Scots Pine (Pinus sylvestris L.) Ecotypes Response to Accumulation of Heavy Metals during Reforestation on Chalk Outcrops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Object Conditions and Experiment Layout
2.3. Sampling and Research
2.4. Data Processing and Statistical Analysis
3. Results
Accumulation of HMs in the Dry Mass of Seedlings of Two P. sylvestris Ecotypes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ota, L.; Herbohn, J.; Gregorio, N.; Harriso, S. Reforestation and smallholder livelihoods in the humid tropics. Land Use Policy 2020, 92, 104455. [Google Scholar] [CrossRef]
- Tinya, F.; Kovács, B.; Aszalós, R.; Németh, C.; Ódor, P. Initial regeneration success of tree species after different forestry treatments in a sessile oak-hornbeam forest. For. Ecol. Manag. 2020, 459, 117810. [Google Scholar] [CrossRef]
- Dambrine, E.; Dupouey, J.L.; Laüt, L.; Humbert, L.; Thinon, M.; Beaufils, T.; Richard, H. Present forest biodiversity patterns in France related to former Roman agriculture. Ecology 2007, 88, 1430–1439. [Google Scholar] [CrossRef]
- Harmer, R.; Peterken, G.; Kerr, G.; Poulton, P. Vegetation changes during 100 years of development of two secondary woodlands on abandoned arable land. Biol. Conserv. 2001, 101, 291–304. [Google Scholar] [CrossRef]
- Cramer, V.; Hobbs, R.; Standish, R. What’s new about old fields? Land abandonment and ecosystem assembly. Trends Ecol. Evol. 2008, 23, 104–112. [Google Scholar] [CrossRef]
- Belyaev, A.I.; Pugacheva, A.M.; Korneeva, E.A. Assessment of Ecosystem Services of Wetlands of the Volga-Akhtuba Floodplain. Sustainability 2022, 14, 11240. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef] [Green Version]
- Castle, S.E.; Miller, D.C.; Merten, N.; Ordonez, P.J.; Baylis, K. Evidence for the impacts of agroforestry on ecosystem services and human well-being in high-income countries: A systematic map. Environ. Evid. 2022, 11, 10. [Google Scholar] [CrossRef]
- Kosolapov, V.M.; Trofimov, I.A.; Trofimova, L.S.; Yakovleva, Y.P. Agrolandscapes Management for Raising the Productivity and Sustainability of Agricultural Lands in Russia. Russ. Agric. Sci. 2010, 36, 115–118. Available online: https://www.elibrary.ru/download/elibrary_13085111_31403787.pdf (accessed on 1 January 2020). (In Russian). [CrossRef]
- Xie, J.; Guo, J.; Yang, Z.; Huang, Z.; Chen, G.; Yang, Y. Rapid accumulation of carbon on severely eroded red soils through afforestation in subtropical China. For. Ecol. Manag. 2013, 300, 53–59. [Google Scholar] [CrossRef]
- Post, W.; Kwon, K. Soil carbon sequestration and land-use change: Processes and potential. Glob. Chang. Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta-analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Jandl, R.; Lindner, M.; Vesterdal, L.; Bauwens, B.; Baritz, R.; Hagedorn, F.; Johnson, D.W.; Minkkinen, K.; Byrne, K.A. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253–268. [Google Scholar] [CrossRef]
- Vesterdal, L.; Rosenqvist, L.; van der Salm, C.; Hansen, K.; Groenenberg, B.J.; Johansson, M.B. Carbon sequestration in soil and biomass following afforestation: Experiences from oak and Norway spruce chronosequences in Denmark, Sweden, and the Netherlands. In Environmental Effects of Afforestation in North-Western Europe; Heil, G.W., Muys, B., Hansen, K., Eds.; Plant and Vegetation; Springer: Dordrecht, The Netherlands, 2007; pp. 19–51. [Google Scholar] [CrossRef]
- Kukharuk, N.S.; Smirnova, L.G.; Kalugina, S.V.; Polschina, M.A.; Chernyavsky, V.I. The state of gray forest soils, conditioned by microclimatic variability, in the south of the forest-steppe of the Central Russian Upland. Int. J. Green Pharm. 2017, 11, 626–630. [Google Scholar] [CrossRef]
- Lisetsky, F.N.; Vladimirov, D.; Cherniavskih, V. Evaluation of Soil Biological Activity by a Vertical Profile and Erosion Catena. Biosci. Biotechnol. Res. Commun. 2019, 12, 7–16. Available online: http://dspace.bsu.edu.ru/handle/123456789/27368 (accessed on 1 January 2020).
- Kozar, M.; Sabliy, L.; Korenchuk, M.; Karpenko, N.; Makeev, S.; Korshunov, A.; Kosolapov, V. The role of higher plants in wastewater treatment (on the example of Lemma minor). IOP Conf. Ser. Earth Environ. Sci. 2019, 390, 012002. [Google Scholar] [CrossRef]
- Kosolapov, V.M.; Trofimov, I.A. Reclamation is an Important Factor in the Development of Fodder Production. Achiev. Sci. Technol. APK 2011, 1, 43–45. Available online: https://www.elibrary.ru/download/elibrary_16333617_27771432.pdf (accessed on 1 January 2020). (In Russian).
