Dissection of AT-Hook Motif Nuclear-Localized Genes and Their Potential Functions in Peach Growth and Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Retrieval
2.2. Genes Structure
2.3. Phylogenetic Analysis
2.4. Gene Expression Analysis
2.5. qRT-PCR Analysis
2.6. Subcellular Localization Analysis of Prupe.1G530300.1 and Prupe.1G034400.1
2.7. Transient Overexpression in Peach Fruits
2.8. Measurement of Fruit Sugar
3. Results and Discussion
3.1. Systematic Identification Reveals PpAHL Diversification in Peach
3.2. Intron Gain or Loss during Diversification of PpAHLs Indicates Intron-Mediated Modification of Expression
3.3. Gene Duplication Analysis Suggests the Large-Scale Duplications Contribute to the Increase in PpAHLs in Peach
3.4. Expression Patterns of PpAHLs in Response to Drought Stress
3.5. Expression Profile in Different Tissues or during Development Provides Important Insights into Biological Functions of PpAHLs in Peach
3.6. Subcellular Localization of Prupe.1G530300.1 and Prupe.1G034400.1
3.7. Transient Overexpression of Prupe.1G530300.1 and Prupe.1G034400.1 Had the Opposite Effect on Sugar Accumulation in Peach Fruits
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Fujimoto, S.; Matsunaga, S.; Yonemura, M.; Uchiyama, S.; Azuma, T.; Fukui, K. Identification of a novel plant MAR DNA binding protein localized on chromosomal surfaces. Plant Mol. Biol. 2004, 56, 225–239. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, L.; Mo, W.; Wang, L.; Zhang, L.; Cao, Y. AHLs’ life in plants: Especially their potential roles in responding to Fusarium wilt and repressing the seed oil accumulation. Int. J. Biol. Macromol. 2022, 208, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Filarsky, M.; Zillner, K.; Araya, I.; Villar-Garea, A.; Merkl, R.; Längst, G.; Németh, A. The extended AT-hook is a novel RNA binding motif. RNA Biol. 2015, 12, 864–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aravind, L.; Landsman, D. AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res. 1998, 26, 4413–4421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Leng, X.; Yang, J.; Zhang, M.; Zeng, M.; Xu, X.; Wang, F.; Li, C. Comprehensive analysis of AHL gene family and their expression under drought stress and ABA treatment in Populus trichocarpa. PeerJ 2021, 9, e10932. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, H.; Wang, H.; Wu, X.; Wang, H.; Mao, J. Identification and expression analysis of the AHL gene family in grape (Vitis vinifera). Plant Gene 2021, 26, 100285. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, X.; Chen, J.; Guo, X.; Wang, H.; Zhen, W.; Zhang, J.; Hu, Z.; Zhang, X.; Botella, J.R. Overexpression of AHL9 accelerates leaf senescence in Arabidopsis thaliana. BMC Plant Biol. 2022, 22, 248. [Google Scholar] [CrossRef]
- Jin, Y.; Luo, Q.; Tong, H.; Wang, A.; Cheng, Z.; Tang, J.; Li, D.; Zhao, X.; Li, X.; Wan, J. An AT-hook gene is required for palea formation and floral organ number control in rice. Dev. Biol. 2011, 359, 277–288. [Google Scholar] [CrossRef] [Green Version]
- Jia, Q.-S.; Zhu, J.; Xu, X.-F.; Lou, Y.; Zhang, Z.-L.; Zhang, Z.-P.; Yang, Z.-N. Arabidopsis AT-hook protein TEK positively regulates the expression of arabinogalactan proteins for Nexine formation. Mol. Plant 2015, 8, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Gallavotti, A.; Malcomber, S.; Gaines, C.; Stanfield, S.; Whipple, C.; Kellogg, E.; Schmidt, R.J. BARREN STALK FASTIGIATE1 is an AT-hook protein required for the formation of maize ears. Plant Cell 2011, 23, 1756–1771. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, Y.; Stroud, H.; Gu, X.; Sun, B.; Gan, E.-S.; Ng, K.-H.; Jacobsen, S.E.; He, Y.; Ito, T. A matrix protein silences transposons and repeats through interaction with retinoblastoma-associated proteins. Curr. Biol. 2013, 23, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, J.; Kim, Y.-S.; Jung, J.-H.; Seo, P.J.; Park, C.