Soil Temperature, Organic-Carbon Storage, and Water-Holding Ability Should Be Accounted for the Empirical Soil Respiration Model Selection in Two Forest Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Sites, Measurements, and Soil Properties
2.2. Empirical Soil Respiration Models
3. Results and Discussion
3.1. Choice of the
3.2. Modeling Results
- For Entic Podzol and Tsoil:
- The best slope-lm values (slope, Figure 7) were observed with the TPPC model in a dry environment (slope ≈ 0.9), with the TPC model in a normal environment (slope ≈ 0.9), and with the TPP model in a wet environment (slope ≈ 0.9); the TPPC and TPPrh models show the slope > 0.85 for most of the conditions;
- The best R2-lm values (R2, Figure 7) were observed with the TPPC model in a dry environment (R2 ≈ 0.7) and with the TPPrh model in normal and wet environments (R2 ≈ 0.75); the TPPC and TPP models show the R2 > 0.7 for all moisture conditions;
- The best MBE values of the comparison between the models and measurements (, Figure 7) were observed with the TPC and TPPC models in a dry environment ( ≈ 0.15), and with the TPPrh model in normal and wet environments ( ≈ 0.08); the TPPC model shows < 0.17 for all moisture conditions.
- The best RMSE values of the comparison between the models and measurements (RMSE, Figure 7) were observed with the TPC и TPPC in a dry environment (RMSE ≈ 0.45), and with the TPPrh model in normal and wet environments (RMSE ≈ 0.55); the TPPC model shows RMSE < 0.63 for all moisture conditions.
- For Entic Podzol and Tair:
- The best slope lm values (slope, Figure 7) were observed with the TPPC model in dry and wet environments (slope ≈ 0.88–0.9), and with the TPPrh model in a normal environment (slope ≈ 0.88);
- The best R2-lm values (R2, Figure 7) were observed with the TPPC model for all moisture conditions: R2 ≈ 0.67 for dry, R2 ≈ 0.77 for wet, and R2 ≈ 0.74 for normal;
- The best MBE values (, Figure 7) were observed with the TPPC model in normal and dry environments ( ≈ 0.15), while the TPP model gives the smallest ≈ 0.11 in a wet environment;
- The best RMSE values (RMSE, Figure 7) were observed with the TPPC model for all moisture conditions: RMSE ≈ 0.47 for dry, RMSE ≈ 0.53 for wet, and RMSE ≈ 0.63 for normal.
- For Haplic Luvisol and Tsoil:
- The best slope-lm values (slope, Figure 7) were observed with the TPPrh for all moisture conditions (slope ≈ 0.85–0.9);
- The best R2-lm values (R2, Figure 7) were observed with the TPPrh for all moisture conditions (R2 ≈ 0.65–0.75);
- The best MBE values (, Figure 7) were observed with the TPPrh for all moisture conditions ( ≈ 0.15);
- The best RMSE values (RMSE, Figure 7) were observed with the TPPrh for all moisture conditions (RMSE ≈ 0.43–0.53).
- For Haplic Luvisol and Tair:
- The best slope-lm values (slope, Figure 7) were observed with the TPPrh model in dry and wet environments (slope ≈ 0.85–0.91), and with the TPC and TPPC models in a normal environment (slope ≈ 0.85);
- The best R2-lm values (R2, Figure 7) were observed with the TPPrh for all moisture conditions (R2 ≈ 0.57–0.73);
- The best MBE values (, Figure 7) were observed with the TPPrh model in normal and wet environments ( ≈ 0.15–0.23), and with the TPPC model in a dry environment ( ≈ 0.23);
- The best RMSE values (RMSE, Figure 7) were observed with the TPPrh for all moisture conditions (RMSE ≈ 0.53–0.73).
3.3. An Optimal-Model Selection and the Winter Soil Respiration Control
- with the Tsoil > 2 °C—choose the TPPrh model;
- with the Tsoil ≤ 2 °C—choose the TPPC model.