- Malyshev, A.V.; Goleusov, P.V. Critical value of the relief factor and the erosion hazard of the agrolandscapes in the Belgorod region. Sci. Bull. Belgorod State Univ. Ser. Nat. Sci. 2019, 43, 63–75. [Google Scholar] [CrossRef]
- Gorbunov, A.S.; Mikhno, V.B.; Bikovskaya, O.P.; Sarychev, D.V. Approaches to the plane landscapes altitudinal organization study. IOP Conf. Ser. Earth Environ. Sci. 2022, 949, 012097. [Google Scholar] [CrossRef]
- Mikhno, V.B.; Gorbunov, A.S. Karst denudation as a factor of landscape genesis of the Central Chernozem region. Reg. Geosyst. 2021, 45, 155–167. [Google Scholar]
- Mikhno, V.B.; Bykovskaya, O.P.; Gorbunov, A.S. Regional features litholandscape genesis of the Central Chernozem region. Reg. Geosyst. 2020, 44, 29–40. [Google Scholar] [CrossRef]
- Degtyar’, O.V.; Chernyavskikh, V.I. The environment-forming role of endemic species in calciphilous communities of the southern Central Russian Upland. Russ. J. Ecol. 2006, 37, 143–145. [Google Scholar] [CrossRef]
- Chernyavskikh, V.I.; Dumacheva, E.V.; Lisetsky, F.N.; Tsugkiev, B.G.; Gagieva, L.C. Floral Variety of FabaceaeLindl. Family in Gully Ecosystems in the South-West of the Central Russian Upland. Biosci. Biotechnol. Res. Commun. 2019, 12, 203–210. Available online: https://www.researchgate.net/publication/335397339 (accessed on 10 January 2020). [CrossRef]
- Cherniavskih, V.I.; Dumacheva, E.V.; Borodaeva, Z.A.; Gorbacheva, A.A.; Horolskaya, E.N.; Kotsareva, N.V.; Korolkova, S.V.; Gagieva, L.C. Features of Intra Population Variability of Medicago Varia Mart. With the Expressed Mf-Mutation on a Complex Qualitative Characteristics. EurAsian J. BioSciences 2019, 13, 733–737. Available online: http://www.ejobios.org/download/features-of-intra-population-variability-of-medicago-varia-mart-with-the-expressed-mf-mutation-on-a-7162.pdf (accessed on 10 January 2020).
- Danilov, Y.I.; Smirnov, A.P.; Petrov, V.A. Growth of pine crops during recultivation of sand pits of the Karelian Isthmus. Proc. St. Petersburg For. Acad. 2017, 219, 6–17. [Google Scholar] [CrossRef]
- Danilov, D.A.; Bogdanova, L.S.; Mandrykin, S.S.; Yakovlev, A.A.; Sergeeva, A.S. The influence of soil fertility on the natural renewal of forests on old-arable lands. Proc. St. Petersburg For. Acad. 2019, 229, 145–163. [Google Scholar] [CrossRef]
- Shugalei, L.S. Organic Substances in the Artificial Forest Ecosystems Created on Overburden Dumps of Open’Cut Coal Mines in Middle Siberia. Biol. Bull. 2010, 37, 423–431. [Google Scholar] [CrossRef]
- Goncharenko, G.G.; Padutov, V.E.; Silin, A.E.; Chernodubov, A.I.; Isakov, Y.N.; Kamalova, I.I. Genetic structure of Pinussylvestris L. and Pinuscretacea Kalen. and their taxonomic relationship. Proc. Acad. Sci. USSR 1991, 319, 1230–1234. (In Russian) [Google Scholar]
- Goncharenko, G.G.; Silin, A.E.; Padutov, V.E. Intra- and interspecific genetic differentiation in closely related pines from Pinus subsection Sylvestres (Pinaceae) in the former Soviet Union. Plant Syst. Evol. 1995, 194, 39–54. [Google Scholar] [CrossRef]
- Chernodubov, A.I. Scotch Pine in the Island Forests of the East European Plain: (History-Genetics-Ecology-Geography); Voronezh State Forestry Engineering University Named after G.F. Morozov: Voronezh, Russia, 2009; 156p, ISBN 978-5-7994-0321-8. [Google Scholar]
- Butorina, A.K.; Mozgalina, I.G. Specific cytogenetic characteristics of Pinuscretaceae and Pinussylvestris. Russ. J. Ecol. 2004, 35, 156–160. [Google Scholar] [CrossRef]
- Korshikov, I.I.; Bagdasarova, A.R. Heterozygosity of Pinussylvestris L. var. cretacea (Kalen.) Kom. Trees Differing by Their Stem Radial Growth Rates. Ind. Bot. 2014, 14, 132–141. Available online: https://elibrary.ru/download/elibrary_37116271_62471749.pdf (accessed on 21 January 2020). (In Russian).
- Chernodubov, A.I.; Odnoralov, G.A.; Fedosova, T.V. Biological Productivity of Forest Cenoses on Sod-Carbonate Soils. For. J. 2012, 1, 42–47. Available online: https://elibrary.ru/download/elibrary_17691262_97759835.pdf (accessed on 21 January 2021).
