Moso Bamboo–Polygonatum cyrtonema Agroforestry Systems: Evaluation of Soil Quality and Polygonatum Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Soil Analysis
2.4. Soil Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Soil Physicochemical Properties
3.2. Soil Quality Evaluation
3.3. Main Factors Controlling Polygonatum Tuber Yields
4. Discussion
4.1. Effects of Intercropping on Soil Properties
4.2. Evaluation of Soil Quality
4.3. Factors Affecting Polygonatum Tuber Yields
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, W.P.; Zong, M.M.; Fan, Z.X.; Feng, Y.; Li, S.Y.; Duan, C.Q.; Li, H.X. Determining the impacts of deforestation and corn cultivation on soil quality in tropical acidic red soils using a soil quality index. Ecol. Indic. 2021, 125, 52–61. [Google Scholar] [CrossRef]
- Liu, J.; Wu, L.C.; Chen, D.; Li, M.; Wei, C.J. Soil quality assessment of different Camellia oleifera stands in mid-subtropical China. Appl. Soil Ecol. 2017, 113, 29–35. [Google Scholar] [CrossRef]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil quality: A concept, definition, and framework for evaluation. Soil Sci. Soc. Am. J. 1997, 61, 4. [Google Scholar] [CrossRef] [Green Version]
- Santos-Frances, F.; Martinez-Grana, A.; Avila-Zarza, C.; Criado, M.; Sanchez, Y. Comparison of methods for evaluating soil quality of semiarid ecosystem and evaluation of the effects of physico-chemical properties and factor soil erodibility (Northern Plateau, Spain). Geoderma 2019, 354, 113872. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Z.C.; Ren, X.L.; Ma, X.M.; Zhou, M.Y.; Ge, X.; Liu, H.; Fu, S.L. Evaluation of Soil Quality in a Composite Pecan Orchard Agroforestry System Based on the Smallest Data Set. Sustainability 2022, 14, 10665. [Google Scholar] [CrossRef]
- Rosati, A.; Borek, R.; Canali, S. Agroforestry and organic agriculture. Agrofor. Syst. 2021, 95, 805–821. [Google Scholar] [CrossRef]
- Santiago-Freijanes, J.J.; Mosquera-Losada, M.R.; Rois-Diaz, M.; Ferreiro-Dominguez, N.; Pantera, A.; Aldrey, J.A.; Rigueiro-Rodriguez, A. Global and European policies to foster agricultural sustainability: Agroforestry. Agrofor. Syst. 2021, 95, 775–790. [Google Scholar] [CrossRef]
- Ni, H.J.; Su, W.H.; Fan, S.H.; Chu, H.Y. Effects of intensive management practices on rhizosphere soil properties, root growth, and nutrient uptake in Moso bamboo plantations in subtropical China. For. Ecol. Manag. 2021, 493, 119083. [Google Scholar] [CrossRef]
- Gui, R.Y.; Wu, W.; Zhuang, S.Y.; Zhong, Z.K. Intensive management increases soil acidification and phytotoxic Al content in Phyllostachys praecox stands in Southeast China. J. Sustain. For. 2018, 37, 46–55. [Google Scholar] [CrossRef]
- USDA. USDA Agroforestry Strategic Framework, Fiscal Year 2011–2016; U.S. Department of Agriculture: Washington, DC, USA, 2011. [Google Scholar]
- Muchane, M.N.; Sileshi, G.W.; Gripenberg, S.; Jonsson, M.; Pumarino, L.; Barrios, E. Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agric. Ecosyst. Environ. 2020, 295, 106899. [Google Scholar] [CrossRef]
