The Effect of Ethanol Extracts and Essential Oils Obtained from Different Varieties of Mint on Wood Molding
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Plant Material
2.1.1. Preparation of Ethanol Extracts
2.1.2. The Method of Obtaining Essential Oils
2.2. Methods
2.2.1. Evaluation of Fungicide Properties on Agar Medium
2.2.2. Wood Treatment and Assessment of Fungi Overgrowth
2.2.3. GC-MS Analysis
- Starting temperature: 75 °C, hold time 6 min, ramp rate 5 °C/min to 160 °C, hold time 4 min, ramp rate 5 °C/min to 180 °C, hold time 4 min; ramp rate 5 °C/min to 200 °C, hold time 4 min; ramp rate 5 °C/min to 220 °C, hold time 4 min; ramp rate 5 °C/min to 240 °C, hold time 4 min;
- Carrier gas: helium 5.0 (PGNiG, Warsaw, Poland);
- Carrier gas flow: 1.55 cm3/min;
- Injection mode: split—1.8;
- Temperature of the injection: 250 °C;
- Detector voltage: 0.7 kV;
- Ion source temperature: 200 °C;
- Interface temperature: 250 °C.
3. Results and Discussion
3.1. Antifungal Properties
3.2. Chemical Composition
4. Conclusions
- The degree of fungi growth inhibition depends on the amount of extract added to the medium.
- The highest dose of the extract, 5.0 cm3, either completely inhibited or severely limited the growth of the fungi.
- Ethanol extracts from the tested mints, the application of which in the wood is at least 40 g/m2, have a fungistatic effect in the initial stage of fungal development.
- Solutions of essential oils turned out to be more active against fungi; although, in this case, the desired biocidal effect was not achieved.
- Essential oils significantly slow down the growth of the fungus Ch. globosum, with the strongest fungistatic effect found in ‘Morocco’ spearmint oil (Mentha spicata L.).
- It was shown that ethanol extracts from mints were dominated by substances belonging to the oxygen-containing monoterpenoid and monoterpene groups. In terms of quality, the composition of essential oils is richer, although oxygen-containing monoterpenoids also dominated.
- Six substances belonging to sesquiterpenes were identified in essential oils, which were not found in ethanol extracts.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products. Available online: https://echa.europa.eu/pl/information-on-chemicals/biocidal-products (accessed on 20 July 2023).
- ESD for PT 8: Revised Emission Scenario Document for Wood Preservatives (OECD Series No. 2, 2013). Available online: https://echa.europa.eu/pl/guidance-documents/guidance-on-biocides-legislation/emission-scenario-documents (accessed on 26 June 2023).
- Pop, D.M.; Timar, M.C.; Varodi, A.M. Comparative assessment of the biocidal potential of 3 essential oils. Bull. Transilv. Univ. Braşov 2019, 12, 83–96. [Google Scholar] [CrossRef]
- Bahmani, M.; Schmidt, O. Plant Essential Oils for Environment-Friendly Protection of Wood Objects against Fungi. Maderas Cienc. Tecnol. 2018, 20, 325–332. [Google Scholar] [CrossRef]