Entic Podzol | Haplic Luvisol | |||||
---|---|---|---|---|---|---|
Model | R2 | MBE | RMSE | R2 | MBE | RMSE |
(all data) | ||||||
TPPC[Tsoil]:TPPrh[Tair] | 0.734 | −0.150 | 0.527 | 0.624 | −0.348 | 0.716 |
TPPC[Tair]:TPPrh[Tair] | 0.731 | −0.156 | 0.536 | 0.623 | −0.357 | 0.723 |
TPPC[Tsoil]:TPPrh[Tsoil] | 0.735 | −0.115 | 0.524 | 0.674 | −0.287 | 0.651 |
Tsoil ≤ 2 (cold periods) | ||||||
TPPC[Tsoil] | 0.116 | −0.225 | 0.397 | 0.054 | −0.376 | 0.553 |
TPPC[Tair] | 0.110 | −0.241 | 0.428 | 0.047 | −0.402 | 0.580 |
TPPrh[Tsoil] | 0.032 | −0.224 | 0.411 | 0.110 | −0.425 | 0.581 |
TPPrh[Tair] | 0.070 | −0.288 | 0.480 | 0.040 | −0.456 | 0.643 |
Tsoil > 2 (warm periods) | ||||||
TPPC[Tsoil] | 0.583 | −0.124 | 0.638 | 0.465 | −0.413 | 0.852 |
TPPC[Tair] | 0.616 | −0.094 | 0.599 | 0.431 | −0.412 | 0.856 |
TPPrh[Tsoil] | 0.604 | −0.051 | 0.584 | 0.512 | −0.239 | 0.698 |
TPPrh[Tair] | 0.604 | −0.106 | 0.589 | 0.431 | −0.333 | 0.790 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model | Wetness | Q | Q2 | K | Slope | Intercept | |MBE| | RMSE | R2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | n | 0.545 | 0.118 | - | - | - | - | 0.827 | 0.063 | 0.237 | 0.643 | 0.720 |
TP | n | 0.545 | 0.118 | - | 0.901 | - | - | 0.819 | 0.049 | 0.266 | 0.644 | 0.726 |
TPP | n | 0.545 | 0.118 | - | −0.941 | 1.137 | - | 0.843 | 0.054 | 0.219 | 0.609 | 0.745 |
TPC | n | 0.545 | 0.118 | - | 6.838 | - | −0.179 | 0.897 | −0.022 | 0.200 | 0.617 | 0.747 |
TPPC | n | 0.545 | 0.118 | - | −0.571 | 1.753 | −0.043 | 0.863 | 0.066 | 0.172 | 0.628 | 0.724 |
TPPrh | n | 0.545 | 0.197 | 0.005 | −1.694 | 2.266 | - | 0.853 | 0.172 | 0.083 | 0.549 | 0.765 |
T | w | 0.508 | 0.121 | - | - | - | - | 0.860 | −0.044 | 0.284 | 0.645 | 0.711 |
TP | w | 0.508 | 0.121 | - | −4.341 | - | - | 0.885 | 0.029 | 0.167 | 0.625 | 0.702 |
TPP | w | 0.508 | 0.121 | - | −4.954 | 0.072 | - | 0.897 | 0.026 | 0.149 | 0.623 | 0.704 |
TPC | w | 0.508 | 0.121 | - | −5.869 | - | 0.042 | 0.863 | 0.063 | 0.171 | 0.623 | 0.697 |
TPPC | w | 0.508 | 0.121 | - | −11.137 | 0.330 | 0.148 | 0.831 | 0.152 | 0.138 | 0.617 | 0.686 |
TPPrh | w | 0.508 | 0.188 | 0.005 | −5.843 | 0.119 | - | 0.840 | 0.214 | 0.060 | 0.548 | 0.732 |
T | d | 0.526 | 0.094 | - | - | - | - | 0.763 | 0.095 | 0.233 | 0.511 | 0.610 |
TP | d | 0.526 | 0.094 | - | 0.864 | - | - | 0.753 | 0.082 | 0.261 | 0.512 | 0.623 |
TPP | d | 0.526 | 0.094 | - | 0.734 | 1.157 | - | 0.751 | 0.081 | 0.265 | 0.510 | 0.629 |
TPC | d | 0.526 | 0.094 | - | 12.374 | - | −0.353 | 0.889 | −0.003 | 0.157 | 0.451 | 0.688 |
TPPC | d | 0.526 | 0.094 | - | 20.012 | 0.870 | −0.440 | 0.898 | −0.019 | 0.161 | 0.452 | 0.692 |