- Butorina, A.K.; Cherckashina, O.N.; Ermolaeva, O.V.; Chernodubov, A.I.; Avdeeva, I.A. Cytogenetic monitoring of the Usmansky and Khrenovskoyautochtonic pine stands. Biol. Bull. 2007, 34, 423–426. [Google Scholar] [CrossRef]
- Jansson, G.; Hansen, J.K.; Haapanen, M.; Kvaalen, H.; Steffenrem, A. The Genetic and Economic Gains from Forest Tree Breeding Programmes in Scandinavia and Finland. Scand. J. For. Res. 2016, 32, 273–286. [Google Scholar] [CrossRef]
- Order of the Government of the Belgorod Region Dated 25 January 2010 No. 35-rp “On the Concept of the Regional Project “Green Capital”. Available online: https://docs.cntd.ru/document/428670861 (accessed on 25 April 2022).
- Cherniavskih, V.I.; Dumacheva, E.V.; Shchedrina, J.E.; Golovkov, A.V. Experience in Creating Artificial Forest Plants in the Territory of Belgorod Region. IOP Conf. Ser. Earth Environ. Sci. 2021, 901, 012057. [Google Scholar] [CrossRef]
- Cherniavskih, V.I.; Dumacheva, E.V.; Markova, E.I. Assessment of the state and restoration of biological resources of Scots pine (Pinus silvestris L.) in the South of the Central Russian Upland. J. Phys. Conf. Ser. 2021, 1942, 012080. [Google Scholar] [CrossRef]
- Vodyanitskii, Y.N. Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review). Eurasian Soil Sci. 2013, 46, 793–801. [Google Scholar] [CrossRef]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, Y.V.; Kartashov, A.V.; Ivanova, A.I.; Ivanov, V.; Marchenko, S.; Nartov, D.I.; Kuznetsov, V.V. Long-term impact of cement plant emissions on the elemental composition of both soils and pine stands and on the formation of Scots pine seeds. Environ. Pollut. 2018, 243, 1383–1393. [Google Scholar] [CrossRef]
- Elango, D.; Devi, K.D.; Jeyabalakrishnan, H.K.; Rajendran, K.; Haridass, V.K.T.; Dharmaraj, D.; Charuchandran, C.V.; Wang, W.; Fakude, M.; Mishra, R.; et al. Agronomic, breeding, and biotechnological interventions to mitigate heavy metal toxicity problems in agriculture. J. Agric. Food Res. 2022, 10, 100374. [Google Scholar] [CrossRef]
- Noor, I.; Sohail, H.; Sun, J.; Nawaz, M.A.; Li, G.; Hasanuzzaman, M.; Liu, J. Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies. Chemosphere 2022, 303, 135196. [Google Scholar] [CrossRef] [PubMed]
- Qiaogang, Y.; Junwei, M.; Wanchun, S.; Ping, Z.; Hui, L.; Changhuan, F.; Jianrong, F. Evaluations of the DMPP on organic and inorganic nitrogen mineralization and plant heavy metals absorption. Geoderma 2018, 312, 45–51. [Google Scholar] [CrossRef]
- Zhan, J.; Li, T.; Zhang, X.; Yu, H.; Zhao, L. Rhizosphere characteristics of phytostabilizer Athyriumwardii (Hook.) involved in Cd and Pb accumulation. Ecotoxicol. Environ. Saf. 2018, 148, 892–900. [Google Scholar] [CrossRef]
- Zeng, J.; Li, X.; Wang, X.; Zhang, K.; Wang, Y.; Kang, H.; Chen, G.; Lan, T.; Zhang, Z.; Yuan, S.; et al. Cadmium and lead mixtures are less toxic to the Chinese medicinal plant Ligusticum chuanxiong Hort. Than either metal alone. Ecotoxicol. Environ. Saf. 2020, 193, 110342. [Google Scholar] [CrossRef]
- Tang, Y.; Shi, L.; Zhong, K.; Shen, Z.; Chen, Y. Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals. Chemosphere 2019, 215, 115–123. [Google Scholar] [CrossRef]
- Nanda, S.; Kumar, G.; Mishra, R.; Joshi, R.K. Microbe-Assisted Alleviation of Heavy Metal Toxicity in Plants: A Review. Geomicrobiol. J. 2022, 39, 416–425. [Google Scholar] [CrossRef]
- Van der Heijden, M.G.A.; Martin, F.M.; Selosse, M.-A.; Sanders, I.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015, 205, 1406–1423. [Google Scholar] [CrossRef] [PubMed]
- Yurkov, A.P.; Kryukov, A.A.; Gorbunova, A.O.; Kozhemyakov, A.P.; Stepanova, G.V.; Machs, E.M.; Rodionov, A.V.; Shishova, M.F. Molecular genetic identification of arbuscular mycorrhiza fungi. Ecol. Genet. 2018, 16, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Rudawska, M.; Leski, T.; Stasińska, M. Species and functional diversity of ectomycorrhizal fungal communities on Scots pine (Pinus sylvestris L.) trees on three different sites. Ann. For. Sci. 2011, 68, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Cherniavskih, V.I.; Pravdin, V.G.; Kharlamova, I.A.; Dumacheva, E.V.; Glubsheva, T.N.; Korolkova, S.V.; Sopina, N.A.; Koryakov, D.P. Prospects for the Use of the Microbiological Preparations for the Reproduction of Rare Species of Tree-Shrub Vegetation of the South of TZHE Central Russian Upland. Plant Cell Biotechnol. Mol. Biol. 2020, 21, 142–149. Available online: https://ikprress.org/index.php/PCBMB/article/view/5179 (accessed on 31 January 2022).
