index Correlation
4. Discussion
4.1. Restorative Effect of Landscape Sites
4.2. Variability in Restorative Benefits
4.3. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Roux, D.M.; Zar, H.J. Community-Acquired Pneumonia in Children—A Changing Spectrum of Disease. Pediatr. Radiol. 2017, 47, 1392–1398. [Google Scholar] [CrossRef] [Green Version]
- Cosselman, K.E.; Navas-Acien, A.; Kaufman, J.D. Environmental Factors in Cardiovascular Disease. Nat. Rev. Cardiol. 2015, 12, 627–642. [Google Scholar] [CrossRef]
- Frank, L.D.; Saelens, B.E.; Powell, K.E.; Chapman, J.E. Stepping towards Causation: Do Built Environments or Neighborhood and Travel Preferences Explain Physical Activity, Driving, and Obesity? Soc. Sci. Med. 2007, 65, 1898–1914. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, R.S. Aesthetic and Affective Response to Natural Environment. In Behavior & the Natural Environment; Springer: Boston, MA, USA, 1983. [Google Scholar]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989; ISBN 0-521-34939-7. [Google Scholar]
- Bedimo-Rung, A.L.; Mowen, A.J.; Cohen, D.A. The Significance of Parks to Physical Activity and Public Health—A Conceptual Model. Am. J. Prev. Med. 2005, 28, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, Z.; Zhao, B.; Sun, R.; Vejre, H. Links between Green Space and Public Health: A Bibliometric Review of Global Research Trends and Future Prospects from 1901 to 2019. Environ. Res. Lett. 2020, 15, 063001. [Google Scholar] [CrossRef]
- Barton, J.; Pretty, J. What Is the Best Dose of Nature and Green Exercise for Improving Mental Health? A Multi-Study Analysis. Environ. Sci. Technol. 2010, 44, 3947–3955. [Google Scholar] [CrossRef] [PubMed]
- Young, C.; Hofmann, M.; Frey, D.; Moretti, M.; Bauer, N. Psychological Restoration in Urban Gardens Related to Garden Type, Biodiversity and Garden-Related Stress. Landsc. Urban Plan. 2020, 198, 12. [Google Scholar] [CrossRef]
- Hazer, M.; Formica, M.K.; Dieterlen, S.; Morley, C.P. The Relationship between Self-Reported Exposure to Greenspace and Human Stress in Baltimore, MD. Landsc. Urban Plan. 2018, 169, 47–56. [Google Scholar] [CrossRef]
- Hartig, T.; Johansson, G.; Kylin, C. Residence in the Social Ecology of Stress and Restoration. J. Soc. Issues 2003, 59, 611–636. [Google Scholar] [CrossRef]
- Beyer, K.M.; Kaltenbach, A.; Szabo, A.; Bogar, S.; Nieto, F.J.; Malecki, K.M. Exposure to Neighborhood Green Space and Mental Health: Evidence from the Survey of the Health of Wisconsin. Int. J. Environ. Res. Public Health 2014, 11, 3453–3472. [Google Scholar] [CrossRef] [Green Version]
- Peschardt, K.K.; Stigsdotter, U.K. Associations between Park Characteristics and Perceived Restorativeness of Small Public Urban Green Spaces. Landsc. Urban Plan. 2013, 112, 26–39. [Google Scholar] [CrossRef]
- Akpinar, A. How Perceived Sensory Dimensions of Urban Green Spaces Are Associated with Teenagers’ Perceived Restoration, Stress, and Mental Health? Landsc. Urban Plan. 2021, 214, 14. [Google Scholar] [CrossRef]