- Maney, C.; Sassen, M.; Hill, S.L.L. Modelling biodiversity responses to land use in areas of cocoa cultivation. Agric. Ecosyst. Environ. 2022, 324, 107712. [Google Scholar] [CrossRef]
- Muthee, K.; Duguma, L.; Majale, C.; Mucheru-Muna, M.; Wainaina, P.; Minang, P. A quantitative appraisal of selected agroforestry studies in the Sub-Saharan Africa. Heliyon 2022, 8, e10670. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.M.; Jiang, J.; Huang, Z.P.; Wu, H.N.; Wang, J.; He, L.Q.; Xiong, F.Q.; Zhong, R.C.; Liu, J.; Han, Z.Q.; et al. Sugarcane/peanut intercropping system improves the soil quality and increases the abundance of beneficial microbes. J. Basic Microbiol. 2021, 61, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.F.D.; Fernandes-Filho, E.I.; Daher, M.; Gomes, L.D.C.; Schaefer, C.E.G.R.J.A.S. Microclimate and soil and water loss in shaded and unshaded agroforestry coffee systems. Agrofor. Syst. 2020, 95, 119–134. [Google Scholar] [CrossRef]
- Moreira, S.L.S.; Pires, C.V.; Marcatti, G.E.; Santos, R.H.S.; Imbuzeiro, H.M.A.; Fernandes, R.B.A. Intercropping of coffee with the palm tree, macauba, can mitigate climate change effects. Agric. For. Meteorol. 2018, 256, 379–390. [Google Scholar] [CrossRef]
- Peng, X.B.; Thevathasan, N.V.; Gordon, A.M.; Mohammed, I.; Gao, P.X. Photosynthetic Response of Soybean to Microclimate in 26-Year-Old Tree-Based Intercropping Systems in Southern Ontario, Canada. PLoS ONE 2015, 10, e0129467. [Google Scholar] [CrossRef] [Green Version]
- State Forestry and Grassland Administration. China Forest Resources Report (2014–2018); China Forestry Press: Beijing, China, 2019. [Google Scholar]
- Akoto, D.S.; Partey, S.T.; Denich, M.; Kwaku, M.; Borgemeister, C.B.; Schmitt, C.B. Towards bamboo agroforestry development in Ghana: Evaluation of crop performance, soil properties and economic benefit. Agrofor. Syst. 2020, 94, 1759–1780. [Google Scholar] [CrossRef]
- Gu, L.; Wu, W.G.; Ji, W.; Zhou, M.J.; Xu, L.; Zhu, W.Q. Evaluating the performance of bamboo forests managed for carbon sequestration and other co-benefits in Suichang and Anji, China. For. Policy Econ. 2019, 106, 101947. [Google Scholar] [CrossRef]
- Shinohara, Y.; Misumi, Y.; Kubota, T.; Nanko, K. Characteristics of soil erosion in a moso-bamboo forest of western Japan: Comparison with a broadleaved forest and a coniferous forest. Catena 2019, 172, 451–460. [Google Scholar] [CrossRef]
- Fan, S.H.; Liu, G.L.; Su, W.H.; Cai, W.H.; Guang, F.Y. Research progress in bamboo forest cultivation. For. Sci. Res. 2018, 31, 137–144. [Google Scholar] [CrossRef]
- Fan, B.L.; Wei, G.L.; Gan, X.F.; Li, T.T.; Qu, Z.Y.; Xu, S.; Liu, C.; Qian, C.Q. Study on the varied content of Polygonatum cyrtonema polysaccharides in the processing of steaming and shining for nine times based on HPLC-MS/MS and chemometrics. Microchem. J. 2020, 159, 105352. [Google Scholar] [CrossRef]
- Sun, L.; Wang, H.L.; Li, J.L.; Lu, W.J.; He, S.B.; Cheng, Z.H.; Li, Y.Y.; Luo, C.L. Study on the quality difference of Polygonatum in different growth years and harvest periods in Guizhou. Spec. Wild Econ. Anim. Plant Res. 2022, 44, 75–80. [Google Scholar] [CrossRef]
