The Influence of Logging Equipment on the Content, Stock and Stratification Coefficient of Elements of the Mineral Nutrition of Plants in the Soils of the Taiga Zone of Karelia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Project
2.3. Assessment of the Contents of Carbon, Nitrogen and Potassium in the Soil
2.4. Assessment of Carbon, Nitrogen and Potassium Reserves in the Organic Layer of Soils
2.5. Measurement of the Cellulolytic Capacity of Soils
2.6. Statistical Analysis
3. Results
3.1. Physical and Chemical Properties of Soils
3.2. Stocks of Carbon, Nitrogen and Potassium in Soils
3.3. Changes in the Ratio of Stratification of Organic Carbon, Nitrogen and Potassium in the Soil
3.4. Cellulolytic Activity of Soils
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of the World’s Forests 2020; Forests, biodiversity and people; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Enescu, R.; Dincă, L.; Vasile, D.; Vlad, R. Does the slope aspect influence the soil organic matter concentration in forest soils? Forests 2022, 13, 1472. [Google Scholar] [CrossRef]
- Watros, A.; Tkaczyk, P.; Lipińska, H.; Lipiński, W.; Krzyszczak, J.; Baranowski, P.; Brodowska, M. Mineral nitrogen content in soils depending on land use and agronomic category. Appl. Ecol. Environ. Res. 2019, 17, 5663–5675. [Google Scholar] [CrossRef]
- da Silva, W.B.; Périco, E.; Dalzochio, M.S.; Santos, M.; Cajaiba, R.L. Are litterfall and litter decomposition processes indicators of forest regeneration in the Neotropics? Insights from a case study in the Brazilian Amazon. For. Ecol. Manag. 2018, 429, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Jasinska, J.; Sewer’niak, P.; Puchałka, R. Litterfall in a scots pine forest on inland dunes in Central Europe: Mass, Seasonal Dynamics and Chemistry. Forests 2020, 11, 678. [Google Scholar] [CrossRef]
- Kezik, U.; Acar, H. The potential ecological effects of forest harvesting on forest soil. Eur. J. For. Eng. 2016, 2, 89–97. [Google Scholar]
- Riutta, T.; Kho, L.K.; Teh, Y.A.; Ewers, R.; Majalap, N.; Malhi, Y. Major and persistent shifts in below-ground carbon dynamics and soil respiration following logging in tropical forests. Glob. Chang. Biol. 2021, 27, 2225–2240. [Google Scholar] [CrossRef] [PubMed]
- Ares, A.; Terry, T.; Miller, R.; Anderson, H.; Flaming, B. Ground-based forest harvesting effects on soil physical properties and Douglas-fir growth. Soil Sci. Soc. Am. 2005, 69, 1822–1832. [Google Scholar] [CrossRef]
- Berg, S.; Schweier, J.; Brüchert, F.; Poissonnet, M.; Pizzirani, S.; Varet, A.; Sauter, U. Towards assessing the sustainability of European logging operations. Eur. J. For. Res. 2012, 131, 81–94. [Google Scholar] [CrossRef]
- Tan, X.; Chang, S.; Kabzems, R. Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biol. Fert. Soils 2008, 44, 471–479. [Google Scholar] [CrossRef]
- Leinonen, T.; Kolström, T. Model forests in Russia: Experience and prospects for the future. In Proceedings of the International Workshop Held in Petrozavodsk, Russia, Petrozavodsk, Russia, 28 June 1999. [Google Scholar]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Gebauer, R.; Martinková, M. Effects of pressure on the root systems of Norway spruce plants (Picea abies [L.] Karst.). J. For. Sci. 2005, 51, 268–275. [Google Scholar] [CrossRef] [Green Version]
- Howard, R.; Singer, M.; Frantz, G. Effects of soil properties, water-content, and compactive effort on the compaction of selected California forest and range soils. Soil Sci. Soc. Am. J. 1981, 45, 231–236. [Google Scholar] [CrossRef]
- Cazzolla, G.; Castaldi, S.; Lindsell, J.; Coomes, D.; Marchetti, M.; Maesano, M.; Di Paola, A.; Paparella, F.; Valentini, R. The impact of selective logging and clearcutting on forest structure, tree diversity and above-ground biomass of African tropical forests. Ecol. Res. 2015, 30, 119–132. [Google Scholar] [CrossRef]
- Karvinen, S.; Välkky, E.; Torniainen, T.; Gerasimov, Y. Northwest Russian Forestry in a Nutshell. Working Papers of the Finnish Forest Research Institute 30. Joensuu, MELTA, 2006; 98p. Available online: http://www.metla.fi/julkaisut/workingpapers/2006/mwp030.pdf (accessed on 1 March 2020).