- Vella-Brodrick, D.A.; Gilowska, K. Effects of Nature (Greenspace) on Cognitive Functioning in School Children and Adolescents: A Systematic Review. Educ. Psychol. Rev. 2022, 34, 1217–1254. [Google Scholar] [CrossRef]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; de Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring Pathways Linking Greenspace to Health: Theoretical and Methodological Guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef]
- Ulrich, R.S. Human Responses to Vegetation and Landscapes. Landsc. Urban Plan. 1986, 13, 29–44. [Google Scholar] [CrossRef]
- Ulrich, R.S. Natural versus Urban Scenes: Some Psychophysiological Effects. Environ. Behav. 1981, 13, 523–556. [Google Scholar] [CrossRef]
- Kaplan, S. The Restorative Benefits of Nature: Toward an Integrative Framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress Recovery during Exposure to Natural and Urban Environments. J. Environ. Psychol. 1991, 11, 201–230. [Google Scholar] [CrossRef]
- Hartig, T.; Evans, G.W.; Jamner, L.D.; Davis, D.S.; Gärling, T. Tracking Restoration in Natural and Urban Field Settings. J. Environ. Psychol. 2003, 23, 109–123. [Google Scholar] [CrossRef]
- Shim, S.R.; Chang, J.; Lee, J.; Byeon, W.; Lee, J.; Lee, K.J. Perspectives on the Psychological and Physiological Effects of Forest Therapy: A Systematic Review with a Meta-Analysis and Meta-Regression. Forests 2022, 13, 2029. [Google Scholar] [CrossRef]
- Marselle, M.R.; Irvine, K.N.; Warber, S.L. Walking for Well-Being: Are Group Walks in Certain Types of Natural Environments Better for Well-Being than Group Walks in Urban Environments? Int. J. Environ. Res. Public Health 2013, 10, 5603–5628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, R. Is Physical Activity in Natural Environments Better for Mental Health than Physical Activity in Other Environments? Soc. Sci. Med. 2013, 91, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-Y.; Chen, P.-K. Human Response to Window Views and Indoor Plants in the Workplace. HortSci 2005, 40, 1354–1359. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.E.; Williams, K.J.; Sargent, L.D.; Williams, N.S.; Johnson, K.A. 40-Second Green Roof Views Sustain Attention: The Role of Micro-Breaks in Attention Restoration. J. Environ. Psychol. 2015, 42, 182–189. [Google Scholar] [CrossRef]
- Browning, M.; Mimnaugh, K.J.; van Riper, C.J.; Laurent, H.K.; LaValle, S.M. Can Simulated Nature Support Mental Health? Comparing Short, Single-Doses of 360-Degree Nature Videos in Virtual Reality With the Outdoors. Front. Psychol. 2020, 10, 2667. [Google Scholar] [CrossRef] [Green Version]
- Memari, S.; Pazhouhanfar, M.; Grahn, P. Perceived Sensory Dimensions of Green Areas: An Experimental Study on Stress Recovery. Sustainability 2021, 13, 19. [Google Scholar] [CrossRef]
- Brancato, G.; Van Hedger, K.; Berman, M.G.; Van Hedger, S.C. Simulated Nature Walks Improve Psychological Well-Being along a Natural to Urban Continuum. J. Environ. Psychol. 2022, 81, 101779. [Google Scholar] [CrossRef]