- Betlej, I.; Andres, B.; Krajewski, K.; Kiełtyka-Dadasiewicz, A.; Szadkowska, D.; Zawadzki, J. Effect of Various Mentha sp. Extracts on the Growth of Trichoderma viride and Chaetomium globosum on Agar Medium and Pine Wood. Diversity 2023, 15, 152. [Google Scholar] [CrossRef]
- Pánek, M.; Reinprecht, L.; Hulla, M. Ten essential oils for beech wood protection—Efficacy against wood-destroying fungi and moulds, and effect on wood discoloration. BioResources 2014, 9, 5588–5603. [Google Scholar] [CrossRef] [Green Version]
- Souza, M.A.A.; Lemos, M.J.; Brito, D.M.C.; Fernandes, M.S.; Castro, R.N.; Souza, S.R. Production and quality of menthol mint essential oil and antifungal and antigerminative activity. Am. J. Plant Sci. 2014, 5, 3311–3318. [Google Scholar] [CrossRef] [Green Version]
- Galgano, M.; Mrenoshki, D.; Pellegrini, F.; Capozzi, L.; Cordisco, M.; Del Sambro, L.; Trotta, A.; Camero, M.; Tempesta, M.; Buonavoglia, D.; et al. Antibacterial and Biofilm Production Inhibition Activity of Thymus vulgaris L. Essential Oil against Salmonella spp. Isolates from Reptiles. Pathogens 2023, 12, 804. [Google Scholar] [CrossRef]
- Russo, R.; Palla, F. Plant Essential Oils as Biocides in Sustainable Strategies for the Conservation of Cultural Heritage. Sustainability 2023, 15, 8522. [Google Scholar] [CrossRef]
- Adedeji, G.A.; Ogunsanwo, O.Y.; Elufioye, T.O. Quantifications of phytochemicals and biocide actions of Lawsonia inermis linn. Extracts against wood termites and fungi. Int. Biodeterior. Biodegrad. 2017, 116, 155–162. [Google Scholar] [CrossRef]
- González-Laredo, R.F.; Rosales-Castro, M.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; Karchesy, J.J. Wood preservation using natural products. Madera Y Bosques 2015, 21, 63–76. [Google Scholar] [CrossRef]
- Betlej, I.; Andres, B.; Szadkowska, D.; Krajewski, K.; Ościłowska, A. Fungicidal properties of the medium from SCOBY microorganism cultivation in saturated wood against Coniophora puteana fungus. BioResources 2021, 16, 1287–1295. [Google Scholar] [CrossRef]
- Betlej, I.; Andres, B.; Krajewski, K. Evaluation of fungicidal effects of post-culture medium of selected mold fungi and bacteria in relation to Basidiomycetes fungi, causing wood destruction. BioResources 2020, 15, 2471–2482. [Google Scholar] [CrossRef]
- Lee, J.; Huh, N.; Hong, H.J.; Kim, B.S.; Kim, G.H.; Kim, J.J. The antagonistic properties of Trichoderma spp. inhabiting woods for potential biological control of wood-damaging fungi. Holzforschung 2012, 66, 883–887. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, T.; Mi, N.; Wang, Y.; Li, G.; Wang, L.; Xie, Y. Antifungal Activity of Monoterpenes against Wood White-Rot Fungi. Int. Biodeterior. Biodegrad. 2016, 106, 157–160. [Google Scholar] [CrossRef]
- Singh, T.; Singh, A.P. A Review on Natural Products as Wood Protectant. Wood Sci. Technol. 2012, 46, 851–870. [Google Scholar] [CrossRef]