- Fan, Y.R.; Chen, S.L.; Yang, Q.P.; Li, C.Y.; Guo, Z.W.; Cheng, S. The impact of understory vegetation structure on growth of Polygonatum cyrtonema in extensively managed Phyllostachys edulis plantation. Acta Ecol. Sin. 2014, 34, 1471–1480. [Google Scholar] [CrossRef]
- Zhang, X.P.; Gao, G.B.; Wu, Z.Z.; Wen, X.; Zhong, H.; Zhong, Z.K.; Bian, F.Y.; Gai, X. Agroforestry alters the rhizosphere soil bacterial and fungal communities of moso bamboo plantations in subtropical China. Appl. Soil Ecol. 2019, 143, 192–200. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, M.Y.; Xie, J.H.; Cao, X.Q.; Xu, X.N. Effects of different Phyllostachys pubescens-Polygonatum cyrtonema intercropping models on soil physicochemical properties. Ecol. Sci. 2020, 39, 54–59. [Google Scholar] [CrossRef]
- Crous-Duran, J.; Graves, A.R.; Paulo, J.A.; Mirck, J.; Oliveira, T.S.; Kay, S.; de Jalon, S.G.; Palma, J.H.N. Modelling tree density effects on provisioning ecosystem services in Europe. Agrofor. Syst. 2019, 93, 1985–2007. [Google Scholar] [CrossRef] [Green Version]
- Villwock, D.; Kurz, S.; Hartung, J.; Muller-Lindenlauf, M. Effects of Stand Density and N Fertilization on the Performance of Maize (Zea mays L.) Intercropped with Climbing Beans (Phaseolus vulgaris L.). Agriculture 2022, 12, 967. [Google Scholar] [CrossRef]
- Fan, S.H.; Zhao, J.C.; Su, W.H.; Yu, L.; Yan, Y. Comprehensive evaluation of soil quality of Phyllostachys pubescens forests with different densities. For. Sci. 2015, 51, 1–9. [Google Scholar]
- Biswas, S.; Hazra, G.C.; Purakayastha, T.J.; Saha, N.; Mitran, T.; Roy, S.S.; Basak, N.; Mandal, B. Establishment of critical limits of indicators and indices of soil quality in rice-rice cropping systems under different soil orders. Geoderma 2017, 292, 34–48. [Google Scholar] [CrossRef]
- Pedro, M.S.; Rammer, W.; Seidl, R. Disentangling the effects of compositional and structural diversity on forest productivity. J. Veg. Sci. 2017, 28, 649–658. [Google Scholar] [CrossRef]
- Pan, B.X.; Deng, Z.Q.; Yu, Y.C.; Xu, X.N.; Bi, L.L.; Tao, X. Differential Responses of Soil Respiration and Its Components to Nitrogen Application in Urban Forests. Forests 2022, 13, 2064. [Google Scholar] [CrossRef]
- Chen, Z.M.; Wang, Q.; Wang, H.Y.; Bao, L.; Zhou, J.M. Crop yields and soil organic carbon fractions as influenced by straw incorporation in a rice-wheat cropping system in southeastern China. Nutr. Cycl. Agroecosyst. 2018, 112, 61–73. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Xu, X.L.; Li, Z.W.; Xu, C.H.; Luo, W. Improvements in soil quality with vegetation succession in subtropical China karst. Sci. Total Environ. 2021, 775, 145876. [Google Scholar] [CrossRef] [PubMed]
- Shao, G.D.; Ai, J.J.; Sun, Q.W.; Hou, L.Y.; Dong, Y.F. Soil quality assessment under different forest types in the Mount Tai, central Eastern China. Ecol. Indic. 2020, 115, 106439. [Google Scholar] [CrossRef]