-M. The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis. J. Biol. Chem. 2012, 287, 15307–15316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, P.O.; Kim, Y.; Breeze, E.; Koo, J.C.; Woo, H.R.; Ryu, J.S.; Park, D.H.; Beynon, J.; Tabrett, A.; Buchanan-Wollaston, V. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. Plant J. 2007, 52, 1140–1153. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Z.; Liu, Y.; Kong, D.; Li, T.; Yu, S.; Mei, H.; Xu, X.; Liu, H.; Chen, L. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Sci. Rep. 2016, 6, 30264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, K.; Purayannur, S.; Kaladhar, V.C.; Parida, S.K.; Verma, P.K. mQTL-seq and classical mapping implicates the role of an at-hook motif containing nuclear localized (AHL) family gene in A scochyta blight resistance of chickpea. Plant Cell Environ. 2018, 41, 2128–2140. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Lü, Y.; Chen, W.; Yao, J.; Li, Y.; Li, Q.; Pan, J.; Fang, S.; Sun, J.; Zhang, Y. Genome-wide identification and analyses of the AHL gene family in cotton (Gossypium). BMC Genom. 2020, 21, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Chen, B.; Zhou, W.; Xie, L.; Wang, L.; Zhang, Y.; Zhang, Q. Genome-wide identification and expression analysis of the AT-hook Motif Nuclear Localized gene family in soybean. BMC Genom. 2021, 22, 361. [Google Scholar] [CrossRef]
- Širl, M.; Šnajdrová, T.; Gutiérrez-Alanís, D.; Dubrovsky, J.G.; Vielle-Calzada, J.P.; Kulich, I.; Soukup, A. At-hook motif nuclear localised protein 18 as a novel modulator of root system architecture. Int. J. Mol. Sci. 2020, 21, 1886. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wang, X.; Lee, J.-Y.; Lee, J.-Y. Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning. Plant Cell 2013, 25, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Tayengwa, R.; Sharma Koirala, P.; Pierce, C.F.; Werner, B.E.; Neff, M.M. Overexpression of AtAHL20 causes delayed flowering in Arabidopsis via repression of FT expression. BMC Plant Biol. 2020, 20, 559. [Google Scholar] [CrossRef]
- Verde, I.; Abbott, A.G.; Scalabrin, S.; Jung, S.; Shu, S.; Marroni, F.; Zhebentyayeva, T.; Dettori, M.T.; Grimwood, J.; Cattonaro, F. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 2013, 45, 487–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Fan, T.; Wang, L.; Zhang, L.; Li, Y. Large-scale analysis of putative Euphorbiaceae R2R3-MYB transcription factors identifies a MYB involved in seed oil biosynthesis. BMC Plant Biol. 2023, 23, 145. [Google Scholar] [CrossRef]
- Jiang, L.; Lin, M.; Wang, H.; Song, H.; Zhang, L.; Huang, Q.; Chen, R.; Song, C.; Li, G.; Cao, Y. Haplotype-resolved genome assembly of Bletilla striata (Thunb.) Reichb.f. to elucidate medicinal value. Plant J. 2022, 111, 1340–1353. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, Q.; Zhang, L. The core triacylglycerol toolbox in woody oil plants reveals targets for oil production bioengineering. Front. Plant Sci. 2023, 14, 1170723. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Han, Y.; Meng, D.; Abdullah, M.; Li, D.; Jin, Q.; Lin, Y.; Cai, Y. Systematic analysis and comparison of the PHD-Finger gene family in Chinese pear (Pyrus bretschneideri) and its role in fruit development. Funct. Integr. Genom. 2018, 18, 519–531. [Google Scholar] [CrossRef]
- Jung, S.; Ficklin, S.P.; Lee, T.; Cheng, C.-H.; Blenda, A.; Zheng, P.; Yu, J.; Bombarely, A.; Cho, I.; Ru, S. The genome database for Rosaceae (GDR): Year 10 update. Nucleic Acids Res. 2014, 42, D1237–D1244. [Google Scholar] [CrossRef] [Green Version]
- Eddy, S.R. Accelerated profile HMM searches. PLoS Comput. Biol. 2011, 7, e1002195. [Google Scholar] [CrossRef] [Green Version]
- Bateman, A.; Coin, L.; Durbin, R.; Finn, R.D.; Hollich, V.; Griffiths-Jones, S.; Khanna, A.; Marshall, M.; Moxon, S.; Sonnhammer, E.L.L. The Pfam protein families database. Nucleic Acids Res. 2004, 32 (Suppl. S1), D138–D141. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Zheng, C.; Chitsaz, F.; Derbyshire, M.K.; Geer, L.Y.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Lanczycki, C.J. CDD: Conserved domains and protein three-dimensional structure. Nucleic Acids Res. 2012, 41, D348–D352. [Google Scholar] [CrossRef] [Green Version]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [Green Version]