- Tari, S.M.M.; Tarmian, A.; Azadfallah, M. Improving fungal decay resistance of solvent and waterborne polyurethane-coated wood by free and microencapsulated thyme essential oil. J. Coat. Technol. Res. 2022, 19, 959–966. [Google Scholar] [CrossRef]
- Sparacello, S.; Gallo, G.; Faddetta, T.; Megna, B.; Nicotra, G.; Bruno, B.; Giambra, B.; Palla, F. Thymus vulgaris Essential Oil and Hydro-Alcoholic Solutions to Counteract Wooden Artwork Microbial Colonization. Appl. Sci. 2021, 11, 8704. [Google Scholar] [CrossRef]
- Reinprecht, L.; Vidholdová, Z. Growth Inhibition of Moulds on Wood Surfaces in Presence of Nano-Zinc Oxide and Its Combinations with Polyacrylate and Essential Oils. Wood Res. 2017, 62, 37–44. [Google Scholar]
- Reinprecht, L.; Pop, D.A.; Vidholdová, Z.; Timar, M.C. Anti-decay potential of five essential oils against the wood-decaying fungi Serpula lacrymans and Trametes versicolor. Acta Fac. Xylologiae 2019, 61, 63–72. [Google Scholar] [CrossRef]
- Shakama, H.M.; Mohamed, A.A.; Salem, M.Z.M. Down-regulatory effect of essential oils on fungal growth and Tri4 gene expression for some Fusarium oxysporum strains: GC-MS analysis of essential oils. Arch. Phytopathol. 2022, 55, 951–972. [Google Scholar] [CrossRef]
- Sen, S.; Yalcin, M. Activity of commercial still waters from volatile oils production against wood decay fungi. Maderas Cienc. Tecnol. 2010, 12, 127–133. [Google Scholar] [CrossRef]
- Pop, D.M.; Timar, M.C.; Beldean, E.C.; Varodi, A.M. Combined Testing Approach to Evaluate the Antifungal Efficiency of clove (Eugenia caryophyllata) Essential Oil for Potential Application in Wood Conservation. BioResources 2020, 15, 9474–9489. [Google Scholar] [CrossRef]
- Pop, D.M.; Timar, M.C.; Varodi, A.M.; Beldean, E.C. An evaluation of clove (Eugenia caryophyllata) essential oil as a potential alternative antifungal wood protection system for cultural heritage conservation. Maderas Cienc. Tecnol. 2022, 24, 1–6. [Google Scholar] [CrossRef]
- Yingprasert, W.; Matan, N.; Matan, N. Effects of surface treatment with cinnamon oil and clove oil on mold resistance and physical properties of rubberwood particleboards. Eur. J. Wood Wood Prod. 2015, 73, 103–109. [Google Scholar] [CrossRef]
- Šimůnková, K.; Hýsek, Š.; Reinprecht, L.; Šobotník, J.; Lišková, T.; Pánek, M. Lavender oil as eco-friendly alternative to protect wood against termites without negative effect on wood properties. Sci. Rep. 2022, 12, 1909. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, Z.; Huang, Q.; Zhang, D. Antifungal Activity of Several Essential Oils and Major Components against Wood-Rot Fungi. Ind. Crops Prod. 2017, 108, 278–285. [Google Scholar] [CrossRef]
- Woźniak, M. Antifungal Agents in Wood Protection—A Review. Molecules 2022, 27, 6392. [Google Scholar] [CrossRef]