- Karkaj, E.S.; Sepehry, A.; Barani, H.; Motamedi, J.; Shahbazi, F. Establishing a Suitable Soil Quality Index for Semi-arid Rangeland Ecosystems in Northwest of Iran. J. Soil Sci. Plant Nutr. 2019, 19, 648–658. [Google Scholar] [CrossRef]
- Qiu, X.C.; Peng, D.L.; Wang, H.B.; Wang, Z.Y.; Cheng, S. Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China. Ecol. Indic. 2019, 103, 236–247. [Google Scholar] [CrossRef]
- Wang, H.L.; Cao, X.Q.; Fan, W.; Deng, P.F.; Xu, X.N. Effects of intercropping systems of Phyllostachys edulis and Bletilla striata on soil bacterial community composition and function. Agrofor. Syst. 2023, 97, 617–630. [Google Scholar] [CrossRef]
- Beule, L.; Vaupel, A.; Moran-Rodas, V.E. Abundance, Diversity, and Function of Soil Microorganisms in Temperate Alley-Cropping Agroforestry Systems: A Review. Microorganisms 2022, 10, 616. [Google Scholar] [CrossRef]
- Suarez, L.R.; Salazar, J.C.S.; Casanoves, F.; Bieng, M.A.N. Cacao agroforestry systems improve soil fertility: Comparison of soil properties between forest, cacao agroforestry systems, and pasture in the Colombian Amazon. Agric. Ecosyst. Environ. 2021, 314, 107349. [Google Scholar] [CrossRef]
- Matos, P.S.; Fonte, S.J.; Lima, S.S.; Pereira, M.G.; Kelly, C.; Damian, J.M.; Fontes, M.A.; Chaer, G.M.; Brasil, F.C.; Zonta, E. Linkages among Soil Properties and Litter Quality in Agroforestry Systems of Southeastern Brazil. Sustainability 2020, 12, 9752. [Google Scholar] [CrossRef]
- Wang, Q.P.; Zhang, C.; Li, J.H.; Wu, X.M.; Long, Y.H.; Su, Y. Intercropping Vicia sativa L. Improves the Moisture, Microbial Community, Enzyme Activity and Nutrient in Rhizosphere Soils of Young Kiwifruit Plants and Enhances Plant Growth. Horticulturae 2021, 7, 335. [Google Scholar] [CrossRef]
- Wang, Z.C.; Zhou, M.Y.; Liu, H.; Huang, C.; Ma, Y.H.; Ge, H.X.; Ge, X.; Fu, S.L. Pecan agroforestry systems improve soil quality by stimulating enzyme activity. Peerj 2022, 9, e12663. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Chen, S.; Jiang, H.; Lin, Y.; Zhou, G.J.I.J.o.E.R.; Health, P. Water-Use Characteristics and Physiological Response of Moso Bamboo to Flash Droughts. Int. J. Environ. Res. Public Health 2019, 16, 2174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.N.; Huang, R.; Deng, H.; Li, K.; Peng, J.Y.; Zhou, L.Q.; Ou, H.P. Effects of Different Intercropping Methods on Soil Organic Carbon and Aggregate Stability in Sugarcane Field. Pol. J. Environ. Stud. 2021, 31, 3587–3596. [Google Scholar] [CrossRef]
- Shen, X.F.; Zhao, Z.H.; Chen, Y. Effects of Intercropping with Peanut and Silicon Application on Sugarcane Growth, Yield and Quality. Sugar Tech. 2019, 21, 437–443. [Google Scholar] [CrossRef]
- Abbas, F.; Hammad, H.M.; Fahad, S.; Cerda, A.; Rizwan, M.; Farhad, W.; Ehsan, S.; Bakhat, H.F. Agroforestry: A sustainable environmental practice for carbon sequestration under the climate change scenarios-a review. Environ. Sci. Pollut. Res. 2017, 24, 11177–11191. [Google Scholar] [CrossRef]