- Cherniavskih, V.I.; Dumacheva, E.V.; Pravdin, I.V.; Tsugkiev; Tsugkieva, V.B. New Microbiological Preparations for Soil Conservation Agriculture. IOP Conf. Ser. Earth Environ. Sci. 2021, 901, 012058. [Google Scholar] [CrossRef]
- Henagamage, A.P.; Peries, C.M.; Seneviratne, G. Fungal-bacterial biofilm mediated heavy metal rhizo-remediation. World J. Microbiol. Biotechnol. 2022, 38, 85. [Google Scholar] [CrossRef] [PubMed]
- Kosareva, I.A.; Chernodubov, A.I. Efficiency of growth stimulant application growing seeds of Scots pine. For. J. 2019, 9, 87–95. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Andreeva, E.M.; Stetsenko, S.K.; Kuchin, A.V.; Terekhov, G.G.; Khurshkainen, T.V. The Influence of Growth-Promoting Factors Obtained from Natural Material on Softwood Germs. For. J. 2016, 6, 10–19. Available online: https://www.elibrary.ru/download/elibrary_26724094_84378487.pdf (accessed on 31 January 2022). (In Russian).
- Kuneš, I.; Baláš, M.; Linda, R.; Gallo, G.; Novakova, O. Effects of brassinosteroid application on seed germination of Norway spruce, Scots pine, Douglas fir and English oak. Forest. Biogeosci. For. 2016, 10, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, V.; Schestibratov, K. Effect of natural and synthetic growth stimulators on in vitro rooting and acclimatization of common ash (Fraxinus excelsior L.) microplants. Nat. Sci. 2013, 5, 1095–1101. [Google Scholar] [CrossRef] [Green Version]
- Magyar, L.; Barancsi, Z.; Dickmann, A.; Hrotko, K. Application of biostimulators in nursery. Bull. Univ. Agric. Sci. Vet. 2008, 65, 515. [Google Scholar]
- Dahlberg, A.; Stenström, E. Dynamic changes in nursery and indigenous mycorrhiza of Pinussylvestris seedlings planted out in forest and clearcuts. Plant Soil 1991, 136, 73–86. [Google Scholar] [CrossRef]
- Belousov, M.V.; Mashkina, O.S.; Popov, V.N. Cytogenetic response of Scots pine (Pinus sylvestris Linnaeus, 1753) (Pinaceae) to heavy metals. Comp. Cytogenet. 2012, 6, 93–106. [Google Scholar] [CrossRef] [Green Version]
- Belousov, M.V.; Mashkina, O.S. Cytogenetic response of Scots pine (Pinus L.) to cadmium and nickel. Tsitologiia 2015, 57, 459–464. (In Russian) [Google Scholar]
- Ivanov, Y.V.; Ivanova, A.I.; Kartashov, A.V.; Zlobin, I.E.; Kuznetsov, V.V. The Actual Lead Toxicity for Scots Pine Seedlings in Hydroculture. Russ. J. Plant Physiol. 2021, 68 (Suppl. 1), 103–115. [Google Scholar] [CrossRef]
- Ivanov, Y.V.; Savochkin, Y.V.; Kuznetsov, V.V. Scots pine as a model plant for studying the mechanisms of conifers adaptation to heavy metal action: 1. Effects of continuous zinc presence on morphometric and physiological characteristics of developing pine seedlings. Russ. J. Plant Physiol. 2011, 58, 871–878. [Google Scholar] [CrossRef]
- Ivanov, Y.V.; Savochkin, Y.V.; Kuznetsov, V.V. Scots pine as a model plant for studying the mechanisms of conifers adaptation to heavy metal action: 2. Functioning of antioxidant enzymes in pine seedlings under chronic zinc action. Russ. J. Plant Physiol. 2012, 59, 50–58. [Google Scholar] [CrossRef]
- Ivanov, Y.V.; Savochkin, Y.V.; Kuznetsov, V.V. Development of Scots pine seedlings and functioning of antioxidant systems under the chronic action of lead ions. Biol. Bull. 2013, 40, 26–35. [Google Scholar] [CrossRef]
- Ivanov, V.P.; Marchenko, S.I.; Nartov, D.I.; Ivanov, Y.V. Growth status of Scots pine artificial stands under the influence of para-aminobenzoic acid. Contemp. Probl. Ecol. 2015, 8, 133–140. [Google Scholar] [CrossRef]
- Kalinitchenko, V.P.; Glinushkin, A.P.; Swidsinski, A.V.; Minkina, T.M.; Andreev, A.G.; Mandzhieva, S.S.; Sushkova, S.N.; Makarenkov, D.A.; Ilyina, L.P.; Chernenko, V.V.; et al. Thermodynamic mathematical model of the Kastanozem complex and new principles of sustainable semiarid protective silviculture management. Environ. Res. 2021, 194, 110605. [Google Scholar] [CrossRef] [PubMed]
- Kosolapov, V.M.; Cherniavskih, V.I.; Dumacheva, E.V.; Sajfutdinova, L.D.; Zhuchenko, A.A., Jr.; Glinushkin, A.P.; Grishina, H.V.; Kalinitchenko, V.P.; Akimova, S.V.; Semenova, N.A.; et al. Using Microorganismal Consortium and Bioactive Substances to Treat Seeds of Two Scots Pine Ecotypes as a Technique to Increase Re-Afforestation Efficiency on Chalk Outcrops. Forests 2023, 14, 1093. [Google Scholar] [CrossRef]
- Soils. Methods for Determination of Organic Matter. GOST 26213–91. Available online: https://ohranatruda.ru/upload/iblock/f09/4294828267.pdf (accessed on 22 April 2022).