- Shorohova, E.; Sinkevich, S.; Kryshen, A.; Vanha-Majamaa, I. Correction to: Variable retention forestry in European boreal forests in Russia. Ecol. Process. 2019, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Katarov, V.K.; Syunev, V.S.; Ratjkova, E.I.; Gerasimov, Y.Y. Impact of wood forwarding on forest soils. Resour. Technol. 2013, 9, 73–81. [Google Scholar] [CrossRef]
- Gaertig, O.T.; Schack-Kirchner, H.; Hildebrand, E.E.; von Wilpert, K. The impact of soil aeration on oak decline in southwestern Germany. For. Ecol. Manag. 2002, 159, 15–25. [Google Scholar] [CrossRef]
- Okuda, T.; Shima, K.; Yamada, T.; Hosaka, T.; Niiyama, K.; Kosugi, Y.; Yoneda, T.; Hashim, M.; Quah, E.S.; Saw, L.G. Spatiotemporal changes in biomass after selective logging in a lowland tropical rainforest in Peninsular Malaysia. Tropics 2021, 30, 11–23. [Google Scholar] [CrossRef]
- Lussetti, D.; Axelsson, E.P.; Ilstedt, U.; Falck, J.; Karlsson, A. Supervised logging and controlling cutting improves stand development:18 years of post-logging data in a tropical rain forest in Borneo. For. Ecol. Manag. 2016, 381, 335–346. [Google Scholar] [CrossRef]
- Navarro-Pedreño, J.; Almendro-Candel, M.B.; Zorpas, A.A. The increase of soil organic matter reduces global warming, myth or reality? Science 2021, 3, 18. [Google Scholar] [CrossRef]
- Klaes, B.; Struck, J.; Schneider, R.; Schüler, G. Middle-Term effects after timber harvesting with heavy machinery on a fine-textured forest soil. Eur. J. For. Res. 2016, 135, 1083–1095. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, Y.; Zhou, C.; Wu, Z.; Zheng, L.; Hu, X.; Chen, H.; Gan, J. Effects of cutting intensity on soil physical and chemical properties in a mixed natural forest in southeastern China. Forests 2015, 6, 4495–4509. [Google Scholar] [CrossRef]
- Yu, P.; Liu, S.; Ding, Z.; Zhang, A.; Tang, X. Changes in storage and the stratification ratio of soil organic carbon under different vegetation types in northeastern China. Agronomy 2020, 10, 290. [Google Scholar] [CrossRef] [Green Version]
- Jobbacy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Santos, C.A.; Rezende, C.P.; Machado, P.E.F.; Pereira, J.M.; Alves, B.J.R.; Urquoaga, S.; Boddey, R.M. Changes in soil carbon stocks after land-use change form native vegetation to pastures in the Atlantic forest region of Brazil. Geoderma 2019, 337, 394–401. [Google Scholar] [CrossRef]
- Reichardt, K.; Timm, L.C. How Plants absorb nutrients from the soil. In Soil, Plant and Atmosphere; Springer: Cham, Switzerland, 2020; pp. 313–330. [Google Scholar]
- Melero, S.; Lopez-Bellido, R.J.; Luis-Bellido, L.; Munoz-Romero, V.; Moren, F.; Murillo, J.M.; Franzluebbers, A.J. Stratification ratios in a rainfed Mediterranean Vertisol in wheat under differnet tillage, rotation and N fertilization rates. Soil Tillage Res. 2012, 119, 7–12. [Google Scholar] [CrossRef]
- Kuzmichev, E.P.; Trushina, I.G.; Lopatin, E.V. Volumes of Illegal Logging of Forest Plantations in the Russian Federation. Forestry Information, 2018. №1. Available online: https://cyberleninka.ru/article/n/obemy-nezakonnyh-rubok-lesnyh-nasazhdeniy-v-rossiyskoy-federatsii (accessed on 2 March 2023). (In Russian).