- Subiza-Perez, M.; Pasanen, T.; Ratcliffe, E.; Lee, K.; Bornioli, A.; de Bloom, J.; Korpela, K. Exploring Psychological Restoration in Favorite Indoor and Outdoor Urban Places Using a Top-down Perspective. J. Environ. Psychol. 2021, 78, 10. [Google Scholar] [CrossRef]
- Wheeler, B.W.; Lovell, R.; Higgins, S.L.; White, M.P.; Alcock, I.; Osborne, N.J.; Husk, K.; Sabel, C.E.; Depledge, M.H. Beyond Greenspace: An Ecological Study of Population General Health and Indicators of Natural Environment Type and Quality. Int. J. Health Geogr. 2015, 14, 17. [Google Scholar] [CrossRef] [Green Version]
- de Vries, S.; Verheij, R.A.; Groenewegen, P.P.; Spreeuwenberg, P. Natural Environments…healthy Environments? An Exploratory Analysis of the Relationship between Greenspace and Health. Environ. Plan. A 2003, 35, 1717–1731. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Yang, M.; Jane, H.; Li, S.; Bauer, N. Trees, Grass, or Concrete? The Effects of Different Types of Environments on Stress Reduction. Landsc. Urban Plan. 2020, 193, 103654. [Google Scholar] [CrossRef]
- Knobel, P.; Dadvand, P.; Alonso, L.; Costa, L.; Espanol, M.; Maneja, R. Development of the Urban Green Space Quality Assessment Tool (RECITAL). Urban For. Urban Green. 2021, 57, 126895. [Google Scholar] [CrossRef]
- Van Dillen, S.M.; de Vries, S.; Groenewegen, P.P.; Spreeuwenberg, P. Greenspace in Urban Neighbourhoods and Residents’ Health: Adding Quality to Quantity. J. Epidemiol. Community Health 2012, 66, e8. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.; Kim, H.J. The Restorative Effects of Campus Landscape Biodiversity: Assessing Visual and Auditory Perceptions among University Students. Urban For. Urban Green. 2021, 64, 127259. [Google Scholar] [CrossRef]
- Southon, G.E.; Jorgensen, A.; Dunnett, N.; Hoyle, H.; Evans, K.L. Perceived Species-Richness in Urban Green Spaces: Cues, Accuracy and Well-Being Impacts. Landsc. Urban Plan. 2018, 172, 1–10. [Google Scholar] [CrossRef]
- Deng, L.; Li, X.; Luo, H.; Fu, E.K.; Ma, J.; Sun, L.X.; Huang, Z.; Cai, S.Z.; Jia, Y. Empirical Study of Landscape Types, Landscape Elements and Landscape Components of the Urban Park Promoting Physiological and Psychological Restoration. Urban For. Urban Green. 2020, 48, 126488. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Wu, Y.; Xiao, Y.H.; Fu, W.C.; Zhuo, Z.X.; van den Bosch, C.C.K.; Huang, Q.T.; Lan, S.R. More Meaningful, More Restorative? Linking Local Landscape Characteristics and Place Attachment to Restorative Perceptions of Urban Park Visitors. Landsc. Urban Plan. 2020, 197, 11. [Google Scholar] [CrossRef]
- Li, H.; Xie, H.; Woodward, G. Soundscape Components, Perceptions, and EEG Reactions in Typical Mountainous Urban Parks. Urban For. Urban Green. 2021, 64, 10. [Google Scholar] [CrossRef]
- Luo, S.X.; Shi, J.Y.; Lu, T.Y.; Furuya, K. Sit down and Rest: Use of Virtual Reality to Evaluate Preferences and Mental Restoration in Urban Park Pavilions. Landsc. Urban Plan. 2022, 220, 104336. [Google Scholar] [CrossRef]