- NIST pH Buffer Solution Kit. HORIBA Advanced Techno. Available online: https://www.horiba.com/int/water-liquid/corporate/outline/ (accessed on 22 April 2022).
- Soils. Methods for Determination of Total Nitrogen. GOST R 58596-2019. Available online: https://docs.cntd.ru/document/1200168815 (accessed on 22 April 2022).
- Soils. Determination of Nitrates by Ionometric Method. GOST 26951–86. Available online: https://docs.cntd.ru/document/1200023499 (accessed on 22 April 2022).
- Aleksandrova, L.N.; Naydenova, O.A. Laboratory and Practical Classes in Soil Science; Kolos: Leningrad, Russia, 1967; 350p. [Google Scholar]
- Methodological Guidelines for Determination of Heavy Metals in Agricultural Soil and Plant Production, 2nd ed.; 1992; Available online: http://www.omegametall.ru/Data2/1/4293771/4293771886.pdf (accessed on 22 April 2022).
- Fodders, Mixed Fodders, Mixed Fodder Raw Materials. Methods for Determination of Phosphorus Content. GOST 26657–97. Available online: https://docs.cntd.ru/document/1200024370 (accessed on 22 April 2022).
- Yaashikaa, P.R.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut. 2022, 301, 119035. [Google Scholar] [CrossRef]
- Diaconu, M.; Pavel, L.V.; Hlihor, R.-M.; Rosca, M.; Fertu, D.I.; Lenz, M.; Corvini, P.X.; Gavrilescu, M. Characterization of heavy metal toxicity in some plants and microorganisms—A preliminary approach for environmental bioremediation. New Biotechnol. 2020, 56, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Münzenberger, B.; Golldack, J.; Ullrich, A.; Schmincke, B.; Hüttl, R.F. Abundance, diversity, and vitality of mycorrhizae of Scots pine (Pinussylvestris L.) in lignite recultivation sites. Mycorrhiza 2004, 14, 193–202. [Google Scholar] [CrossRef]
- Kranabetter, J.M. Ectomycorrhizal community effects on hybrid spruce seedling growth and nutrition in clearcuts. Can. J. Bot. 2004, 82, 983–991. [Google Scholar] [CrossRef]
- Urban, A.; Puschenreiter, M.; Strauss, J.; Gorfer, M. Diversity and structure of ectomycorrhizal and co-associated fungal communities in a serpentine soil. Mycorrhiza 2008, 18, 339–354. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Read, D. Mycorrhizal Symbiosis, 3rd ed.; Academic Press (Elsevier): London, UK, 2008; ISBN 9780123705266. [Google Scholar]
- Futai, K.; Taniguchi, T.; Kataoka, R. Ectomycorrhizae and their importance in forest ecosystems. In Mycorrhizae: Sustainable Agriculture and Forestry; Springer: Dordrecht, The Netherlands, 2008; pp. 241–285. [Google Scholar] [CrossRef]
- Karst, J.; Erbilgin, N.; Pec, G.J.; Cigan, P.W.; Najar, A.; Simard, S.W.; Cahill, J.F. Ectomycorrhizal fungi mediate indirect effects of a bark beetle outbreak on secondary chemistry and establishment of pine seedlings. New Phytol. 2015, 208, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Menkis, A.; Vasiliauskas, R.; Taylor, A.F.S.; Stenlid, J.; Finlay, R. Afforestation of abandoned farmland with conifer seedlings inoculated with three ectomycorrhizal fungi-Impact on plant performance and ectomycorrhizal community. Mycorrhiza 2007, 17, 337–348. [Google Scholar] [CrossRef]
- Duñabeitia, M.; Rodríguez, N.; Salcedo, I.; Sarrionandia, E. Field mycorrhization and its influence on the establishment and development of the seedlings in a broadleaf plantation in the Basque Country. For. Ecol. Manag. 2004, 195, 129–139. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Q.; Du, W.; Ai, F.; Yin, Y.; Ji, R.; Guo, H. Microbial communities in the rhizosphere of different willow genotypes affect phytoremediation potential in Cd contaminated soil. Sci. Total Environ. 2021, 769, 145224. [Google Scholar] [CrossRef]
- Wang, X.; Fang, L.; Beiyuan, J.; Cui, Y.; Peng, Q.; Zhu, S.; Wang, M.; Zhang, X. Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil. Environ. Pollut. 2021, 277, 116758. [Google Scholar] [CrossRef]
- Chernyavskikh, V.; Dumacheva, E.; Lisetskii, F. Invasive activity of Galega orientalis Lam. in the presence of deposits in the southwestern part of the Central Russian Upland. Int. J. Environ. Stud. 2021, 79, 1089–1098. [Google Scholar] [CrossRef]
- Dumacheva, E.; Cherniavskih, V. Index of iron as an indicator of the sustainability of populations Medicago varia Mart. on calcareous soils. Fundam. Res. 2014, 9, 571–574. Available online: https://www.elibrary.ru/download/elibrary_21852770_66674020.pdf (accessed on 1 January 2021). (In Russian).