- Cleophas, F.; Musta, B.; How, P.M.; Bidin, K. Runoff and soil erosion in selectively-logged over forest, Danum Valley Sabah, Malaysia. Trans. Sci. Technol. 2017, 4, 449–459. [Google Scholar]
- Sazonova, T.A.; Pridacha, V.B. Optimization of mineral nutrition in coniferous plants. Agrochemistry 2002, 2, 23–30. Available online: http://elibrary.ru/item.asp?id=21628465 (accessed on 28 June 2023). (In Russian).
- Ananyev, V.A.; Moshnikov, S.A. Structure and Dynamics of the Forest Fund of the Republic of Karelia // News of Universities. Forest Magazine. 2016, №4 (352). Available online: https://cyberleninka.ru/article/n/struktura-i-dinamika-lesnogo-fonda-respubliki-kareliya (accessed on 3 March 2023). (In Russian).
- Toivio, J.; Helmisaari, H.-S.; Palviainen, M.; Lindeman, H.; Ala-Ilomäki, J.; Sirén, M.; Uusitalo, J. Impacts of timber forwarding on physical properties of forest soils in southern Finland. For. Ecol. Manag. 2017, 405, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Map of climate classifications of Europe and Middle East (JPG). People.eng.unimelbb.edu.au. Retrieved December 31, 2018.
- Yli-Halla, M.; Mokma, D. Classification of soils of Finland according to soil taxonomy. Soil Horiz. 1999, 40, 59. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Word Soil Resources Report 106; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Fedorets, N.G.; Bakhmet, O.N. Ecological features of the soils of the green belt of Fennoscandia. Transactions of Karelian Research Centre of Russian Academy of Science. 2009, №2. Available online: https://cyberleninka.ru/article/n/ekologicheskie-osobennosti-pochv-zelenogo-poyasa-fennoskandii (accessed on 2 March 2023). (In Russian).
- Rautio, P.; Fürst, A.; Stefan, K.; Raitio, H.; Bartels, U. Sampling and analysis of needles and leaves. In Manual and Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects to Air Pollution on Forests; Manual Part XII; UNECE ICP Forest Programme Coordinating Centre: Hamburg, Germany, 2010; p. 19. [Google Scholar]
- Vorobjeva, L. Chemical Analysis of Soils: Textbook; Publishing House of Moscow State University: Moscow, Russia, 1998; p. 272. (In Russian) [Google Scholar]
- Suhaili, N.; Anuar, S.; Wong, W.; Lussetti, D.; Axelsson, E.; Hasselquist, N.; Ilstedt, U.; Awang, B.N. Soil carbon pool and carbon fluxes estimation in 26 years after selective logging tropical forest at Sabah, Malaysia. Forests 2022, 13, 1890. [Google Scholar] [CrossRef]
- Bagheri, I.; Kalhori, S.B.; Akef, M.; Khormali, F. Effect of compaction on physical and micromorphological properties of forest soils. Am. J. Plant Sci. 2012, 3, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Sirén, M.; Ala-Ilomäki, J.; Lindeman, H.; Uusitalo, J.; Kiilo, K.E.K.; Salmivaara, A.; Ryynänen, A. Soil disturbance by cut-to-length machinery on mid-grained soils. Silva Fenn. 2019, 53, 10134. [Google Scholar] [CrossRef]
- Kozlowski, T. Soil compaction and growth of woody plants. Scand. J. For. Res. 1999, 14, 596–619. [Google Scholar] [CrossRef]
