Extracellular Enzyme Activity and Nutrient Characteristics of Pinus massoniana Lamb. Families with Different Growth Levels: Insights into the Ectomycorrhizal Fungal Community and Rhizosphere Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Mycorrhiza, Rhizosphere Soil, and Leaf Sampling
2.3. Soil and Leaf Nutrient Determination
2.4. Determination of Soil Extracellular Enzyme Activity
2.5. Molecular Identification of the Ectomycorrhizal Community
2.5.1. DNA Extraction, PCR Amplification, and Illumina Sequencing
2.5.2. Sequencing Data Processing
2.5.3. Amplicon Sequence Variation (ASV) Noise Reduction and Species Annotation
2.6. Data Analyses
3. Results
3.1. Rhizosphere Soil and Leaf Nutrients, Extracellular Enzyme Activities, and Ratio Characteristics of P. massoniana Families
3.2. Community Composition of ECM Fungi
3.3. Relationships between the Soil Extracellular Enzyme Activities, Nutrients, and Growth Performance of P. massoniana
3.4. Relationships between ECM Fungal Communities and Extracellular Enzyme Activity, Soil Nutrients, and Growth Performance
4. Discussion
4.1. Effects of Different Growth Families of P. massoniana on Rhizosphere Soil and Leaf Nutrients
4.2. Effects of Different Growth Families of P.massoniana on ECM Community Composition and Extracellular Enzyme Activity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaiser, C.; Koranda, M.; Kitzler, B.; Fuchslueger, L.; Schnecker, J.; Schweiger, P.; Rasche, F.; Zechmeister-Boltenstern, S.; Sessitsch, A.; Richter, A. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 2010, 187, 843–858. [Google Scholar] [CrossRef] [Green Version]
- Van Der Heijden, M.G.; Bardgett, R.D.; Van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Courty, P.E.; Pritsch, K.; Schloter, M.; Hartmann, A.; Garbaye, J. Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol. 2005, 167, 309–319. [Google Scholar] [CrossRef]
- Kyaschenko, J.; Clemmensen, K.E.; Karltun, E.; Lindahl, B.D. Below-ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities. Ecol. Lett. 2017, 20, 1546–1555. [Google Scholar] [CrossRef]
- Morrison, E.W.; Frey, S.D.; Sadowsky, J.J.; Van Diepen, L.T.; Thomas, W.K.; Pringle, A. Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. Fungal Ecol. 2016, 23, 48–57. [Google Scholar] [CrossRef]
- Hasselquist, N.J.; Högberg, P. Dosage and duration effects of nitrogen additions on ectomycorrhizal sporocarp production and functioning: An example from two N-limited boreal forests. Ecol. Evol. 2014, 4, 3015–3026. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Izquierdo, L.; Zabal-Aguirre, M.; González-Martínez, S.C.; Buée, M.; Verdú, M.; Rincón, A.; Goberna, M. Plant intraspecific variation modulates nutrient cycling through its below ground rhizospheric microbiome. J. Ecol. 2019, 107, 1594–1605. [Google Scholar] [CrossRef]
- Arfi, Y.; Buee, M.; Marchand, C.; Levasseur, A.; Record, E. Multiple markers pyrosequencing reveals highly diverse and host-specific fungal communities on the mangrove trees Avicennia marina and Rhizophora stylosa. FEMS Microbiol. Ecol. 2012, 79, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Hagenbo, A.; Piñuela, Y.; Castaño, C.; Martínez De Aragón, J.; De-Miguel, S.; Alday, J.G.; Bonet, J.A. Production and turnover of mycorrhizal soil mycelium relate to variation in drought conditions in Mediterranean Pinus pinaster, Pinus sylvestris and Quercus ilex forests. New Phytol. 2021, 230, 1609–1622. [Google Scholar] [CrossRef]
- Molina, R.J.M.F.a.I.P.-F.P. Specificity phenomena in mycorrhizal symbioses: Community-ecological consequences and practical implications. In Mycorrhizal Functioning: An Integral Plant–Fungal Process; Allen, M.F., Ed.; Chapman & Hall: New York, NY, USA, 1992; pp. 357–423. [Google Scholar]