TPPrh | d | 0.526 | 0.094 | 0.005 | 0.734 | 1.157 | - | 0.805 | 0.097 | 0.174 | 0.493 | 0.617 |
Model | Wetness | Q | Q2 | K | Slope | Intercept | |MBE| | RMSE | R2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | n | 0.448 | 0.119 | - | - | - | - | 0.755 | 0.112 | 0.287 | 0.718 | 0.635 |
TP | n | 0.448 | 0.119 | - | 2.179 | - | - | 0.738 | 0.079 | 0.347 | 0.717 | 0.658 |
TPP | n | 0.448 | 0.119 | - | 0.181 | 1.129 | - | 0.747 | 0.097 | 0.315 | 0.690 | 0.671 |
TPC | n | 0.448 | 0.119 | - | 10.960 | - | −1.050 | 0.856 | −0.006 | 0.239 | 0.662 | 0.696 |
TPPC | n | 0.448 | 0.119 | - | 4.537 | 1.099 | −0.767 | 0.843 | 0.044 | 0.212 | 0.650 | 0.694 |
TPPrh | n | 0.448 | 0.238 | 0.007 | 7.495 | 1.036 | - | 0.865 | 0.070 | 0.150 | 0.577 | 0.742 |
T | w | 0.432 | 0.122 | - | - | - | - | 0.794 | −0.055 | 0.416 | 0.792 | 0.631 |
TP | w | 0.432 | 0.122 | - | −5.128 | - | - | 0.818 | 0.035 | 0.285 | 0.756 | 0.619 |
TPP | w | 0.432 | 0.122 | - | −5.151 | 0.995 | - | 0.818 | 0.035 | 0.285 | 0.756 | 0.619 |
TPC | w | 0.432 | 0.122 | - | −5.316 | - | 0.030 | 0.813 | 0.039 | 0.288 | 0.756 | 0.618 |
TPPC | w | 0.432 | 0.122 | - | −2.683 | 1.298 | −0.124 | 0.828 | 0.004 | 0.298 | 0.757 | 0.626 |
TPPrh | w | 0.432 | 0.239 | 0.007 | −0.030 | 1.537 | - | 0.902 | 0.022 | 0.150 | 0.587 | 0.742 |
T | d | 0.408 | 0.093 | - | - | - | - | 0.687 | 0.057 | 0.363 | 0.607 | 0.467 |
TP | d | 0.408 | 0.093 | - | −0.356 | - | - | 0.691 | 0.061 | 0.352 | 0.605 | 0.463 |
TPP | d | 0.408 | 0.093 | - | −2.952 | 0.037 | - | 0.751 | 0.064 | 0.269 | 0.578 | 0.469 |
TPC | d | 0.408 | 0.093 | - | 6.617 | - | −1.147 | 0.794 | 0.012 | 0.264 | 0.567 | 0.500 |
TPPC | d | 0.408 | 0.093 | - | −1.954 | 0.009 | −0.180 | 0.757 | 0.064 | 0.262 | 0.577 | 0.469 |
TPPrh | d | 0.408 | 0.221 | 0.008 | −3.074 | 0.384 | - | 0.842 | 0.069 | 0.143 | 0.426 | 0.635 |
Model | Wetness | Q | Q2 | K | Slope | Intercept | |MBE| | RMSE | R2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | n | 0.686 | 0.087 | - | - | - | - | 0.836 | 0.074 | 0.211 | 0.640 | 0.717 |
TP | n | 0.686 | 0.087 | - | 0.384 | - | - | 0.832 | 0.067 | 0.224 | 0.640 | 0.720 |
TPP | n | 0.686 | 0.087 | - | −0.473 | 1.135 | - | 0.844 | 0.066 | 0.205 | 0.625 | 0.729 |
TPC | n | 0.686 | 0.087 | - | 4.362 | - | −0.128 | 0.890 | 0.013 | 0.177 | 0.626 | 0.734 |
TPPC | n | 0.686 | 0.087 | - | 1.001 | 1.122 | −0.079 | 0.885 | 0.042 | 0.157 | 0.616 | 0.736 |
TPPrh | n | 0.618 | 0.121 | 0.002 | 0.273 | 1.128 | - | 0.889 | −0.025 | 0.218 | 0.639 | 0.734 |
T | w | 0.724 | 0.082 | - | - | - | - | 0.881 | 0.014 | 0.191 | 0.553 | 0.762 |