- Parra, G.; Bradnam, K.; Rose, A.B.; Korf, I. Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic Acids Res. 2011, 39, 5328–5337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, A.B.; Elfersi, T.; Parra, G.; Korf, I. Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell 2008, 20, 543–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Cai, B.; Yang, X.; Tuskan, G.A.; Cheng, Z.-M. MicroSyn: A user friendly tool for detection of microsynteny in a gene family. BMC Bioinform. 2011, 12, 79. [Google Scholar] [CrossRef] [Green Version]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Ding, B.; Hu, C.; Feng, X.; Cui, T.; Liu, Y.; Li, L. Systematic analysis of the OFP genes in six Rosaceae genomes and their roles in stress response in Chinese pear (Pyrus bretschneideri). Physiol. Mol. Biol. Plants 2020, 26, 2085–2094. [Google Scholar] [CrossRef]
- Lu, Z.; Cao, H.; Pan, L.; Niu, L.; Wei, B.; Cui, G.; Wang, L.; Yao, J.L.; Zeng, W.; Wang, Z. Two loss-of-function alleles of the glutathione S-transferase (GST) gene cause anthocyanin deficiency in flower and fruit skin of peach (Prunus persica). Plant J. 2021, 107, 1320–1331. [Google Scholar] [CrossRef]
- Zhao, J.; Favero, D.S.; Peng, H.; Neff, M.M. Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain. Proc. Natl. Acad. Sci. USA 2013, 110, E4688–E4697. [Google Scholar] [CrossRef]
- Bishop, E.H.; Kumar, R.; Luo, F.; Saski, C.; Sekhon, R.S. Genome-wide identification, expression profiling, and network analysis of AT-hook gene family in maize. Genomics 2020, 112, 1233–1244. [Google Scholar] [CrossRef]
- Machaj, G.; Grzebelus, D. Characteristics of the AT-hook motif containing nuclear localized (AHL) genes in carrot provides insight into their role in plant growth and storage root development. Genes 2021, 12, 764. [Google Scholar] [CrossRef]
- Zhao, J.; Favero, D.S.; Qiu, J.; Roalson, E.H.; Neff, M.M. Insights into the evolution and diversification of the AT-hook Motif Nuclear Localized gene family in land plants. BMC Plant Biol. 2014, 14, 266. [Google Scholar] [CrossRef] [Green Version]
- Koonin, E.V. Intron-dominated genomes of early ancestors of eukaryotes. J. Hered. 2009, 100, 618–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, B.-S.; Choi, S.S. Introns: The functional benefits of introns in genomes. Genom. Inform. 2015, 13, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.; Meng, D.; Liu, X.; Cheng, X.; Wang, H.; Jin, Q.; Xu, X.; Cao, Y.; Cai, Y. RIGD: A Database for Intronless Genes in the Rosaceae. Front. Genet. 2020, 11, 868. [Google Scholar] [CrossRef]
- Kalyna, M.; Simpson, C.G.; Syed, N.H.; Lewandowska, D.; Marquez, Y.; Kusenda, B.; Marshall, J.; Fuller, J.; Cardle, L.; McNicol, J. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res. 2012, 40, 2454–2469. [Google Scholar] [CrossRef] [Green Version]
- Callis, J.; Fromm, M.; Walbot, V. Introns increase gene expression in cultured maize cells. Genes Dev. 1987, 1, 1183–1200. [Google Scholar] [CrossRef] [Green Version]
- Pan, Q.; Shai, O.; Lee, L.J.; Frey, B.J.; Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 2008, 40, 1413–1415. [Google Scholar] [CrossRef]
- Roy, M.; Kim, N.; Xing, Y.; Lee, C. The effect of intron length on exon creation ratios during the evolution of mammalian genomes. RNA 2008, 14, 2261–2273. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.S.N.; Marquez, Y.; Kalyna, M.; Barta, A. Complexity of the alternative splicing landscape in plants. Plant Cell 2013, 25, 3657–3683. [Google Scholar] [CrossRef] [Green Version]