- Ludwiczuk, A.; Asakawa, Y. Chemotaxonomic value of essential oil components in liverwort species. A review. Flavour Fragr. J. 2015, 30, 189–196. [Google Scholar] [CrossRef]
- Łyczko, J.; Kiełtyka-Dadasiewicz, A.; Skrzyński, M.; Klisiewicz, K.; Szumny, A. Chemistry behind quality—The usability of herbs and spices essential oils analysis in light of sensory studies. Food Chem. 2023, 411, 135537. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Serrano, C.; Matos, O.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. J. Sci. Food Agric. 2013, 93, 2702–2714. [Google Scholar] [CrossRef]
- Ludwiczuk, A.; Kiełtyka-Dadasiewicz, A.; Sawicki, R.; Golus, J.; Ginalska, G. Essential oils of some Mentha species and cultivars, their chemistry and bacteriostatic activity. Nat. Prod. Commun. 2016, 11, 1015–1018. [Google Scholar] [CrossRef]
- Borysiuk, P.; Krajewski, K.; Auriga, A.; Auriga, R.; Betlej, I.; Rybak, K.; Nowacka, M.; Boruszewski, P. PLA Biocomposites: Evaluation of Resistance to Mold. Polymers 2022, 14, 157. [Google Scholar] [CrossRef]
- Dantigny, P.; Guilmart, A.; Radoi, F.; Bensoussan, M.; Zwietering, M. Modelling the effect of ethanol on growth rate of food spoilage moulds. Int. J. Food Microbiol. 2005, 98, 261–269. [Google Scholar] [CrossRef]
- Ali, H.M.; Elgat, W.A.A.A.; EL-Hefny, M.; Salem, M.Z.M.; Taha, A.S.; Al Farraj, D.A.; Elshikh, M.S.; Hatamleh, A.A.; Abdel-Salam, E.M. New Approach for Using of Mentha longifolia L. and Citrus reticulata L. Essential Oils asWood-Biofungicides: GC-MS, SEM, and MNDO Quantum Chemical Studies. Materials 2021, 14, 1361. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, R.; Prakash, O.; Kumar, M.; Pant, A.K.; Isidorov, V.A.; Szczepaniak, L. Reinvestigation of Chemical Composition, Pharmacological, Antibacterial and Fungicidal Activity of Essential oil from Mentha longifolia (L.) Huds. Res. J. Phytochem. 2017, 11, 129–141. [Google Scholar]
- Desam, N.R.; Al-Rajab, A.J.; Sharma, M.; Mylabathula, M.M.; Gowkanapalli, R.R.; Mohammed, A. Chemical composition, antibacterial and antifungal activities of Saudi Arabian Mentha longifolia L. essential oil. J. Coast. Life Med. 2017, 5, 441–446. [Google Scholar] [CrossRef]
- Džamić, A.M.; Soković, M.D.; Ristić, M.S.; Novaković, M.; Grujić-JovanoviC, S.; Tešević, V.; Marin, P.D. Antifungal and antioxidant activity of Mentha longifolia (L.) Hudson (Lamiaceae) essential oil. Bot. Serb. 2010, 34, 57–61. [Google Scholar]
- Gulluce, M.; Sahin, F.; Sokmen, M.; Ozer, H.; Daferera, D.; Sokmen, A.; Polissiou, M.; Adiguzel, A.; Ozkan, H. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. Longifolia. Food Chem. 2007, 103, 1449–1456. [Google Scholar] [CrossRef]
- Bomfim de Barros, D.; de Oliveira e Lima, L.; Alves da Silva, L.; Cavalcante Fonseca, M.; Ferreira, R.C.; Diniz Neto, H.; da Nóbrega Alves, D.; da Silva Rocha, W.P.; Scotti, L.; de Oliveira Lima, E.; et al. α-Pinene: Docking Study, Cytotoxicity, Mechanism of Action, and Anti-Biofilm Effect against Candida albicans. Antibiotics 2023, 12, 480. [Google Scholar] [CrossRef]