TP | w | 0.724 | 0.082 | - | −2.618 | - | - | 0.898 | 0.056 | 0.118 | 0.544 | 0.757 |
TPP | w | 0.724 | 0.082 | - | −2.171 | 1.331 | - | 0.906 | 0.052 | 0.109 | 0.536 | 0.764 |
TPC | w | 0.724 | 0.082 | - | −4.089 | - | 0.032 | 0.884 | 0.083 | 0.114 | 0.544 | 0.753 |
TPPC | w | 0.724 | 0.082 | - | −1.114 | −2.042 | −0.055 | 0.901 | 0.054 | 0.116 | 0.532 | 0.766 |
TPPrh | w | 0.651 | 0.095 | 0.001 | −4.949 | 1.249 | - | 0.870 | 0.087 | 0.136 | 0.544 | 0.753 |
T | d | 0.649 | 0.063 | - | - | - | - | 0.755 | 0.114 | 0.225 | 0.507 | 0.608 |
TP | d | 0.649 | 0.063 | - | 0.167 | - | - | 0.754 | 0.111 | 0.231 | 0.507 | 0.611 |
TPP | d | 0.649 | 0.063 | - | −0.750 | 2.586 | - | 0.753 | 0.116 | 0.227 | 0.503 | 0.613 |
TPC | d | 0.649 | 0.063 | - | 8.757 | - | −0.291 | 0.867 | 0.038 | 0.147 | 0.464 | 0.662 |
TPPC | d | 0.649 | 0.063 | - | 20.364 | 0.763 | −0.435 | 0.883 | 0.009 | 0.153 | 0.462 | 0.672 |
TPPrh | d | 0.584 | 0.110 | 0.002 | 0.084 | 1.234 | - | 0.850 | −0.008 | 0.216 | 0.506 | 0.637 |
Model | Wetness | Q | Q2 | K | Slope | Intercept | |MBE| | RMSE | R2 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T | n | 0.538 | 0.100 | - | - | - | - | 0.767 | 0.103 | 0.331 | 0.810 | 0.628 |
TP | n | 0.538 | 0.100 | - | −0.204 | - | - | 0.768 | 0.107 | 0.325 | 0.809 | 0.627 |
TPP | n | 0.538 | 0.100 | - | −2.136 | 0.440 | - | 0.784 | 0.133 | 0.270 | 0.803 | 0.621 |
TPC | n | 0.538 | 0.100 | - | 3.588 | - | −0.522 | 0.823 | 0.058 | 0.272 | 0.795 | 0.640 |
TPPC | n | 0.538 | 0.100 | - | −0.946 | −0.933 | −0.202 | 0.824 | 0.094 | 0.233 | 0.764 | 0.654 |
TPPrh | n | 0.538 | 0.175 | 0.004 | −0.346 | 2.364 | - | 0.813 | 0.178 | 0.170 | 0.724 | 0.667 |
T | w | 0.611 | 0.093 | - | - | - | - | 0.823 | −0.007 | 0.338 | 0.758 | 0.662 |
TP | w | 0.611 | 0.093 | - | −3.108 | - | - | 0.842 | 0.041 | 0.254 | 0.745 | 0.654 |
TPP | w | 0.611 | 0.093 | - | −2.787 | 1.268 | - | 0.842 | 0.046 | 0.249 | 0.742 | 0.655 |
TPC | w | 0.611 | 0.093 | - | 1.107 | - | −0.318 | 0.872 | −0.023 | 0.263 | 0.747 | 0.665 |
TPPC | w | 0.611 | 0.093 | - | −0.242 | 2.004 | −0.232 | 0.860 | 0.018 | 0.245 | 0.739 | 0.662 |
TPPrh | w | 0.611 | 0.158 | 0.003 | 3.576 | −0.618 | - | 0.914 | −0.066 | 0.227 | 0.680 | 0.718 |
T | d | 0.530 | 0.065 | - | - | - | - | 0.686 | 0.078 | 0.343 | 0.584 | 0.485 |
TP | d | 0.530 | 0.065 | - | −1.484 | - | - | 0.704 | 0.098 | 0.298 | 0.574 | 0.470 |
TPP | d | 0.530 | 0.065 | - | −3.552 | 0.156 | - | 0.750 | 0.096 | 0.239 | 0.555 | 0.480 |
TPC | d | 0.530 | 0.065 | - | 3.968 | - | −0.969 | 0.792 | 0.053 | 0.225 | 0.545 | 0.504 |
TPPC | d | 0.530 | 0.065 | - | −0.013 | −0.432 | −0.595 | 0.777 | 0.081 | 0.218 | 0.543 | 0.495 |