- Kalinitchenko, V.P.; Glinushkin, A.P.; Sharshak, V.K.; Ladan, E.P.; Minkina, T.M.; Sushkova, S.N.; Mandzhieva, S.S.; Batukaev, A.A.; Chernenko, V.V.; Ilyina, L.P.; et al. Intra-Soil Milling for Stable Evolution and High Productivity of Kastanozem Soil. Processes 2021, 9, 1302. [Google Scholar] [CrossRef]
- Kalinitchenko, V.P.; Glinushkin, A.P.; Minkina, T.M.; Mandzhieva, S.S.; Sushkova, S.N.; Sukovatov, V.A.; Il’ina, L.P.; Makarenkov, D.A. Chemical soil-biological engineering theoretical foundations, technical means, and technology for environmentally safe intra-soil waste recycling and long-term higher soil productivity. ACS Omega 2020, 5, 17553–17564. [Google Scholar] [CrossRef] [PubMed]
- Kalinitchenko, V.P. Optimizing the Matter Flow in Biosphere and the Climate of the Earth at the Stage of Technogenesis by Methods of Biogeosystem Technique (Problem-Analytical Review). Int. J. Environ. Probl. 2016, 4, 99–130. Available online: https://ijep.cherkasgu.press/journals_n/1475060276.pdf (accessed on 11 January 2021).
- Kalinichenko, V.P.; Glinushkin, A.P.; Sokolov, M.S.; Zinchenko, V.E.; Minkina, T.M.; Mandzhieva, S.S.; Sushkova, S.N.; Makarenkov, D.A.; Bakoyev, S.Y.; Il’ina, L.P. Impact of soil organic matter on calcium carbonate equilibrium and forms of Pb in water extracts from Kastanozem complex. J. Soils Sediments 2018, 19, 2717–2728. [Google Scholar] [CrossRef]
- Bunkin, N.F.; Glinushkin, A.P.; Shkirin, A.V.; Ignatenko, D.N.; Chirikov, S.N.; Savchenko, I.V.; Meshalkin, V.P.; Samarin, G.N.; Maleki, A.; Kalinitchenko, V.P. Identification of Organic Matter Dispersions Based on Light Scattering Matrices Focusing on Soil Organic Matter Management. ACS Omega 2020, 5, 33214–33224. [Google Scholar] [CrossRef] [PubMed]
- Stenström, E.; Ndobe, N.E.; Jonsson, M.; Stenlid, J.; Menkis, A. Root-associated fungi of healthy-looking Pinus sylvestris and Picea abies seedlings in Swedish forest nurseries. Scand. J. For. Res. 2014, 29, 12–21. [Google Scholar] [CrossRef]
- Kalinichenko, V.P.; Glinushkin, A.P.; Minkina, T.M.; Mandzhieva, S.S.; Sushkova, S.N.; Sukovatov, V.A.; Iljina, L.P.; Makarenkov, D.A.; Zavalin, A.A.; Dudnikova, T.S.; et al. Intra-soil waste recycling provides safety of environment. Environ. Geochem. Health 2022, 44, 1355–1376. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Shafeev, G.A.; Glinushkin, A.P.; Shkirin, A.V.; Barmina, E.V.; Rakov, I.I.; Simakin, A.V.; Kislov, A.V.; Astashev, M.E.; Vodeneev, V.A.; et al. Production and use of selenium nanoparticles as fertilizers. ACS Omega 2020, 5, 17767–17774. [Google Scholar] [CrossRef]
- Konchekov, E.M.; Glinushkin, A.P.; Kalinitchenko, V.P.; Artem’ev, K.V.; Burmistrov, D.E.; Kozlov, V.A.; Kolik, L.V. Properties and Use of Water Activated by Plasma of Piezoelectric Direct Discharge. Front. Phys. 2021, 8, 616385. [Google Scholar] [CrossRef]
- Belov, S.V.; Glinushkin, A.P.; Danyleiko, Y.K.; Kalinitchenko, V.P.; Egorov, A.V.; Sidorov, V.A.; Gudkov, S.V.; Dorokhov, A.S.; Lobachevsky, Y.P.; Izmailov, A.Y. Activated potassium phosphate fertilizer solution for agricultural plants growth stimulation. Front. Phys. 2021, 8, 618320. [Google Scholar] [CrossRef]
Pine Ecotype (Factor A) | Biological Product (Factor B) | ||
---|---|---|---|
A1 | Pinus sylvestris L. | B1 | distilled water (c) |
B2 | Biogor KM | ||
B3 | MycoCrop® | ||