- Duncker, B.P.; Davies, P.L.; Walker, V.K. Introns boost transgene expression in Drosophila melanogaster. Mol. Gen. Genet. MGG 1997, 254, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Li, W.; Li, Y.; Liu, M.; Cao, H.; Provart, N.; Ding, X.; Sun, M.; Tang, Z.; Yue, C. The red flower wintersweet genome provides insights into the evolution of magnoliids and the molecular mechanism for tepal color development. Plant J. 2021, 108, 1662–1678. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, X.; Jiang, L. Integrative analysis of the RNA interference toolbox in two Salicaceae willow species, and their roles in stress response in poplar (Populus trichocarpa Torr. & Gray). Int. J. Biol. Macromol. 2020, 162, 1127–1139. [Google Scholar] [PubMed]
- Fang, Y.; Xiong, L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cell. Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yuan, Z.; Zhang, P.; Liu, Z.; Wang, T.; Wei, L. Genome-wide analysis of NAC transcription factor family in maize under drought stress and rewatering. Physiol. Mol. Biol. Plants 2020, 26, 705–717. [Google Scholar] [CrossRef]
- Woraathasin, N.; Nualsri, C.; Sutjit, C.; Keawraksa, O.; Rongsawat, T.; Nakkanong, K. Genotypic variation in 9-Cis-Epoxycarotenoid Dioxygenase3 gene expression and abscisic acid accumulation in relation to drought tolerance of Hevea brasiliensis. Physiol. Mol. Biol. Plants 2021, 27, 1513–1522. [Google Scholar] [CrossRef]
- Debnath, M.; Pandey, M.; Bisen, P.S. An omics approach to understand the plant abiotic stress. OMICS J. Integr. Biol. 2011, 15, 739–762. [Google Scholar] [CrossRef]
- Mollah, M.D.A.; Zhang, X.; Zhao, L.; Jiang, X.; Ogutu, C.O.; Peng, Q.; Belal, M.A.A.; Yang, Q.; Cai, Y.; Nishawy, E. Two vacuolar invertase inhibitors PpINHa and PpINH3 display opposite effects on fruit sugar accumulation in peach. Front. Plant Sci. 2022, 13, 1033805. [Google Scholar] [CrossRef]
Gene ID | Chr | 5′ End | 3′ End | Strands | Types |
---|---|---|---|---|---|
Prupe.1G530300.1 | Pp01 | 43,345,339 | 43,347,157 | − | Type_I |
Prupe.4G266900.1 | Pp04 | 20,020,558 | 20,021,945 | − | Type_I |
Prupe.5G004600.1 | Pp05 | 578,564 | 581,015 | − | Type_I |
Prupe.8G182400.1 | Pp08 | 18,209,645 | 18,211,172 | + | Type_I |
Prupe.5G037400.1 | Pp05 | 4,194,916 | 4,195,767 | − | Type_I |
Prupe.2G108200.1 | Pp02 | 16,651,246 | 16,652,628 | + | Type_I |
Prupe.1G034400.1 | Pp01 | 2,401,099 | 2,401,956 | − | Type_I |
Prupe.6G348200.1 | Pp06 | 29,755,598 | 29,756,515 | − | Type_I |
Prupe.2G239000.1 | Pp02 | 25,943,216 | 25,946,736 | − | Type_I |
Prupe.3G173700.1 | Pp03 | 19,109,639 | 19,110,439 | − | Type_I |
Prupe.2G147000.1 | Pp02 | 20,331,029 | 20,332,901 | + | Type_I |
Prupe.5G082200.1 | Pp05 | 9,555,987 | 9,557,995 | + | Type_I |
Prupe.5G098800.1 | Pp05 | 10,701,796 | 10,707,244 | − | Type_II |
Prupe.2G167000.1 | Pp02 | 21,560,234 | 21,565,660 | − | Type_II |
Prupe.5G037000.1 | Pp05 | 4,177,031 | 4,182,789 | + | Type_II |
Prupe.5G005600.1 | Pp05 | 668,431 | 673,030 | + | Type_II |
Prupe.6G347600.1 | Pp06 | 29,734,568 | 29,739,564 | + | Type_III |
Prupe.5G081500.1 | Pp05 | 9,472,759 | 9,478,136 | − | Type_III |
Prupe.2G282300.1 | Pp02 | 28,057,573 | 28,061,864 | − | Type_III |
Prupe.2G146200.1 | Pp02 | 20,256,616 | 20,262,297 | − | Type_III |
Prupe.6G117900.1 | Pp06 | 8,644,708 | 8,647,802 | + | Type_III |
Prupe.7G119600.1 | Pp07 | 14,344,867 | 14,348,069 | − | Type_III |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Xu, E.; Wang, Q. Dissection of AT-Hook Motif Nuclear-Localized Genes and Their Potential Functions in Peach Growth and Development. Forests 2023, 14, 1404. https://doi.org/10.3390/f14071404
Zhao J, Xu E, Wang Q. Dissection of AT-Hook Motif Nuclear-Localized Genes and Their Potential Functions in Peach Growth and Development. Forests. 2023; 14(7):1404. https://doi.org/10.3390/f14071404
Chicago/Turabian StyleZhao, Jianlun, Enkai Xu, and Qirui Wang. 2023. "Dissection of AT-Hook Motif Nuclear-Localized Genes and Their Potential Functions in Peach Growth and Development" Forests 14, no. 7: 1404. https://doi.org/10.3390/f14071404
APA StyleZhao, J., Xu, E., & Wang, Q. (2023). Dissection of AT-Hook Motif Nuclear-Localized Genes and Their Potential Functions in Peach Growth and Development. Forests, 14(7), 1404. https://doi.org/10.3390/f14071404