- Pirabalouti, A.G.; Firoznezhad, M.; Craker, L.; Akbarzadeh, M. Essential oil compositions, antibacterial and antioxidant activities of various populations of Artemisia chamaemelifolia at two phenological stages. Rev. Bras. Farmacogn. 2013, 23, 861–869. [Google Scholar] [CrossRef] [Green Version]
- Hawrył, M.A.; Skalicka-Woźniak, K.; Świeboda, R.; Niemiec, M.; Stępak, K.; Waksmundzka-Hajnos, M.; Hawrył, A.; Szymczak, G. GC-MS fingerprints of mint essential oils. Open Chem. 2015, 13, 1326–1332. [Google Scholar] [CrossRef]
- Reddy, D.N.; Al-Rajab, A.J.; Sharma, M.; Moses, M.M.; Reddy, G.R.; Albratty, M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha × piperita L. (peppermint) essential oils. J. King Saud Univ. Sci. 2019, 31, 528–533. [Google Scholar] [CrossRef]
Plant Materials | Concentration of Mint Extracts in Growth Medium (cm3/100 cm3) | Day of Observation | p-Value | α | ||
---|---|---|---|---|---|---|
2 | 4 | 6 | ||||
Growth (mm) | Tukey’s Test | |||||
(No. 3) M. spicata ‘Morocco’ | statistics F | 2.02 × 10−24 | 0.05 | |||
0 (control) | 65.4 | 90.0 | - | a | ||
0.5 | 31.8 | 86.7 | - | a | ||
1.0 | 29.0 | 74.8 | - | b | ||
0.1 | 32.0 | 72.0 | - | b | ||
2.5 | 17.8 | 55.8 | - | c | ||
5.0 | 0.0 | 0.0 | - | d | ||
(No. 5) M. spicata ‘Crispa’ | statistics F | 2.88 × 10−96 | 0.05 | |||
0 (control) | 32.7 | 65.0 | 90.0 | a | ||
0.1 | 28.3 | 65.3 | 90.0 | a | ||
0.5 | 29.5 | 73.7 | 90.0 | a | ||
1.0 | 25.8 | 64.2 | 90.0 | a | ||
2.5 | 19.5 | 55.7 | 90.0 | a | ||
5.0 | 0.0 | 0.0 | 0.0 | b | ||
(No. 6) M. piperita ‘Almira’ | statistics F | 2.88 × 10−96 | 0.05 | |||
0 (control) | 32.7 | 65.0 | 90.0 | a | ||
0.1 | 28.0 | 67.2 | 90.0 | a | ||
0.5 | 27.5 | 71.2 | 90.0 | a | ||
1.0 | 25.3 | 63.2 | 90.0 | a | ||
2.5 | 18.0 | 51.2 | 90.0 | a | ||
5.0 | 0.0 | 0.0 | 0.0 | b | ||
(No. 8) M. suaveolens ‘Variegata’ | statistics F | 2.34 × 10−31 | 0.05 | |||
0 (control) | 32.7 | 65.0 | 90.0 | a | ||
0.1 | 25.7 | 60.0 | 90.0 | a | ||
0.5 | 28.3 | 69.2 | 90.0 | a | ||
1.0 | 28.2 | 74.2 | 90.0 | a | ||
2.5 | 18.3 | 56.5 | 90.0 | a | ||
5.0 | 0.0 | 0.0 | 7.2 | b |
Plant Materials | Concentration of Mint Extracts in Growth Medium (cm3/100 cm3) | Day of Observation | p-Value | α | ||||
---|---|---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 10 | ||||
Growth (mm) | Tukey’s Test | |||||||
(No. 3) M. spicata ‘Morocco’ | statistics F | 2.50 × 10−35 | 0.05 | |||||
0 (control) | 19.3 | 34.5 | 58.0 | 80.3 | 90.0 | a | ||
0.1 | 28.0 | 64.2 | 90.0 | 90.0 | 90.0 | a | ||
0.5 | 28.2 | 63.7 | 90.0 | 90.0 | 90.0 | a | ||
1.0 | 23.2 | 49.0 | 76.3 | 90.0 | 90.0 | a | ||
2.5 | 11.5 | 17.7 | 22.5 | 33.7 | 48.8 | b | ||
5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | c | ||
(No. 5) M. spicata ‘Crispa’ | statistics F | 1.49 × 10−26 | 0.05 | |||||