- Feng, X.Q.; Astell-Burt, T. Residential Green Space Quantity and Quality and Symptoms of Psychological Distress: A 15-Year Longitudinal Study of 3897 Women in Postpartum. BMC Psychiatry 2018, 18, 348. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.Q.; Liu, Z.F.; Pan, X.H.; Wang, Y.H.; Guo, X.; Wu, J.G. How Do Different Types and Landscape Attributes of Urban Parks Affect Visitors? Positive Emotions? Landsc. Urban Plan. 2022, 226, 13. [Google Scholar] [CrossRef]
- Simkin, J.; Ojala, A.; Tyrvainen, L. Restorative Effects of Mature and Young Commercial Forests, Pristine Old-Growth Forest and Urban Recreation Forest—A Field Experiment. Urban For. Urban Green. 2020, 48, 12. [Google Scholar] [CrossRef]
- Bolouki, A. Exploring the Association between Self-Reported and Objective Measures in Search of the Restorative Quality of Natural Environments: A Systematic Review. Int. J. Environ. Health Res. 2019. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Aletta, F.; Oberman, T.; Kang, J. Associations between Positive Health-Related Effects and Soundscapes Perceptual Constructs: A Systematic Review. Int. J. Environ. Res. Public Health 2018, 15, 2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evensen, K.H.; Raanaas, R.K.; Fyhri, A. Soundscape and Perceived Suitability for Recreation in an Urban Designated Quiet Zone. Urban For. Urban Green. 2016, 20, 243–248. [Google Scholar] [CrossRef]
- Ikei, H.; Song, C.R.; Miyazaki, Y. Physiological Effects of Touching Coated Wood. Int. J. Environ. Res. Public Health 2017, 14, 773. [Google Scholar] [CrossRef] [Green Version]
- van den Berg, A.E.; Koole, S.L.; van der Wulp, N.Y. Environmental Preference and Restoration: (How) Are They Related? J. Environ. Psychol. 2003, 23, 135–146. [Google Scholar] [CrossRef]
- Francis, J.; Wood, L.J.; Knuiman, M.; Giles-Corti, B. Quality or Quantity? Exploring the Relationship between Public Open Space Attributes and Mental Health in Perth, Western Australia. Soc. Sci. Med. 2012, 74, 1570–1577. [Google Scholar] [CrossRef]
- Wood, E.; Harsant, A.; Dallimer, M.; de Chavez, A.C.; McEachan, R.R.C.; Hassall, C. Not All Green Space Is Created Equal: Biodiversity Predicts Psychological Restorative Benefits From Urban Green Space. Front. Psychol. 2018, 9, 2320. [Google Scholar] [CrossRef] [Green Version]
- Hoyle, H.; Hitchmough, J.; Jorgensen, A. All about the “Wow Factor”? The Relationships between Aesthetics, Restorative Effect and Perceived Biodiversity in Designed Urban Planting. Landsc. Urban Plan. 2017, 164, 109–123. [Google Scholar] [CrossRef]
- Fang, Y.; Ji, B.; Liu, Y.; Zhang, J.; Liu, Q.; Ge, Y.; Xie, Y.; Liu, C. The Prevalence of Psychological Stress in Student Populations during the COVID-19 Epidemic: A Systematic Review and Meta-Analysis. Sci. Rep. 2022, 12, 12118. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y. Development of Questionnaire on the Sense of Workplace Involution for Newly Recruited Employees and Its Relationship with Turnover Intention. Int. J. Environ. Res. Public Health 2022, 19, 11218. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.N.; Zhao, R.L.; Ren, A.H.; Niu, L.X.; Zhang, Y.L. Stress Recovery of Campus Street Trees as Visual Stimuli on Graduate Students in Autumn. Int. J. Environ. Res. Public Health 2020, 17, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Rodiek, S.; Wu, C.; Chen, Y.; Li, Y. Stress Recovery and Restorative Effects of Viewing Different Urban Park Scenes in Shanghai, China. Urban For. Urban Green. 2016, 15, 112–122. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Cheon, S.; Kang, Y. Use of Electroencephalography (EEG) for the Analysis of Emotional Perception and Fear to Nightscapes. Sustainability 2019, 11, 233. [Google Scholar] [CrossRef] [Green Version]
- Pivik, R.T.; Broughton, R.J.; Coppola, R.; Davidson, R.J.; Fox, N.; Nuwer, M.R. Guidelines for the Recording and Quantitative Analysis of Electroencephalographic Activity in Research Contexts. Psychophysiology 1993, 30, 547–558. [Google Scholar] [CrossRef]
- Murugappan, M.; Nagarajan, R.; Yaacob, S. Combining Spatial Filtering and Wavelet Transform for Classifying Human Emotions Using EEG Signals. J. Med. Biol. Eng. 2011, 31, 45–51. [Google Scholar] [CrossRef]
- Norwood, M.F.; Lakhani, A.; Maujean, A.; Zeeman, H.; Creux, O.; Kendall, E. Brain Activity, Underlying Mood and the Environment: A Systematic Review. J. Environ. Psychol. 2019, 65, 101321. [Google Scholar] [CrossRef]
- Campisi, P.; La Rocca, D. Brain Waves for Automatic Biometric-Based User Recognition. IEEE Trans. Inf. Forensics Secur. 2014, 9, 782–800. [Google Scholar] [CrossRef]
- Yao, Y.; Du, F.; Wang, C.; Liu, Y.; Weng, J.; Chen, F. Numerical Processing Efficiency Improved in Children Using Mental Abacus: ERP Evidence Utilizing a Numerical Stroop Task. Front. Hum. Neurosci. 2015, 9, 245. [Google Scholar] [CrossRef]
- Wagner, W. Scalp, Earlobe and Nasopharyngeal Recordings of the Median Nerve Somatosensory Evoked P14 Potential in Coma and Brain Death: Detailed Latency and Amplitude Analysis in 181 Patients. Brain 1996, 119, 1507–1521. [Google Scholar] [CrossRef] [Green Version]
- Soler, A.; Munoz-Gutierrez, P.A.; Bueno-Lopez, M.; Giraldo, E.; Molinas, M. Low-Density EEG for Neural Activity Reconstruction Using Multivariate Empirical Mode Decomposition. Front. Neurosci. 2020, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, B.-J.; Tsunetsugu, Y.; Kagawa, T.; Miyazaki, Y. Restorative Effects of Viewing Real Forest Landscapes, Based on a Comparison with Urban Landscapes. Scand. J. For. Res. 2009, 24, 227–234. [Google Scholar] [CrossRef]
- Cai, C.; Xu, Y.; Wang, Y.; Wang, Q.; Liu, L. Experimental Study on the Effect of Urban Road Traffic Noise on Heart Rate Variability of Noise-Sensitive People. Front. Psychol. 2022, 12, 749224. [Google Scholar] [CrossRef]
- Malik, M. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use: Task Force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology. Ann. Noninvasive Electrocardiol. 1996, 1, 151–181. [Google Scholar] [CrossRef]
- Brooks, A.M.; Ottley, K.M.; Arbuthnott, K.D.; Sevigny, P. Nature-Related Mood Effects: Season and Type of Nature Contact. J. Environ. Psychol. 2017, 54, 91–102. [Google Scholar] [CrossRef]