- Dong, H.; Ge, J.; Sun, K.; Wang, B.; Xue, J.; Wakelin, S.A.; Wu, J.; Sheng, W.; Liang, C.; Xu, Q. Change in root-associated fungal communities affects soil enzymatic activities during Pinus massoniana forest development in subtropical China. For. Ecol. Manag. 2021, 482, 118817. [Google Scholar] [CrossRef]
- Toju, H.; Sato, H.; Tanabe, A.S. Diversity and spatial structure of belowground plant–fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants. PLoS ONE 2014, 9, e86566. [Google Scholar] [CrossRef]
- Carriconde, F.; Gardes, M.; Bellanger, J.-M.; Letellier, K.; Gigante, S.; Gourmelon, V.; Ibanez, T.; Mccoy, S.; Goxe, J.; Read, J. Host effects in high ectomycorrhizal diversity tropical rainforests on ultramafic soils in New Caledonia. Fungal Ecol. 2019, 39, 201–212. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 2019, 94, 1857–1880. [Google Scholar] [CrossRef] [PubMed]
- Deforest, J.L.; Moorhead, D.L. Effects of elevated pH and phosphorus fertilizer on soil C, N and P enzyme stoichiometry in an acidic mixed mesophytic deciduous forest. Soil Biol. Biochem. 2020, 150, 107996. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, S.; Shen, H.; Zhao, M.; Xu, L.; Xing, A.; Fang, J. Soil extracellular enzyme activity and stoichiometry in China’s forests. Funct. Ecol. 2020, 34, 1461–1471. [Google Scholar] [CrossRef]
- Pellitier, P.T.; Zak, D.R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: Why evolutionary history matters. New Phytol. 2018, 217, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Sinsabaugh, R.L.; Hill, B.H.; Follstad Shah, J.J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 2009, 462, 795–798. [Google Scholar] [CrossRef]
- Guo, K.; Zhao, Y.; Liu, Y.; Chen, J.; Wu, Q.; Ruan, Y.; Li, S.; Shi, J.; Zhao, L.; Sun, X.J.G. Pyrolysis temperature of biochar affects ecoenzymatic stoichiometry and microbial nutrient-use efficiency in a bamboo forest soil. Geoderma 2020, 363, 114162. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Contosta, A.R.; Cusack, D.; Frey, S.; Gallo, M.E. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef] [Green Version]
- Burns, R.G.; Deforest, J.L.; Marxsen, J.; Sinsabaugh, R.L.; Stromberger, M.E.; Wallenstein, M.D.; Weintraub, M.N.; Zoppini, A. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 2013, 58, 216–234. [Google Scholar] [CrossRef]
- Nannipieri, P.; Trasar-Cepeda, C.; Dick, R.P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 2018, 54, 11–19. [Google Scholar] [CrossRef]
- Wang, C.; Xue, L.; Jiao, R. Soil organic carbon fractions, C-cycling associated hydrolytic enzymes, and microbial carbon metabolism vary with stand age in Cunninghamia lanceolate (Lamb.) Hook plantations. For. Ecol. Manag. 2021, 482, 118887. [Google Scholar] [CrossRef]
- Albornoz, F.E.; Teste, F.P.; Lambers, H.; Bunce, M.; Murray, D.C.; White, N.E.; Laliberté, E. Changes in ectomycorrhizal fungal community composition and declining diversity along a 2-million-year soil chronosequence. Mol. Ecol. 2016, 25, 4919–4929. [Google Scholar] [CrossRef]
- Ning, P.; Cheng, X.M.; Yang, X.F.; Huang, X.X. Chemical properties and extracellular enzymatic activity in the rhizosphere soil of Abies fabri at different altitudes on Mount Gongga. Chin. J. Appl. Environ. Biol. 2021, 27, 1138–1146. (In Chinese) [Google Scholar]
- Welc, M.; Frossard, E.; Egli, S.; Bünemann, E.K.; Jansa, J. Rhizosphere fungal assemblages and soil enzymatic activities in a 110-years alpine chronosequence. Soil Biol. Biochem. 2014, 74, 21–30. [Google Scholar] [CrossRef]