0 (control) | 20.8 | 51.3 | 90.0 | - | - | a | ||
0.1 | 24.2 | 54.3 | 88.5 | - | - | ab | ||
0.5 | 23.2 | 50.7 | 85.0 | - | - | abc | ||
1.0 | 22.2 | 48.8 | 79.7 | - | - | abc | ||
2.5 | 17.2 | 21.0 | 26.5 | - | - | d | ||
5.0 | 0.0 | 0.0 | 0.0 | - | - | e | ||
(No. 6) M. piperita ‘Almira’ | statistics F | 1.44 × 10−27 | 0.05 | |||||
0 (control) | 20.8 | 51.5 | 90.0 | - | - | a | ||
0.1 | 20.2 | 47.5 | 76.8 | - | - | b | ||
0.5 | 20.0 | 44.0 | 72.7 | - | - | b | ||
1.0 | 19.3 | 39.2 | 64.2 | - | - | c | ||
2.5 | 15.7 | 20.2 | 24.0 | - | - | d | ||
5.0 | 0.0 | 0.0 | 11.7 | - | - | e | ||
(No. 8) M. suaveolens ‘Variegata’ | statistics F | 6.40 × 10−31 | 0.05 | |||||
0 (control) | 20.8 | 51.3 | 90.0 | - | - | a | ||
0.5 | 21.5 | 52.2 | 90.0 | - | - | a | ||
0.1 | 22.7 | 54.5 | 82.7 | - | - | b | ||
1.0 | 19.8 | 44.5 | 73.2 | - | - | c | ||
2.5 | 16.2 | 20.0 | 24.8 | - | - | d | ||
5.0 | 0.0 | 0.0 | 12.5 | - | - | e |
Plant Materials | Concentration of Mint Extracts in Growth Medium (cm3/100 cm3) | Day of Observation | p-Value | α | ||
---|---|---|---|---|---|---|
2 | 4 | 6 | ||||
Growth (mm) | Tukey’s Test | |||||
(No. 3) M. spicata ‘Morocco’ | statistics F | 5.23 × 10−9 | 0.05 | |||
0 (control) | 54.7 | 90.0 | - | a | ||
0.05 | 54.5 | 90.0 | - | a | ||
0.1 | 46.8 | 90.0 | - | a | ||
0.25 | 49.8 | 90.0 | - | a | ||
0.5 | 50.0 | 90.0 | - | a | ||
1.0 | 42.8 | 90.0 | - | a | ||
1.5 | 26.2 | 90.0 | - | a | ||
2.0 | 22.0 | 90.0 | - | a | ||
(No. 5) M. spicata ‘Crispa’ | statistics F | 1.00 | 0.05 | |||
0 (control) | 54.7 | 90.0 | - | a | ||
0.05 | 46.5 | 90.0 | - | a | ||
0.1 | 44.5 | 90.0 | - | a | ||
0.25 | 49.7 | 90.0 | - | a | ||
0.5 | 47.8 | 90.0 | - | a | ||
1.0 | 53.7 | 90.0 | - | a | ||
1.5 | 44.8 | 90.0 | - | a | ||
2.0 | 48.5 | 90.0 | - | a | ||
(No. 6) M. piperita ‘Almira’ | statistics F | 3.82 × 10−58 | 0.05 | |||
0 (control) | 54.7 | 90.0 | - | a | ||
0.05 | 48.3 | 90.0 | - | a | ||
0.1 | 51.5 | 90.0 | - | a | ||
1.0 | 51.2 | 90.0 | - | a | ||
0.25 | 49.3 | 90.0 | - | a | ||
1.0 | 51.2 | 90.0 | - | a | ||
1.5 | 45.7 | 90.0 | - | a | ||
2.0 | 10.7 | 90.0 | - | a | ||
(No. 8) M. suaveolens ‘Variegata’ | statistics F | 0.45 | 0.05 | |||
0 (control) | 54.7 | 90.0 | - | a | ||
0.05 | 52.7 | 90.0 | - | a | ||
0.1 | 52.3 | 90.0 | - | a | ||
0.25 | 48.7 | 90.0 | - | a | ||
0.5 | 48.5 | 90.0 | - | a | ||
1.0 | 40.5 | 90.0 | - | a | ||
1.5 | 33.2 | 90.0 | - | a | ||
2.0 | 47.7 | 88.3 | - | a |
Plant Materials | Concentration of Mint Extracts in Growth Medium (cm3/100 cm3) | Day of Observation | p-Value | α | ||
---|---|---|---|---|---|---|
2 | 4 | 6 | ||||
Growth (mm) | Tukey’s Test | |||||
(No. 3) M. spicata ‘Morocco’ | statistics F | 3.85 × 10−70 | 0.05 | |||
0 (control) | 25.2 | 61.7 | 90.0 | a | ||
0.05 | 27.7 | 67.7 | 90.0 | ab | ||
0.1 | 25.7 | 64.3 | 90.0 | ab | ||
0.25 | 11.0 | 12.0 | 13.5 | c | ||
0.5 | 6.5 | 7.8 | 9.2 | d | ||
1.0 | 0.0 | 0.0 | 0.0 | e | ||