- Elsadek, M.; Liu, B.; Xie, J. Window View and Relaxation: Viewing Green Space from a High-Rise Estate Improves Urban Dwellers’ Wellbeing. Urban For. Urban Green. 2020, 55, 126846. [Google Scholar] [CrossRef]
- Aziz, N.A.A.; Shian, L.Y.; Mokhtar, M.D.M.; Raman, T.L.; Saikim, F.H.; Chen, W.; Nordin, N.M. Effectiveness of Urban Green Space on Undergraduates’ Stress Relief in Tropical City: A Field Experiment in Kuala Lumpur. Urban For. Urban Green. 2021, 63, 9. [Google Scholar] [CrossRef]
- Tyrvainen, L.; Ojala, A.; Korpela, K.; Lanki, T.; Tsunetsugu, Y.; Kagawa, T. The Influence of Urban Green Environments on Stress Relief Measures: A Field Experiment. J. Environ. Psychol. 2014, 38, 1–9. [Google Scholar] [CrossRef]
- Gao, T.; Zhang, T.; Zhu, L.; Gao, Y.A.; Qiu, L. Exploring Psychophysiological Restoration and Individual Preference in the Different Environments Based on Virtual Reality. Int. J. Environ. Res. Public Health 2019, 16, 3102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, R.J.; Clarke, A.R.; Johnstone, S.J.; Magee, C.A.; Rushby, J.A. EEG Differences between Eyes-Closed and Eyes-Open Resting Conditions. Clin. Neurophysiol. 2007, 118, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Von Rosenberg, W.; Chanwimalueang, T.; Adjei, T.; Jaffer, U.; Goverdovsky, V.; Mandic, D.P. Resolving Ambiguities in the LF/HF Ratio: LF-HF Scatter Plots for the Categorization of Mental and Physical Stress from HRV. Front. Physiol. 2017, 8, 360. [Google Scholar] [CrossRef] [Green Version]
- Perini, R.; Veicsteinas, A. Heart Rate Variability and Autonomic Activity at Rest and during Exercise in Various Physiological Conditions. Eur. J. Appl. Physiol. 2003, 90, 317–325. [Google Scholar] [CrossRef]
- White, M.; Smith, A.; Humphryes, K.; Pahl, S.; Snelling, D.; Depledge, M. Blue Space: The Importance of Water for Preference, Affect, and Restorativeness Ratings of Natural and Built Scenes. J. Environ. Psychol. 2010, 30, 482–493. [Google Scholar] [CrossRef]
- Rogosa, D.; Brandt, D.; Zimowski, M. A Growth Curve Approach to the Measurement of Change. Psychol. Bull. 1982, 92, 726. [Google Scholar] [CrossRef]
- Rogosa, D.R.; Willett, J.B. Demonstrating the Reliability of the Difference Score in the Measurement of Change. J. Educ. Meas. 1983, 20, 335–343. [Google Scholar] [CrossRef]
- Farrow, M.R.; Washburn, K. A Review of Field Experiments on the Effect of Forest Bathing on Anxiety and Heart Rate Variability. Glob. Adv. Health Med. 2019, 8, 2164956119848654. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Ikei, H.; Kobayashi, M.; Miura, T.; Taue, M.; Kagawa, T.; Li, Q.; Kumeda, S.; Imai, M.; Miyazaki, Y. Effect of Forest Walking on Autonomic Nervous System Activity in Middle-Aged Hypertensive Individuals: A Pilot Study. Int. J. Environ. Res. Public Health 2015, 12, 2687–2699. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.Z.; Yang, F.; Bao, Z.Y.; Nan, X.G. A Study on the Impact of Visible Green Index and Vegetation Structures on Brain Wave Change in Residential Landscape. Urban For. Urban Green. 2021, 64, 22. [Google Scholar] [CrossRef]