A2 | Pinus sylvestris var. cretacea (Kalen.) Kom. | B1 | distilled water (c) |
B2 | Biogor KM | ||
B3 | MycoCrop® |
Parameter | M ± m | Cv | lim |
---|---|---|---|
Mobile form Cu, mg kg−1 | 8.12 ± 0.54 | 7.56 | 7.00–9.10 |
Mobile form Zn, mg kg−1 | 4.28 ± 0.27 | 7.90 | 3.73–4.90 |
Mobile form Cd, mg kg−1 | 0.11 ± 0.01 | 8.25 | 0.09–0.12 |
Mobile form Pb, mg kg−1 | 1.28 ± 0.10 | 9.85 | 1.11–1.50 |
Ntotal content, % | 0.16 ± 0.01 | 7.82 | 0.15–0.18 |
N-NO3 Ccontent, mg kg−1 | 14.46 ± 0.91 | 7.44 | 12.90–16.30 |
Nitrification capacity, mg kg−1 | 17.92 ± 1.11 | 7.44 | 12.90–16.30 |
Humus content, % | 2.13 ± 0.12 | 7.28 | 1.90–2.43 |
pH value | 7.84 ± 0.09 | 1.43 | 7.66–8.03 |
Pine Ecotype | Biological Preparation | Accumulation of HMs, mg kg−1 | |||
---|---|---|---|---|---|
Cu | Zn | Cd | Pb | ||
Pinus sylvestris L. | Water (c) | 3.11 ± 0.03 A a | 9.38 ± 0.28 B a | 0.11 ± 0.01 C a | 0.95 ± 0.05 B a |
Biogor KM | 4.58 ± 0.10 A b | 12.27 ± 0.78 B b | 0.17 ± 0.03 C b | 1.13 ± 0.03 D b | |
MycoCrop® | 4.67 ± 0.10 A b | 12.55 ± 0.31 B b | 0.14 ± 0.01 C b | 1.14 ± 0.04 D b | |
Pinus sylvestris var. cretacea (Kalen.) Kom. | Water (c) | 3.24 ± 0.06 A a | 10.11 ± 0.14 B a | 0.12 ± 0.01 C a | 0.99 ± 0.01 D a |
Biogor KM | 4.79 ± 0.11 A b | 13.57 ± 0.11 B b | 0.17 ± 0.03 C b | 1.07 ± 0.05 D a | |
MycoCrop® | 4.54 ± 0.14 A b | 13.31 ± 0.12 B b | 0.16 ± 0.01 C b | 1.07 ± 0.06 D a |
Resulting Trait | Source of Variation | D | n − 1 | s2 | Ff | F0.05 | h2x |
---|---|---|---|---|---|---|---|
Accumulation of Cu in plants, mg kg−1 DM | Total | 8.98 | 17 | 100.0 | |||
Reps | 0.03 | 2 | 0.4 | ||||
Random | 0.19 | 10 | 0.02 | 2.1 | |||
A | 0.02 | 1 | 0.02 | 1.2 | 5 | 0.3 | |
B | 8.63 | 2 | 4.32 | 224.0 * | 4.1 | 96.1 | |
A × B | 0.10 | 2 | 0.05 | 2.5 | 4.1 | 1.1 | |
Accumulation of Zn in plants, mg kg−1 DM | Total | 48.20 | 17 | 100.0 | |||
Reps | 1.34 | 2 | 2.8 | ||||
Random | 2.25 | 10 | 0.22 | 4.7 | |||
A | 3.88 | 1 | 3.88 | 17.3 * | 5 | 8.1 | |
B | 40.43 | 2 | 20.21 | 89.9 * | 4.1 | 83.9 | |
A × B | 0.30 | 2 | 0.15 | 0. 7 | 8.8 | 0.6 | |
Accumulation of Cd in plants, mg kg−1 DM | Total | 0.019 | 17 | 100.0 | |||
Reps | 0.001 | 2 | 7.0 | ||||
Random | 0.007 | 10 | 0.001 | 34.6 | |||
A | 0.001 | 1 | 0.001 | 0.9 | 8.8 | 3.2 | |
B | 0.010 | 2 | 0.005 | 7.8 * | 4.1 | 54.2 | |
A × B | 0.000 | 2 | 0.000 | 0.1 | 8.8 | 0.9 | |
Accumulation of Pb in plants, mg kg−1 DM | Total | 0.129 | 17 | 100.0 | |||
Reps | 0.010 | 2 | 7.9 | ||||
Random | 0.028 | 10 | 0.003 | 21.7 | |||
A | 0.004 | 1 | 0.004 | 1.6 | 5 | 3.4 | |
B | 0.074 | 2 | 0.037 | 13.2 * | 4.1 | 57.2 | |
A × B | 0.013 | 2 | 0.006 | 2.3 | 4.1 | 9.8 |
Pine Ecotype | Biological Preparation | HM | |||
---|---|---|---|---|---|
Cu | Zn | Cd | Pb | ||
Pinus sylvestris L. | Water (c) | 0.41 ± 0.03 A a | 2.26 ± 0.07 B a | 1.02 ± 0.13 C a | 0.80 ± 0.12 C a |
Biogor KM | 0.54 ± 0.02 A b | 2.95 ± 0.26 B b | 1.56 ± 0.22 C b | 0.93 ± 0.04 D b | |
MycoCrop® | 0.53 ± 0.02 A b | 3.02 ± 0.19 B b | 1.26 ± 0.06 C b | 0.81 ± 0.05 D a | |
Pinus sylvestris var. cretacea (Kalen.) Kom. | Water (c) | 0.40 ± 0.01 A a | 2.23 ± 0.05 B a | 0.99 ± 0.07 C a | 0.73 ± 0.02 D a |
Biogor KM | 0.62 ± 0.02 A b | 3.11 ± 0.20 B b | 1.60 ± 0.16 C b | 0.85 ± 0.08 D b | |
MycoCrop® | 0.57 ± 0.03 A b | 3.14 ± 0.16 B b | 1.53 ± 0.16 C b | 0.88 ± 0.09 D b |
Resulting Trait | Source of Variation | D | n − 1 | s2 | Ff | F0.05 | h2x |
---|---|---|---|---|---|---|---|