- Nicholson, B.A.; Jones, M.D. Early-successional ectomycorrhizal fungi effectively support extracellular enzyme activities and seedling nitrogen accumulation in mature forests. Mycorrhiza 2017, 27, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Maillard, F.; Didion, M.; Fauchery, L.; Bach, C.; Buée, M. N-Acetylglucosaminidase activity, a functional trait of chitin degradation, is regulated differentially within two orders of ectomycorrhizal fungi: Boletales and Agaricales. Mycorrhiza 2018, 28, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Nicolás, C.; Martin-Bertelsen, T.; Floudas, D.; Bentzer, J.; Tunlid, A. The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME J. 2018, 13, 977–988. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.M.; Zhang, J.C.; He, Y.S.; Zhang, Y.W.; Liu, Y.Y. The research progress on ectomycorrhizal fungi in Pinus massoniana. Tillage Cultiv. 2016, 2, 66–68+72. (In Chinese) [Google Scholar]
- Luo, Y.H.; Sun, D.J.; Lin, J.Y.; Guo, W.F.; Lu, L.H.; Wen, Y.G. Effect of Close-to-Nature management on the natural regeneration and species diversity in a massson pine plantation. Acta Ecol. Sin. 2013, 33, 6154–6162. (In Chinese) [Google Scholar]
- Huang, S.Y.; Wu, T.G.; Chu, X.L.; Wang, B.; Wang, X.H.; Zhang, D.B.; Zhou, Z.C. Effects of phosphorus addition and inoculation of mycorrhizal fungi on the growth and phosphorus utilization of masson pine container seedlings from different families. For. Res. 2021, 34, 142–151. (In Chinese) [Google Scholar]
- Zhao, Y.; Zhou, Z.C.; Wu, J.F.; Lan, Y.Z. Growth response of superior provenance of masson pine to phosphorus supply and persistence of phosphorus effect. Sci. Silvae Sin. 2007, 43, 64–70. (In Chinese) [Google Scholar]
- Jian, Z.; Ni, Y.; Zeng, L.; Lei, L.; Xu, J.; Xiao, W.F.; Li, M.-H. Latitudinal patterns of soil extracellular enzyme activities and their controlling factors in Pinus massoniana plantations in subtropical China. For. Ecol. Manag. 2021, 495, 119358. [Google Scholar] [CrossRef]
- Bao, S. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Mayor, Á.G.; Goirán, S.B.; Vallejo, V.R.; Bautista, S. Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands. Sci. Total Environ. 2016, 573, 1209–1216. [Google Scholar] [CrossRef]
- German, D.P.; Weintraub, M.N.; Grandy, A.S.; Lauber, C.L.; Rinkes, Z.L.; Allison, S.D. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 2011, 43, 1387–1397. [Google Scholar] [CrossRef]
- Allen, G.C.; Flores-Vergara, M.; Krasynanski, S.; Kumar, S.; Thompson, W. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 2006, 1, 2320–2325. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. A Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Warton, D.I.; Wright, S.T.; Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 2012, 3, 89–101. [Google Scholar] [CrossRef]
- Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data Using Canono 5, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Elser, J.J.; Fagan, W.F.; Denno, R.F.; Dobberfuhl, D.R.; Folarin, A.; Huberty, A.; Interlandi, S.; Kilham, S.S.; Mccauley, E.; Schulz, K.L. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000, 408, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Fang, J.; Guo, D.; Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F. The vegetation N: P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Güsewell, S. N: P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.W.; Wen, D.Z.; Yan, J.H.; Liu, S.Z.; Chu, G.W.; Zhou, C.Y.; Wang, G.Q.; Zhang, Q.M. Characteristics of element contents in leaves of 3 dominant species in karst forest in Puding, Guizhou, China. Chin. J. Appl. Environ. Biol. 2010, 16, 158–163. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.Y.; Ning, Q.R.; Li, S.Z.; Jiang, L.C.; Liu, Y.; Zhang, H.Z.; Tao, J.J. Stoichiometric characteristics of Pinus massoniana plantation in the subtropical red soil erosion region. Res. Soil Water Conserv. 2017, 24, 156–161. (In Chinese) [Google Scholar]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Bai, X.; Dippold, M.A.; An, S.; Wang, B.; Zhang, H.; Loeppmann, S. Extracellular enzyme activity and stoichiometry: The effect of soil microbial element limitation during leaf litter decomposition. Ecol. Indic. 2021, 121, 107200. [Google Scholar] [CrossRef]