- Forman, R.T. Land Mosaics: The Ecology of Landscapes and Regions (1995). In The Ecological Design and Planning Reader; Cambridge University Press: Cambridge, UK, 2014; pp. 217–234. [Google Scholar]
- Tsunetsugu, Y.; Park, B.-J.; Miyazaki, Y. Trends in Research Related to “Shinrin-Yoku” (Taking in the Forest Atmosphere or Forest Bathing) in Japan. Environ. Health Prev. Med. 2010, 15, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Site | A | B | C | D | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Area (hm2) | 0.82 | 0.76 | 1.03 | 0.91 | ||||
Temperature (°C) | 16.99 | 1.54 | 16.90 | 1.68 | 16.19 | 2.39 | 17.12 | 2.35 |
Relative humidity (%) | 25.41 | 5.69 | 20.36 | 3.96 | 24.74 | 6.10 | 33.21 | 4.01 |
Wind speed (m/s) | 3.15 | 2.09 | 2.73 | 1.90 | 2.28 | 1.81 | 3.61 | 2.12 |
Site | A (N = 39) | B (N = 39) | C (N = 39) | D (N = 39) | ||||
---|---|---|---|---|---|---|---|---|
Measures | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
PANAS-POS | ||||||||
Pre | 24.35 | 5.08 | 23.71 | 4.94 | 23.28 | 3.59 | 23.18 | 4.56 |
Post | 28.41 | 4.94 | 27.41 | 3.88 | 28.44 | 4.62 | 29.44 | 5.27 |
PANAS-NEG | ||||||||
Pre | 31.54 | 4.73 | 30.97 | 6.15 | 30.82 | 5.70 | 31.05 | 5.53 |
Post | 27.33 | 3.37 | 26.62 | 5.52 | 25.79 | 5.36 | 24.15 | 2.81 |
EEG-α (%) | ||||||||
T1 | 54.24 | 11.13 | 56.58 | 10.33 | 61.07 | 12.46 | 53.80 | 7.88 |
T2 | 22.42 | 2.39 | 23.44 | 3.57 | 23.52 | 4.13 | 22.53 | 3.10 |
T3 | 26.74 | 3.77 | 25.14 | 2.22 | 27.59 | 3.22 | 27.99 | 2.90 |
EEG-β (%) | ||||||||
T1 | 20.16 | 5.71 | 21.05 | 5.30 | 19.24 | 4.97 | 22.38 | 4.65 |
T2 | 30.31 | 4.48 | 33.07 | 4.53 | 31.41 | 3.04 | 31.40 | 4.66 |
T3 | 25.71 | 3.71 | 28.78 | 5.98 | 25.86 | 5.76 | 24.93 | 4.28 |
LF/HF | ||||||||
T1 | 1.11 | 0.33 | 0.99 | 0.27 | 1.01 | 0.21 | 1.00 | 0.27 |
T2 | 3.87 | 1.59 | 3.53 | 1.64 | 3.80 | 1.49 | 4.13 | 1.55 |
T3 | 3.03 | 1.73 | 2.90 | 1.51 | 2.89 | 1.70 | 3.25 | 1.95 |
Mean | SD | 95%CI of the Difference | t | p | ||
---|---|---|---|---|---|---|
PANAS-P | Lower | Upper | ||||
Site A | 4.05 | 4.24 | 2.68 | 5.43 | 5.96 | <0.001 *** |
Site B | 3.69 | 2.91 | 2.75 | 4.64 | 7.92 | <0.001 *** |
Site C | 5.15 | 3.62 | 3.98 | 6.33 | 8.88 | <0.001 *** |
Site D | 6.26 | 4.56 | 4.78 | 7.74 | 8.56 | <0.001 *** |
PANAS-N | ||||||
Site A | −4.21 | 3.44 | −5.32 | −3.09 | −7.63 | <0.001 *** |
Site B | −4.36 | 4.27 | −5.74 | −2.97 | −6.38 | <0.001 *** |
Site C | −5.03 | 4.11 | −6.36 | −3.69 | −7.64 | <0.001 *** |
Site D | −6.90 | 4.62 | −8.39 | −5.40 | −9.33 | <0.001 *** |
Stage | Mean Difference | Std. Error | p | t | |
---|---|---|---|---|---|
EEG-α (%) | |||||
Site A | T2-T1 | −31.82 | 2.67 | <0.001 *** | −11.91 |
T3-T1 | −27.49 | 2.91 | <0.001 *** | −9.44 | |
T3-T2 | 4.33 | 1.12 | 0.004 ** | 3.88 | |
Site B | T2-T1 | −33.13 | 2.57 | <0.001 *** | −12.87 |
T3-T1 | −31.43 | 2.44 | <0.001 *** | −12.87 | |
T3-T2 | 1.70 | 1.02 | 0.345 | 1.66 | |
Site C | T2-T1 | −37.56 | 2.98 | <0.001 *** | −12.61 |
T3-T1 | −33.48 | 2.86 | <0.001 *** | −11.70 | |
T3-T2 | 4.08 | 1.33 | 0.021 * | 3.07 | |
Site D | T2-T1 | −31.27 | 1.98 | <0.001 *** | −15.76 |