- Sadono, R.; Pujiono, E.; Lestari, L. Land cover changes and carbon storage before and after community forestry program in Bleberan Village, Gunungkidul, Indonesia, 1999–2018. For. Sci. Technol. 2020, 16, 134–144. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, J.; Mattson, K.G.; Zhang, W.; Weber, T.A. Sample szes to control error estimates in determining soil bulk density in California forest soils. Soil Sci. Soc. Am. J. 2016, 80, 756–764. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Aziz, C.B.; Saha, M.L. Relationships between soil physico-chemical properties and total viable bacterial counts in sunderban mangrove forests, Bangladesh. Dhaka Univ. J. Biol. Sci. 2012, 21, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Kokieva, G.; Druzynova, V.; Yampilov, S.; Radnaev, D.; Shukhanov, S.; Popova, A. Investigation of the mechanical effect of machinery on the soil. In Networked Control Systems for Connected and Automated Vehicles; Lecture Notes in Networks and Systems, Guda, A., Eds.; Springer: Cham, Switzerland, 2022; Volume 510. [Google Scholar] [CrossRef]
- Ampoorter, E.; Goris, R.; Cornelis, W.; Verheyen, K. Impact of mechanized logging on compaction status of sandy forest soils. For. Ecol. Manag. 2007, 241, 162–174. [Google Scholar] [CrossRef]
- Suhaili, N.; Hatta, S.; James, D.; Hassan, A.; Jalloh, M.; Phua, M.; Besar, N. Soils carbon stocks and litterfall fluxes from the Bornean tropical montane forests, Sabah, Malaysia. Forests 2021, 12, 1621. [Google Scholar] [CrossRef]
- Chen, L.-C.; Guan, X.; Li, H.; Wang, Q.; Zhang, W.; Yang, Q.; Wang, S. Spatiotemporal patterns of carbon storage in forest ecosystems in Hunan Province, China. For. Ecol. Manag. 2019, 432, 656–666. [Google Scholar] [CrossRef]
- Voltr, V.; Menšík, L.; Hlisnikovský, L.; Hruška, M.; Pokorný, E.; Pospíšilová, L. The soil organic matter in connection with soil properties and soil inputs. Agronomy 2021, 11, 779. [Google Scholar] [CrossRef]
- Keen, Y.; Jalloh, M.; Ahmed, O.; Sudin, M.; Besar, N. Soil organic matter and related soil properties in forest, grassland and cultivated land use types. Int. J. Phys. Sci. 2011, 6, 7410–7415. [Google Scholar]
- Zhou, G.; Guan, L.; Wei, X.; Zhang, D.; Zhang, Q.; Yan, J.; Wen, D.; Liu, J.; Liu, S.; Huang, Z. Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China. Plant Ecol. 2007, 188, 77–89. [Google Scholar] [CrossRef]
- Paudel, E.; Dossa, G.; Xu, J.; Harrison, R. Litterfall and nutrient return along a disturbance gradient in a tropical montane forest. For. Ecol. Manag. 2015, 353, 97–106. [Google Scholar] [CrossRef]
- Andreiuk, E.; Mal’tseva, N. Oligonitrophilic microorganisms and oligonitrophilia. Mikrobiolohichnyi Zhurnal 1978, 40, 173–185. (In Russian) [Google Scholar]
- Perotti, E.; Pidello, A. Plant-Soil-Microorganism Interactions on Nitrogen Cycle: Azospirillum Inoculation. Tech. Eur. 2012, 189–208. [Google Scholar] [CrossRef]
- Baldani, V.; Baldani, J.; Döbereiner, J. Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can. J. Microbiol. 1983, 29, 924–929. [Google Scholar] [CrossRef]
- Mouhamad, R.; Atiyah, A.; Iqbal, M. Behavior of potassium in soil: A mini review. Chem. Int. 2016, 2, 47–58. [Google Scholar]