- Jobbagy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Ouyang, S.; Xiang, W.H.; Wang, X.P.; Xiao, W.F.; Chen, L.; Li, S.G.; Sun, H.; Deng, X.W.; Forrester, D.I.; Zeng, L.X.; et al. Effects of stand age, richness and density on productivity in subtropical forests in China. J. Ecol. 2019, 107, 2266–2277. [Google Scholar] [CrossRef]
- Jaman, M.S.; Muraina, T.O.; Dam, Q.; Zhang, X.; Jamil, M.; Bhattarai, S.; Islam, F. Effects of single and mixed plant types on soil carbon and nitrogen dynamics in homestead agroforestry systems in Northern Bangladesh. Agric. Ecosyst. Environ. 2021, 315, 107434. [Google Scholar] [CrossRef]
- Kononen, M.; Jauhiainen, J.; Strakova, P.; Heinonsalo, J.; Laiho, R.; Kusin, K.; Limin, S.; Vasander, H. Deforested and drained tropical peatland sites show poorer peat substrate quality and lower microbial biomass and activity than unmanaged swamp forest. Soil Biol. Biochem. 2018, 123, 229–241. [Google Scholar] [CrossRef]
- Xu, W.F.; Yuan, W.P. Responses of microbial biomass carbon and nitrogen to experimental warming: A meta-analysis. Soil Biol. Biochem. 2017, 115, 265–274. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Hu, G. Spatial heterogeneity of soil chemical properties in a subtropical karst forest, Southwest China. Sci. World J. 2014, 2014, 473651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, A.C.R.; Brussaard, L.; Totola, M.R.; Hoogmoed, W.B.; de Goede, R.G.M. A functional evaluation of three indicator sets for assessing soil quality. Appl. Soil Ecol. 2013, 64, 194–200. [Google Scholar] [CrossRef]
- Bünemann, E.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; Brussaard, L.J.S.B. Soil quality—A critical review. Biochemistry 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Chahal, I.; Van Eerd, L.L. Quantifying soil quality in a horticultural-cover cropping system. Geoderma 2019, 352, 38–48. [Google Scholar] [CrossRef]
- De Feudis, M.; Cardelli, V.; Massaccesi, L.; Lagomarsino, A.; Fornasier, F.; Westphalen, D.J.; Cocco, S.; Corti, G.; Agnelli, A. Influence of Altitude on Biochemical Properties of European Beech (Fagus sylvatica L.) Forest Soils. Forests 2017, 8, 213. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.B.; Piao, S.L.; Chen, A.P.; Liu, Y.W.; Liu, L.L.; Peng, S.S.; Sardans, J.; Sun, Y.; Penuelas, J.; Zeng, H. Afforestation neutralizes soil pH. Nat. Commun. 2018, 9, 520. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.C.; Yang, J.Y.; Zeng, S.C.; Wu, D.M.; Jacobs, D.F.; Sloan, J.L. Soil pH, organic matter, and nutrient content change with the continuous cropping of Cunninghamia lanceolata plantations in South China. J. Soils Sediments 2017, 17, 2230–2238. [Google Scholar] [CrossRef]
- Fung, K.Y.; Leung, H.M.; Yung, K.K.L. Comparative assessment of soil quality parameters after implementing afforestation programme in forest areas of Hong Kong. Environ. Sci. Pollut. Res. 2021, 28, 25051–25059. [Google Scholar] [CrossRef]