1.5 | 0.0 | 0.0 | 0.0 | e | ||
2.0 | 0.0 | 0.0 | 0.0 | e | ||
(No. 5) M. spicata ‘Crispa’ | statistics F | 2.88 × 10−96 | 0.05 | |||
0 (control) | 25.2 | 61.7 | 90.0 | a | ||
0.05 | 30.0 | 69.8 | 90.0 | a | ||
0.1 | 27.2 | 68.3 | 90.0 | a | ||
0.25 | 21.3 | 50.3 | 77.6 | ab | ||
0.5 | 14.3 | 32.5 | 61.3 | bc | ||
1.0 | 15.5 | 27.8 | 50.2 | c | ||
1.5 | 9.5 | 12.8 | 17.2 | d | ||
2.0 | 0.0 | 2.5 | 3.7 | d | ||
(No. 6) M. piperita ‘Almira’ | statistics F | 2.88 × 10−96 | 0.05 | |||
0 (control) | 25.2 | 61.7 | 90.0 | a | ||
0.05 | 25.7 | 62.5 | 90.0 | a | ||
0.1 | 25.5 | 56.5 | 90.0 | a | ||
0.25 | 27.0 | 65.7 | 88.3 | ab | ||
0.5 | 23.7 | 49.3 | 78.3 | ab | ||
1.0 | 14.8 | 19.3 | 57.0 | c | ||
1.5 | 14.2 | 30.3 | 25.2 | d | ||
2.0 | 0.0 | 0.0 | 0.0 | e | ||
(No. 8) M. suaveolens ‘Variegata’ | statistics F | 2.34 × 10−31 | 0.05 | |||
0 (control) | 25.2 | 61.7 | 90.0 | a | ||
0.05 | 28.3 | 67.3 | 90.0 | a | ||
0.1 | 24.7 | 62.5 | 90.0 | a | ||
0.25 | 26.8 | 65.5 | 90.0 | a | ||
1.0 | 21.7 | 48.2 | 78.7 | ab | ||
0.5 | 21.2 | 44.7 | 71.5 | b | ||
1.5 | 13.2 | 28.8 | 48.7 | c | ||
2.0 | 13.0 | 20.3 | 32.2 | d |
Compound | Class * | Concentration (%) Calculated Relative to the Area of Peaks Identified | |||
---|---|---|---|---|---|
(No. 3) M. spicata ‘Morocco’ | (No. 5) M. spicata ‘Crispa’ | (No. 6) M. piperita ‘Almira’ | (No. 8) M. suaveolens ‘Variegata’ | ||
3-Carene | MH | 0.29 | - | 0.51 | - |
Camphene | MH | - | - | 2.16 | - |
alpha-Pinene | MH | 0.92 | - | 1.54 | 5.95 |
beta-Pinene | MH | 1.26 | 3.45 | - | - |
p-Cymene | NH | 0.11 | 0.56 | - | 5.75 |
D-Limonene | MH | 7.69 | - | 1.14 | - |
beta-Myrcene | MH | 0.68 | 0.57 | - | - |
beta-Phellandrene | MH | 0.67 | - | 1.92 | 2.41 |
Eucalyptol | OM | 5.77 | 7.16 | 3.24 | 6.16 |
gamma-Terpinene | MH | - | - | 1.87 | - |
Isopulegol | OM | 0.17 | - | - | - |
Linalol | OM | 0.6 | 1.6 | 3.34 | - |
Borneol | OM | - | - | 0.62 | - |
Caproaldehyde | ON | - | 1.97 | - | - |
Menthol | OM | 69.39 | 58.41 | - | 16.97 |
Isomenthol | OM | - | 1.97 | 8.66 | - |
alpha-Terpineol | OM | - | 0.87 | 1.6 | 25.50 |
beta-Terpineol | OM | 2.52 | 1.79 | - | 8.7 |
gamma-Terpineol | OM | - | - | - | 7.01 |
4-Terpinenol | OM | - | - | - | 2.55 |
Carveol | OM | 4.93 | 15.67 | 2.15 | - |
Carvone | OM | 1.05 | 28.31 | - | 5.46 |
Dihydrocarvone | OM | 10.4 | 0.55 | - | - |
Pulegone | OM | 0.13 | 3.01 | 1.93 | 5.85 |
Geraniol | OM | - | 1.76 | - | - |
beta-Citral | OM | - | - | - | 3.53 |
Piperitone | OM | 0.94 | 0.98 | - | - |
Homocatechol | ON | - | - | - | 15.34 |
Isophorone | ON | - | - | - | 3.52 |
3(10)-Caren-4-ol | OM | - | - | - | 5.46 |
Compound | Class * | Concentration (%) Calculated Relative to the Area of Peaks Identified | |||
---|---|---|---|---|---|
(No. 3) M. spicata ‘Morocco’ | (No. 5) M. spicata ‘Crispa’ | (No. 6) M. piperita ‘Almira’ | (No. 8) M. suaveolens ‘Variegata’ | ||
3-Carene | MH | 0.78 | 0.57 | - | - |