- Yan, T.; Kremenetska, Y.; Zhang, B.; He, S.; Wang, X.; Yu, Z.; Hu, Q.; Liang, X.; Fu, M.; Wang, Z. The relationship between soil particle size fractions, associated carbon distribution and physicochemical properties of historical land-use types in newly formed reservoir buffer strips. Sustainability 2022, 14, 8448. [Google Scholar] [CrossRef]
- Alyabina, I.; Shmatova, A. Al–Fe–Humus Podzols in Russia: Geography of Some Properties. Moscow Univ. Soil Sci. Bull. 2020, 75, 8–18. [Google Scholar] [CrossRef]
- Xiao, W.; Ge, X.; Zeng, L.; Huang, Z.; Lei, J.; Zhou, B.; Li, M. Rates of litter decomposition and soil respiration in relation to soil temperature and water in different-aged Pinus massoniana forests in the three Gorges Reservoir Area, China. PLoS ONE 2014, 9, e101890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, M.; Wang, Z.; Zhao, Y. Stratification ratio of soil organic carbon as an indicator of carbon sequestration and soil quality in ecological restoration: SOC stratification ratio in ecological restoration. Restor. Ecol. 2017, 26, 555–562. [Google Scholar] [CrossRef]
- Beylich, A.; Oberholzer, H.-R.; Schrader, S.; Höper, H.; Wilke, B.-M. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Tillage Res. 2010, 109, 133–143. [Google Scholar] [CrossRef]
- Grata, K. Determining cellulolytic activity of microorganisms. Chem. Didact. Ecol. Metrol. 2020, 25, 133–143. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Yang, F.; Qu, Y.; Li, X. Isolation and characterization of Achromobacter sp. CX2 from symbiotic Cytophagales, a non-cellulolytic bacterium showing synergism with cellulolytic microbes by producing β-glucosidase. Ann. Microbiol. 2015, 65, 1699–1707. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, J.; Meng, D.; Dang, S.; Zhou, J.; Osborne, B.; Ren, Y.; Liang, T.; Yu, K. Effect of soil microorganisms and labile C availability on soil respiration in response to litter inputs in forest ecosystems: A meta-analysis. Ecol. Evol. 2020, 10, 13602–13612. [Google Scholar] [CrossRef]
- Page-Dumroese, D.; Jurgensen, M.; Tiarks, A.; Ponder, J.; Sanchez, F.; Fleming, R. Soil physical property changes at the north American long-term soil productivity study sites: 1 and 5 years after compaction. Can. J. For. Res. 2006, 36, 551–564. [Google Scholar] [CrossRef]
- Demir, M.; Makineci, E.; Yilmaz, E. Investigation of timber harvesting impacts on herbaceous cover, forest floor and surface soil properties on skid road in an oak (Quercus petreae L.) stand. Build. Environ. 2007, 42, 1194–1199. [Google Scholar] [CrossRef]
- Varol, T.; Emir, T.; Akgul, M.; Ozel, H.; Acar, H.; Cetin, M. Impacts of Small-Scale Mechanized Logging Equipment on Soil Compaction in Forests. J. Soil Sci. Plant Nutr. 2020, 20, 953–963. [Google Scholar] [CrossRef]
- Najafi, A.; Solgi, A. Assessing site disturbance using two ground survey methods in a mountain forest. Croat. J. Eng. J. Theory App. For. Eng. 2010, 31, 47–55. Available online: https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=86347 (accessed on 28 June 2023).