- Zhang, S.L.; Zhang, X.Y.; Liu, X.B.; Liu, W.; Liu, Z.H. Spatial distribution of soil nutrient at depth in black soil of Northeast China: A case study of soil available potassium. Nutr. Cycl. Agroecosyst. 2013, 95, 319–331. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Kremer, R.J.; Adamson, B.W.; Anderson, S.H. Variations in soil aggregate stability and enzyme activities in a temperate agroforestry practice. Appl. Soil Ecol. 2008, 39, 153–160. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, T.; Cheng, B.; Du, Y.L.; Qin, S.S.; Gao, Y.; Xu, M.; Lu, J.J.; Liu, T.; Li, S.X.; et al. Variable Light Condition Improves Root Distribution Shallowness and P Uptake of Soybean in Maize/Soybean Relay Strip Intercropping System. Plants 2020, 9, 1204. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.M.; Ren, L.H.; Mi, Z.R.; Men, Q.F.; Dong, Q.Y.; Hang, J.L.; Wang, Z.F. Effects of different light intensities on the growth and photosynthetic characteristics of Polygonatum multiflorum. Shandong Agric. Sci. 2021, 53, 44–47. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Xu, D.M.; Zhang, X.X.; Zhang, L.Z.; Cheng, Z.H. Effects of altitude on the growth of Polygonatum cyrtonema under the forest. J. Zhejiang Agric. Sci. 2022, 63, 500–502, 572. [Google Scholar] [CrossRef]
- Prade, T.; Katterer, T.; Bjornsson, L. Including a one-year grass ley increases soil organic carbon and decreases greenhouse gas emissions from cereal-dominated rotations—A Swedish farm case study. Biosys. Eng. 2017, 164, 200–212. [Google Scholar] [CrossRef]
- Pan, J.C.; Liu, C.; Li, H.L.; Wu, Q.C.; Dong, Z.; Dou, X.H. Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China. Agrofor. Syst. 2022, 96, 997–1008. [Google Scholar] [CrossRef]
- Dhaliwal, J.; Kukal, S.S.; Sharma, S. Soil organic carbon stock in relation to aggregate size and stability under tree-based cropping systems in Typic Ustochrepts. Agrofor. Syst. 2018, 92, 275–284. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, C.; Wu, X.; Du, E.; Wu, H.; Yang, X.; Wang, P.; Bai, Y.; Wu, Y.; et al. Responses of soil respiration to rainfall addition in a desert ecosystem: Linking physiological activities and rainfall pattern. Sci. Total Environ. 2019, 650, 3007–3016. [Google Scholar] [CrossRef] [PubMed]
Mode | Bamboo Density | Tree Height | DBH | Altitude | Slope | Soil Thickness |
---|---|---|---|---|---|---|
(Culms/ha) | (m) | (cm) | (m) | (°) | (cm) | |
CK | 2804 ± 34 | 14.9 ± 0.26 | 9.9 ± 0.11 | 261.7 ± 24.2 | 25.3 ± 0.6 | 86.6 ± 2.2 |
M1 | 1709 ± 15 | 14.2 ± 0.19 | 9.8 ± 0.13 | 240.0 ± 35.1 | 25.8 ± 0.7 | 83.4 ± 1.6 |
M2 | 2060 ± 39 | 15.3 ± 0.31 | 10.0 ± 0.08 | 196.0 ± 12.1 | 24.6 ± 1.0 | 83.0 ± 3.1 |
M3 | 2283 ± 5 | 15.1 ± 0.36 | 10.1 ± 0.16 | 287.2 ± 26.6 | 25.9 ± 0.8 | 85.4 ± 2.3 |
M4 | 2590 ± 45 | 15.4 ± 0.26 | 10.2 ± 0.14 | 266.6 ± 32.8 | 22.8 ± 0.8 | 91.2 ± 2.5 |
Indicators | Intercropping Mode | ||||
---|---|---|---|---|---|
CK | M1 | M2 | M3 | M4 | |
SWC (%) | 19.01 ± 0.31 c | 19.64 ± 0.39 bc | 21.50 ± 0.30 a | 20.02 ± 0.33 b | 19.88 ± 0.43 bc |
pH | 5.20 ± 0.04 a | 5.21 ± 0.03 a | 5.16 ± 0.04 a | 5.18 ± 0.02 a | 5.19 ± 0.03 a |
SOC (g/kg) | 20.34 ± 0.39 b | 23.04 ± 0.30 a | 22.64 ± 0.38 a | 22.32 ± 0.41 a | 22.42 ± 0.39 a |
TN (g/kg) | 1.79 ± 0.03 b | 1.98 ± 0.03 a | 1.97 ± 0.04 a | 1.92 ± 0.03 a | 1.96 ± 0.03 a |