alpha-Pinene | MH | - | - | 1.54 | 5.95 |
beta-Pinene | MH | - | - | 0.51 | - |
p-Cymene | NH | - | - | 1.92 | 2.41 |
D-Limonene | MH | 5.29 | 5.94 | 3.24 | 6.16 |
beta-Myrcene | MH | 0.67 | 3.45 | - | - |
beta-Phellandrene | MH | - | - | - | - |
Eucalyptol | OM | 2.94 | 15.71 | - | - |
Linaol | OM | 0.55 | 1.6 | 2.16 | - |
Borneol | OM | - | - | 3.29 | - |
Caproaldehyde | ON | - | - | 1.18 | - |
Ocimene | MH | - | 2.22 | - | - |
Menthol | OM | - | 2.11 | - | - |
Menthone | OM | - | 13.56 | - | - |
Isomenthol | OM | - | 1.97 | - | - |
Menthyl acetate | OM | - | 1.76 | - | - |
alpha-Terpineol | OM | - | 0.55 | - | - |
beta-Terpineol | OM | 3.6 | - | - | - |
Carveol | OM | - | 0.98 | 1.04 | 8.79 |
Carvone | OM | 64.84 | 40.49 | 8.66 | - |
Dihydrocarvone | OM | 7.24 | - | - | - |
p-Menth-1-en-9-al | OM | - | - | - | - |
Valeraldehyde | ON | - | - | - | 7.01 |
D-Verbenone | OM | - | - | - | 8.7 |
Chrysanthenone | OM | - | - | 67.73 | - |
Sabinene | MH | 1.35 | - | - | - |
Piperitone | OM | - | 1.38 | - | - |
Catechol | ON | 0.46 | - | - | 2.55 |
Levulinic acid | ON | - | - | 1.87 | 5.75 |
Coumarin | ON | 1.65 | 0.87 | 1.6 | 16.71 |
p-Vinylguaiacol | ON | 1.42 | 2.21 | 1.66 | - |
Hydroquinone | ON | - | - | 1.05 | 5.46 |
Eugenol | ON | - | - | 0.62 | - |
cis-Jasmone | ON | - | 1.63 | 1.93 | 5.85 |
beta-Bourbonene | SH | 3.36 | 1.79 | - | |
Caryophyllene | SH | 3.6 | - | - | 3.53 |
Humulene | SH | 0.66 | - | - | - |
beta-Copaene | SH | 1.59 | - | - | 15.34 |
beta-Elemene | SH | - | - | - | 3.52 |
Farnesene | SH | - | - | - | 5.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betlej, I.; Andres, B.; Krajewski, K.; Kiełtyka-Dadasiewicz, A.; Boruszewski, P.; Szadkowska, D.; Zawadzki, J.; Radomski, A.; Borysiuk, P. The Effect of Ethanol Extracts and Essential Oils Obtained from Different Varieties of Mint on Wood Molding. Forests 2023, 14, 1522. https://doi.org/10.3390/f14081522
Betlej I, Andres B, Krajewski K, Kiełtyka-Dadasiewicz A, Boruszewski P, Szadkowska D, Zawadzki J, Radomski A, Borysiuk P. The Effect of Ethanol Extracts and Essential Oils Obtained from Different Varieties of Mint on Wood Molding. Forests. 2023; 14(8):1522. https://doi.org/10.3390/f14081522
Chicago/Turabian StyleBetlej, Izabela, Bogusław Andres, Krzysztof Krajewski, Anna Kiełtyka-Dadasiewicz, Piotr Boruszewski, Dominika Szadkowska, Janusz Zawadzki, Andrzej Radomski, and Piotr Borysiuk. 2023. "The Effect of Ethanol Extracts and Essential Oils Obtained from Different Varieties of Mint on Wood Molding" Forests 14, no. 8: 1522. https://doi.org/10.3390/f14081522
APA StyleBetlej, I., Andres, B., Krajewski, K., Kiełtyka-Dadasiewicz, A., Boruszewski, P., Szadkowska, D., Zawadzki, J., Radomski, A., & Borysiuk, P. (2023). The Effect of Ethanol Extracts and Essential Oils Obtained from Different Varieties of Mint on Wood Molding. Forests, 14(8), 1522. https://doi.org/10.3390/f14081522