BAC Cu | Total | 0.127 | 17 | 100.0 | |||
Reps | 0.001 | 2 | 0.6 | ||||
Random | 0.010 | 10 | 0.001 | 7.8 | |||
A | 0.005 | 1 | 0.005 | 4.9 | 5 | 3.8 | |
B | 0.106 | 2 | 0.053 | 53.0 * | 4.1 | 82.9 | |
A × B | 0.006 | 2 | 0.003 | 3.1 | 4.1 | 4.9 | |
BAC Zn | Total | 3.335 | 17 | 100.0 | |||
Reps | 0.000 | 2 | 0.0 | ||||
Random | 0.654 | 10 | 0.065 | 19.6 | |||
A | 0.027 | 1 | 0.027 | 0.4 | 8.8 | 0.8 | |
B | 2.623 | 2 | 1.312 | 20.1 * | 4.1 | 78.7 | |
A × B | 0.031 | 2 | 0.015 | 0.2 | 8.8 | 0.9 | |
BAC Cd | Total | 1.634 | 17 | 100.0 | |||
Reps | 0.056 | 2 | 3.4 | ||||
Random | 0.424 | 10 | 0.042 | 25.9 | |||
A | 0.036 | 1 | 0.036 | 0.9 | 8.8 | 2.2 | |
B | 1.044 | 2 | 0.522 | 12.3 * | 4.1 | 63.9 | |
A × B | 0.075 | 2 | 0.037 | 0.9 | 8.8 | 4.6 | |
BAC Pb | Total | 0.198 | 17 | 100.0 | |||
Reps | 0.045 | 2 | 22.6 | ||||
Random | 0.085 | 10 | 0.009 | 43.0 | |||
A | 0.003 | 1 | 0.003 | 0.3 | 8.8 | 1.4 | |
B | 0.046 | 2 | 0.023 | 2.7 | 4.1 | 23.4 | |
A × B | 0.019 | 2 | 0.010 | 1.1 | 4.1 | 9.7 |
Soil Chemical and Biological Indicators | HM Accumulation, mg kg−1 | BAC | ||||||
---|---|---|---|---|---|---|---|---|
Cu | Zn | Cd | Pb | Cu | Zn | Cd | Pb | |
Nitrification capacity, mg kg−1 | 0.744 * | 0.662 * | 0.787 * | 0.610 * | 0.543 * | 0.549 * | 0.765 * | 0.227 |
N–NO3 content, mg kg−1 | 0.132 | 0.006 | 0.067 | −0.222 | −0.031 | -0.109 | −0.087 | −0.293 |
Ntotal content. % | 0.065 | 0.083 | −0.045 | −0.327 | −0.251 | −0.024 | 0.013 | 0.017 |
Humus content, % | −0.041 | −0.178 | −0.057 | −0.103 | −0.117 | 0.070 | 0.069 | 0.098 |
pH | 0.090 | 0.050 | 0.025 | 0.220 | −0.146 | −0.079 | −0.126 | −0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosolapov, V.M.; Cherniavskih, V.I.; Dumacheva, E.V.; Sajfutdinova, L.D.; Zavalin, A.A.; Glinushkin, A.P.; Kosolapova, V.G.; Kartabaeva, B.B.; Zamulina, I.V.; Kalinitchenko, V.P.; et al. Scots Pine (Pinus sylvestris L.) Ecotypes Response to Accumulation of Heavy Metals during Reforestation on Chalk Outcrops. Forests 2023, 14, 1492. https://doi.org/10.3390/f14071492
Kosolapov VM, Cherniavskih VI, Dumacheva EV, Sajfutdinova LD, Zavalin AA, Glinushkin AP, Kosolapova VG, Kartabaeva BB, Zamulina IV, Kalinitchenko VP, et al. Scots Pine (Pinus sylvestris L.) Ecotypes Response to Accumulation of Heavy Metals during Reforestation on Chalk Outcrops. Forests. 2023; 14(7):1492. https://doi.org/10.3390/f14071492
Chicago/Turabian StyleKosolapov, Vladimir M., Vladmir I. Cherniavskih, Elena V. Dumacheva, Luiza D. Sajfutdinova, Alexey A. Zavalin, Alexey P. Glinushkin, Valentina G. Kosolapova, Bakhyt B. Kartabaeva, Inna V. Zamulina, Valery P. Kalinitchenko, and et al. 2023. "Scots Pine (Pinus sylvestris L.) Ecotypes Response to Accumulation of Heavy Metals during Reforestation on Chalk Outcrops" Forests 14, no. 7: 1492. https://doi.org/10.3390/f14071492
APA StyleKosolapov, V. M., Cherniavskih, V. I., Dumacheva, E. V., Sajfutdinova, L. D., Zavalin, A. A., Glinushkin, A. P., Kosolapova, V. G., Kartabaeva, B. B., Zamulina, I. V., Kalinitchenko, V. P., Baryshev, M. G., Sevostyanov, M. A., Sviridova, L. L., Chaplygin, V. A., Perelomov, L. V., Mandzhieva, S. S., Burachevskaya, M. V., & Valiullin, L. R. (2023). Scots Pine (Pinus sylvestris L.) Ecotypes Response to Accumulation of Heavy Metals during Reforestation on Chalk Outcrops. Forests, 14(7), 1492. https://doi.org/10.3390/f14071492