- Aerts, R. Nutrient resorption from senescing leaves of perennials: Are there general patterns? J. Ecol. 1996, 84, 597–608. [Google Scholar] [CrossRef]
- Li, L.X.; Zheng, S.S.; Xu, J.W.; Wu, P.F. Research advance in influence mechanism of tree root biomass allocation. World For. Res. 2022, 35, 15–20. (In Chinese) [Google Scholar]
- Wu, P.F.; Ma, X.Q.; Chen, Y.L.; Lin, W.J.; Huang, S.Y.; Liu, L.Q. Comparison of phosphorus use efficiency among clonal test plantations of Chinese fir. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2012, 41, 40–45. (In Chinese) [Google Scholar]
- Mao, Y.L. Advance of research on fractionation methods of soil organic matter. J. Quanzhou Teach. Univ. (Nat. Sci.) 2008, 26, 70–75. (In Chinese) [Google Scholar]
- Christensen, B.T. Physical fractionation of soil and organic matter in primary particle size and density separates. In Advances in Soil Science; Springer: New York, NY, USA, 1992; Volume 20, pp. 1–90. [Google Scholar]
- Erfanzadeh, R.; Bahrami, B.; Motamedi, J.; Pétillon, J. Changes in soil organic matter driven by shifts in co-dominant plant species in a grassland. Geoderma 2014, 213, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Gruba, P.; Socha, J. Exploring the effects of dominant forest tree species, soil texture, altitude, and pHH2O on soil carbon stocks using generalized additive models. For. Ecol. Manag. 2019, 447, 105–114. [Google Scholar] [CrossRef]
- Mariotte, P.; Buttler, A.; Kohler, F.; Gilgen, A.K.; Spiegelberger, T. How do subordinate and dominant species in semi-natural mountain grasslands relate to productivity and land-use change? Basic Appl. Ecol. 2013, 14, 217–224. [Google Scholar] [CrossRef]
- Gong, X.; Liu, Y.; Li, Q.; Wei, X.; Guo, X.; Niu, D.; Zhang, W.; Zhang, J.; Zhang, L. Sub-tropic degraded red soil restoration: Is soil organic carbon build-up limited by nutrients supply. For. Ecol. Manag. 2013, 300, 77–87. [Google Scholar] [CrossRef]
- Whalen, E.D.; Lounsbury, N.; Geyer, K.; Anthony, M.; Morrison, E.; Van Diepen, L.T.; Le Moine, J.; Nadelhoffer, K.; Vanden Enden, L.; Simpson, M.J. Root control of fungal communities and soil carbon stocks in a temperate forest. Soil Biol. Biochem. 2021, 161, 108390. [Google Scholar] [CrossRef]
- Xiang, Y.X.; Chen, S.K.; Pan, P.; Ouyang, X.Z.; Ning, J.K.; Li, Q. Stoichiometric characteristics of carbon, nitrogen and phosphorus in leave-litter-soil of Pinus massoniana. J. For. Environ. 2019, 39, 120–126. [Google Scholar]
- Smith, A.J.; Potvin, L.R.; Lilleskov, E.A. Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition. Mycorrhiza 2015, 25, 649–662. [Google Scholar] [CrossRef]
- Ning, C.; Xiang, W.; Mueller, G.M.; Egerton-Warburton, L.M.; Yan, W.; Liu, S. Differences in ectomycorrhizal community assembly between native and exotic pines are reflected in their enzymatic functional capacities. Plant Soil 2020, 446, 179–193. [Google Scholar] [CrossRef]
- Corrêa, A.; Gurevitch, J.; Martins-Loução, M.; Cruz, C. C allocation to the fungus is not a cost to the plant in ectomycorrhizae. Oikos 2012, 121, 449–463. [Google Scholar] [CrossRef]
- Huang, L.L.; Wang, Y.L.; Yu, F.Q. Exogenous competitive fungi and their mycorrhizal morphology during ectomycorrhizal synthesis. Mycosystema 2020, 39, 955–962. [Google Scholar]