TP (g/kg) | 0.28 ± 0.01 b | 0.32 ± 0.00 a | 0.29 ± 0.01 b | 0.31 ± 0.01 ab | 0.29 ± 0.01 b |
AK (mg/kg) | 68.10 ± 2.24 c | 86.27 ± 2.30 a | 72.31 ± 2.76 bc | 79.34 ± 2.27 ab | 77.62 ± 2.45 b |
AP (mg/kg) | 1.38 ± 0.04 d | 2.41 ± 0.09 a | 2.07 ± 0.06 b | 1.99 ± 0.07 bc | 1.85 ± 0.08 c |
NH4+-N (mg/kg) | 2.54 ± 0.09 c | 5.07 ± 0.11 a | 3.84 ± 0.28 b | 3.70 ± 0.30 b | 3.53 ± 0.20 b |
NO3−-N (mg/kg) | 1.67 ± 0.08 c | 3.05 ± 0.1 a | 2.51 ± 0.09 b | 2.32 ± 0.11 b | 2.25 ± 0.08 b |
MBC (mg/kg) | 205.60 ± 6.02 c | 297.56 ± 13.67 a | 236.75 ± 7.95 b | 255.14 ± 7.84 b | 240.86 ± 7.36 b |
MBN (mg/kg) | 23.68 ± 0.80 c | 42.78 ± 2.36 a | 34.04 ± 2.00 b | 34.55 ± 1.19 b | 30.67 ± 1.16 b |
Indicators | Principal Component | Norm | |||
---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | ||
Slope | −0.039 | 0.731 | 0.172 | −0.367 | 1.318 |
Altitude | −0.208 | 0.790 | 0.385 | −0.115 | 1.503 |
Thickness | −0.398 | −0.669 | 0.141 | −0.014 | 1.473 |
SWC | −0.113 | −0.785 | 0.160 | −0.399 | 1.435 |
pH | 0.071 | −0.017 | 0.071 | 0.912 | 1.043 |
SOC | 0.256 | 0.157 | 0.879 | −0.220 | 1.308 |
TN | 0.248 | −0.020 | 0.898 | 0.185 | 1.286 |
NH4+-N | 0.682 | −0.119 | 0.477 | 0.298 | 1.750 |
NO3−-N | 0.670 | −0.173 | 0.480 | 0.251 | 1.730 |
TP | 0.718 | 0.365 | 0.010 | 0.070 | 1.793 |
AP | 0.776 | −0.478 | 0.079 | −0.060 | 1.991 |
AK | 0.480 | 0.494 | 0.536 | 0.319 | 1.594 |
MBC | 0.842 | 0.182 | 0.187 | 0.063 | 2.012 |
MBN | 0.812 | 0.132 | 0.396 | −0.068 | 1.979 |
Eigenvalue | 5.487 | 2.834 | 1.582 | 1.263 | |
Variance% | 39.194 | 20.243 | 11.296 | 9.020 | |
Cumulative Variance% | 39.194 | 59.437 | 70.733 | 79.754 |
Indicators | TDS | MDS | ||
---|---|---|---|---|
Communality | Weight | Communality | Weight | |
Slope | 0.700 | 0.063 | ||
Altitude | 0.829 | 0.074 | 0.810 | 0.263 |
Thickness | 0.626 | 0.056 | ||
SWC | 0.813 | 0.073 | ||
pH | 0.841 | 0.075 | 0.719 | 0.233 |
SOC | 0.911 | 0.082 | ||
TN | 0.902 | 0.081 | ||
NH4+-N | 0.795 | 0.071 | ||
NO3−-N | 0.772 | 0.069 | ||
TP | 0.654 | 0.059 | ||
AP | 0.840 | 0.075 | ||
AK | 0.864 | 0.077 | 0.906 | 0.294 |
MBC | 0.782 | 0.070 | 0.645 | 0.209 |
MBN | 0.837 | 0.075 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Wang, F.; Hu, Z.; Du, Z.; Cheng, L.; Xu, X. Moso Bamboo–Polygonatum cyrtonema Agroforestry Systems: Evaluation of Soil Quality and Polygonatum Yield. Forests 2023, 14, 1426. https://doi.org/10.3390/f14071426
Xu H, Wang F, Hu Z, Du Z, Cheng L, Xu X. Moso Bamboo–Polygonatum cyrtonema Agroforestry Systems: Evaluation of Soil Quality and Polygonatum Yield. Forests. 2023; 14(7):1426. https://doi.org/10.3390/f14071426
Chicago/Turabian StyleXu, Hui, Fei Wang, Zixian Hu, Zitao Du, Leiru Cheng, and Xiaoniu Xu. 2023. "Moso Bamboo–Polygonatum cyrtonema Agroforestry Systems: Evaluation of Soil Quality and Polygonatum Yield" Forests 14, no. 7: 1426. https://doi.org/10.3390/f14071426
APA StyleXu, H., Wang, F., Hu, Z., Du, Z., Cheng, L., & Xu, X. (2023). Moso Bamboo–Polygonatum cyrtonema Agroforestry Systems: Evaluation of Soil Quality and Polygonatum Yield. Forests, 14(7), 1426. https://doi.org/10.3390/f14071426