- Ananyev, V.; Asikainen, A.; Vialkko, E.; Gerasimov, Y.; Dyomin, K.; Sikanen, L.; Sunyov, V.; Tyukina, O.; Khlustov, V.; Shirnin, Y. Intermediate Yield of Forest in the North-West of Russia; Research Institute of the Forest of Finland: Joensuu, Finland, 2005; 150p. (In Russian) [Google Scholar]
Study Areas | Layers of Soil | Soil Depth Interval (SDI), cm | pHKCl | HA | S | DS |
---|---|---|---|---|---|---|
ppm | % | |||||
SLCC 1 | O | 6–12 | 2.7 | 172.8 | 12.1 | 19.7 |
E | 9–14 | 3.3 | 4.2 | – | – | |
BF | 7–12 | 4.7 | 3.2 | 1.0 | 14.2 | |
CL 2 | O | 4–11 | 4.7 | 110.2 | 74.1 | 50.6 |
E | 5–8 | 3.0 | 6.2 | 5.1 | 6.4 | |
BF | 8–12 | 4.5 | 4.2 | 2.1 | 29.2 | |
VF 3 | O | 5–8 | 2.9 | 54.2 | 17.2 | 24.2 |
E | 7–11 | 3.1 | 5.2 | – | – | |
BF | 9–12 | 4.7 | 4.2 | 1.8 | 21.7 |
Horizon of Soils | Bulk Density (g cm−3) | ANOVA | |||
---|---|---|---|---|---|
VF 1 | CL 2 | SLCC 3 | F | p | |
O | 0.103 ± 0.03 | 0.147 ± 0.05 | 0.146 ± 0.02 | 2.302 | 0.1324 |
E | 1.30 ± 0.20 | 1.50 ± 0.19 | 1.27 ± 0.49 | 0.6551 | 0.5328 |
BFH | 1.43 ± 0.17 | 1.50 ± 0.15 | 1.54 ± 0.19 | 1.126 | 0.3487 |
Horizon Soils, cm | Soil C, N, K Stock, t ha−1 | ANOVA | |||
---|---|---|---|---|---|
VF 1 | SLCC 2 | CL 3 | F | p | |
Soil C (carbon) stock | |||||
O | 32.26 ± 2.30 | 37.06 ± 2.42 | 38.167 ± 1.88 | 3.196 | 0.1482 |
E | 0.97 ± 0.11 | 1.32 ± 0.19 | 1.27 ± 0.18 | 2.403 | 0.0305 |
BF | 0.68 ± 0.17 | 0.88 ± 0.15 | 1.14 ± 0.19 | 2.432 | 0.2037 |
Soil N (nitrogen) stock | |||||
O | 1.21 ± 0.04 | 1.24 ± 0.03 | 1.34 ± 0.03 | 3.554 | 0.1297 |
E | 0.06 ± 0.02 | 0.09 ± 0.02 | 0.05 ± 0.01 | 20.00 | 0.0083 |
BF | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.01 ± 0.005 | 6.77 | 0.0519 |
Soil K (potassium) stock | |||||
O | 0.059 ± 0.004 | 0.096 ± 0.019 | 0.096 ± 0.012 | 2.478 | 0.1995 |
E | 0.0015 ± 0.0004 | 0.0035 ± 0.0006 | 0.0021 ± 0.0005 | 0.2037 | 0.8237 |
BF | 0.00089 ± 0.00001 | 0.00274 ± 0.00001 | 0.00155 ± 0.00001 | 0.3544 | 0.7216 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medvedeva, M.V.; Ananyev, V. The Influence of Logging Equipment on the Content, Stock and Stratification Coefficient of Elements of the Mineral Nutrition of Plants in the Soils of the Taiga Zone of Karelia. Forests 2023, 14, 1424. https://doi.org/10.3390/f14071424
Medvedeva MV, Ananyev V. The Influence of Logging Equipment on the Content, Stock and Stratification Coefficient of Elements of the Mineral Nutrition of Plants in the Soils of the Taiga Zone of Karelia. Forests. 2023; 14(7):1424. https://doi.org/10.3390/f14071424
Chicago/Turabian StyleMedvedeva, Maria Vladimirovna, and Vladimir Ananyev. 2023. "The Influence of Logging Equipment on the Content, Stock and Stratification Coefficient of Elements of the Mineral Nutrition of Plants in the Soils of the Taiga Zone of Karelia" Forests 14, no. 7: 1424. https://doi.org/10.3390/f14071424
APA StyleMedvedeva, M. V., & Ananyev, V. (2023). The Influence of Logging Equipment on the Content, Stock and Stratification Coefficient of Elements of the Mineral Nutrition of Plants in the Soils of the Taiga Zone of Karelia. Forests, 14(7), 1424. https://doi.org/10.3390/f14071424