- Hupperts, S.F.; Karst, J.; Pritsch, K.; Landhäusser, S.M. Host phenology and potential saprotrophism of ectomycorrhizal fungi in the boreal forest. Funct. Ecol. 2017, 31, 116–126. [Google Scholar] [CrossRef]
- Weigt, R.B.; Raidl, S.; Verma, R.; Agerer, R. Exploration type-specific standard values of extramatrical mycelium—A step towards quantifying ectomycorrhizal space occupation and biomass in natural soil. Mycol. Prog. 2012, 11, 287–297. [Google Scholar] [CrossRef]
- Koide, R.T.; Fernandez, C.; Malcolm, G. Determining place and process: Functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. New Phytol. 2014, 201, 433–439. [Google Scholar] [CrossRef]
- Certano, A.K.; Fernandez, C.W.; Heckman, K.A.; Kennedy, P.G. The afterlife effects of fungal morphology: Contrasting decomposition rates between diffuse and rhizomorphic necromass. Soil Biol. Biochem. 2018, 126, 76–81. [Google Scholar] [CrossRef]
- Fanin, N.; Mooshammer, M.; Sauvadet, M.; Meng, C.; Alvarez, G.; Bernard, L.; Bertrand, I.; Blagodatskaya, E.; Bon, L.; Fontaine, S. Soil enzymes in response to climate warming: Mechanisms and feedbacks. Funct. Ecol. 2022, 36, 1378–1395. [Google Scholar] [CrossRef]
- Kramer, C.; Trumbore, S.; Fröberg, M.; Dozal, L.M.C.; Zhang, D.; Xu, X.; Santos, G.M.; Hanson, P.J. Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil. Soil Biol. Biochem. 2010, 42, 1028–1037. [Google Scholar]
- Mori, T.; Aoyagi, R.; Kitayama, K.; Mo, J. Does the ratio of β-1, 4-glucosidase to β-1, 4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition? Soil Biol. Biochem. 2021, 160, 108363. [Google Scholar] [CrossRef]
- Boerner, R.E.; Giai, C.; Huang, J.; Miesel, J.R. Initial effects of fire and mechanical thinning on soil enzyme activity and nitrogen transformations in eight North American forest ecosystems. Soil Biol. Biochem. 2008, 40, 3076–3085. [Google Scholar] [CrossRef]
Parameter List | High Growth (HG) | Medium Growth (MG) | Low Growth (LG) |
---|---|---|---|
Height/(m) | 9.37 ± 0.57 a | 8.90 ± 0.13 a | 4.77 ± 0.20 b |
DBH/(cm) | 17.62 ± 0.39 a | 16.60 ± 0.15 a | 9.59 ± 0.94 b |
V/(m3) | 0.122 ± 0.007 a | 0.105 ± 0.003 b | 0.023 ± 0.004 c |
year | 9 | 9 | 9 |
Variables | Explanation % | F Value | p Value |
---|---|---|---|
V | 19 | 5.9 | 0.002 ** |
Height | 18.8 | 7.3 | 0.002 ** |
DBH | 6.8 | 3.1 | 0.026 * |
TN | 8 | 3.4 | 0.012 * |
TP | 3.5 | 1.9 | 0.11 |
SOC | 0.1 | <0.1 | 0.992 |
N/P | 7.3 | 3.8 | 0.008 * |
C/P | 1.3 | 0.7 | 0.5 |
C/N | 0.6 | 0.3 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhao, Y.; He, H.; Wang, H.; Wu, F. Extracellular Enzyme Activity and Nutrient Characteristics of Pinus massoniana Lamb. Families with Different Growth Levels: Insights into the Ectomycorrhizal Fungal Community and Rhizosphere Soil. Forests 2023, 14, 1447. https://doi.org/10.3390/f14071447
Zhang J, Zhao Y, He H, Wang H, Wu F. Extracellular Enzyme Activity and Nutrient Characteristics of Pinus massoniana Lamb. Families with Different Growth Levels: Insights into the Ectomycorrhizal Fungal Community and Rhizosphere Soil. Forests. 2023; 14(7):1447. https://doi.org/10.3390/f14071447
Chicago/Turabian StyleZhang, Jun, Yuanxiang Zhao, Hongyang He, Haoyun Wang, and Feng Wu. 2023. "Extracellular Enzyme Activity and Nutrient Characteristics of Pinus massoniana Lamb. Families with Different Growth Levels: Insights into the Ectomycorrhizal Fungal Community and Rhizosphere Soil" Forests 14, no. 7: 1447. https://doi.org/10.3390/f14071447
APA StyleZhang, J., Zhao, Y., He, H., Wang, H., & Wu, F. (2023). Extracellular Enzyme Activity and Nutrient Characteristics of Pinus massoniana Lamb. Families with Different Growth Levels: Insights into the Ectomycorrhizal Fungal Community and Rhizosphere Soil. Forests, 14(7), 1447. https://doi.org/10.3390/f14071447