T3-T1 | −25.82 | 1.92 | <0.001 *** | −13.44 | |
T3-T2 | 5.46 | 0.92 | <0.001 *** | 5.94 | |
EEG-β (%) | |||||
Site A | T2-T1 | 10.16 | 1.72 | <0.001 *** | 5.89 |
T3-T1 | 5.56 | 1.70 | 0.014 * | 3.27 | |
T3-T2 | −4.60 | 1.33 | 0.009 ** | −3.47 | |
Site B | T2-T1 | 10.25 | 1.12 | <0.001 *** | 9.17 |
T3-T1 | 7.68 | 1.65 | <0.001 *** | 4.67 | |
T3-T2 | −2.57 | 1.30 | 0.193 | −1.98 | |
Site C | T2-T1 | 12.18 | 1.48 | <0.001 *** | 8.26 |
T3-T1 | 6.63 | 1.93 | 0.009 ** | 3.44 | |
T3-T2 | −5.55 | 1.83 | 0.023 * | −3.03 | |
Site D | T2-T1 | 9.02 | 1.48 | <0.001 *** | 6.11 |
T3-T1 | 2.55 | 1.77 | 0.506 | 1.44 | |
T3-T2 | −6.47 | 1.35 | <0.001 *** | −4.80 | |
LF/HF | |||||
Site A | T2-T1 | 2.71 | 0.35 | <0.001 *** | 7.68 |
T3-T1 | 1.87 | 0.38 | <0.001 *** | 4.92 | |
T3-T2 | −0.84 | 0.26 | 0.012 * | −3.28 | |
Site B | T2-T1 | 2.60 | 0.37 | <0.001 *** | 7.04 |
T3-T1 | 1.96 | 0.33 | <0.001 *** | 5.98 | |
T3-T2 | −0.64 | 0.43 | 0.451 | −1.50 | |
Site C | T2-T1 | 2.77 | 0.33 | <0.001 *** | 8.53 |
T3-T1 | 1.87 | 0.38 | <0.001 *** | 4.91 | |
T3-T2 | −0.90 | 0.51 | 0.270 | −1.79 | |
Site D | T2-T1 | 3.15 | 0.34 | <0.001 *** | 9.35 |
T3-T1 | 2.27 | 0.42 | <0.001 *** | 5.46 | |
T3-T2 | −0.88 | 0.55 | 0.368 | −1.62 |
Mean Difference | Std. Error | p | 95% CI for Difference | t | ||
---|---|---|---|---|---|---|
ΔDP | Lower | Upper | ||||
A-B | 0.36 | 0.78 | 0.99 | −1.82 | 2.54 | 0.46 |
A-C | −1.10 | 0.76 | 0.92 | −3.21 | 1.01 | −1.45 |
A-D | −2.21 | 0.81 | 0.06 | −4.46 | 0.05 | −2.73 |
B-C | −1.46 | 0.48 | 0.025 * | −2.79 | −0.13 | −3.04 |
B-D | −2.56 | 0.69 | 0.004 ** | −4.48 | −0.65 | −3.71 |
C-D | −1.10 | 0.64 | 0.55 | −2.88 | 0.67 | −1.72 |
ΔDN | ||||||
A-B | 0.15 | 0.76 | 0.99 | −1.96 | 2.26 | 0.20 |
A-C | 0.82 | 0.77 | 0.99 | −1.31 | 2.95 | 1.07 |
A-D | 2.69 | 0.72 | 0.004 ** | 0.69 | 4.70 | 3.74 |
B-C | 0.67 | 0.57 | 0.99 | −0.92 | 2.25 | 1.17 |
B-D | 2.54 | 0.64 | 0.002 ** | 0.76 | 4.32 | 3.98 |
C-D | 1.87 | 0.73 | 0.088 | −0.17 | 3.91 | 2.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, J.; Jiang, B.; Li, H.; Zhao, B. Do All Types of Restorative Environments in the Urban Park Provide the Same Level of Benefits for Young Adults? A Field Experiment in Nanjing, China. Forests 2023, 14, 1400. https://doi.org/10.3390/f14071400
Li Y, Zhang J, Jiang B, Li H, Zhao B. Do All Types of Restorative Environments in the Urban Park Provide the Same Level of Benefits for Young Adults? A Field Experiment in Nanjing, China. Forests. 2023; 14(7):1400. https://doi.org/10.3390/f14071400
Chicago/Turabian StyleLi, Yuanbi, Jinguang Zhang, Bijun Jiang, Hongyi Li, and Bing Zhao. 2023. "Do All Types of Restorative Environments in the Urban Park Provide the Same Level of Benefits for Young Adults? A Field Experiment in Nanjing, China" Forests 14, no. 7: 1400. https://doi.org/10.3390/f14071400
APA StyleLi, Y., Zhang, J., Jiang, B., Li, H., & Zhao, B. (2023). Do All Types of Restorative Environments in the Urban Park Provide the Same Level of Benefits for Young Adults? A Field Experiment in Nanjing, China. Forests, 14(7), 1400. https://doi.org/10.3390/f14071400