TPPrh | d | 0.530 | 0.126 | 0.003 | −0.011 | −0.432 | - | 0.844 | −0.043 | 0.251 | 0.516 | 0.578 |
References
- Ryan, M.; Law, B. Interpreting, measuring, and modeling soil respiration. Biogeochemistry 2005, 73, 3–27. [Google Scholar] [CrossRef]
- Le Quéré, C.; Moriarty, R.; Andrew, R.M.; Peters, G.P.; Ciais, P.; Friedlingstein, P.; Jones, S.D.; Sitch, S.; Tans, P.; Arneth, A.; et al. Global carbon budget 2014. Earth Syst. Sci. Data 2015, 7, 47–85. [Google Scholar] [CrossRef]
- Valentini, R.; Matteucci, G.; Dolman, A.J.; Schulze, E.D.; Rebmann, C.; Moors, E.J.; Granier, A.; Gross, P.; Jensen, N.O.; Pilegaard, K.; et al. Respiration as the main determinant of carbon balance in European forests. Nature 2000, 404, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Peltoniemi, M.; Thürig, E.; Ogle, S.; Palosuo, T.; Schrumpf, M.; Wutzler, T.; Butterbach-Bahl, K.; Chertov, O.; Komarov, A.; Mikhailov, A.; et al. Models in country scale carbon accounting of forest soils. Silva Fenn. 2007, 41, 575–602. [Google Scholar] [CrossRef]
- Lovett, G.M.; Cole, J.J.; Pace, M.L. Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation? Ecosystems 2006, 9, 152–155. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Woodwell, G.M.; Randerson, J.T.; Rastetter, E.B.; Lovett, G.M.; Baldocchi, D.D.; Clark, D.A.; Harmon, M.E.; Schimel, D.S.; Valentini, R.; et al. Reconciling Carbon-Cycle Concepts, Terminology, and Methods. Ecosystems 2006, 9, 1041–1050. [Google Scholar] [CrossRef]
- UNFCCC. National Inventory Submissions. 2006. Available online: http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/3734.php (accessed on 1 June 2023).
- Singh, B.K. (Ed.) Soil Carbon Storage: Modulators, Mechanisms and Modeling; Academic Press: London, UK, 2018. [Google Scholar]
- Kirschbaum, M.U.F.; Eamus, D.; Gifford, R.M.; Roxburgh, G.H.; Sands, P.J. Definitions of Some Ecological Terms Commonly Used in Carbon Accounting. In Net Ecosystem Exchange Workshop Proceedings CRC for Greenhouse Accounting; Kirschbaum, M.U.F., Mueller, R., Eds.; Canberra Act: Canbera, Australia, 2001; pp. 2–5. [Google Scholar]
- Aubinet, M.; Vesala, T.; Papale, D. (Eds.) Eddy Covariance; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Burba, G. Eddy Covariance Method for Scientific, Industrial, Agricultural, and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates; LI-COR Biosciences: Lincoln, NE, USA, 2013. [Google Scholar]
- Baldocchi, D.D. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—The state and future of the eddy covariance method. Glob. Chang. Biol. 2014, 20, 3600–3609. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Chu, H.; Reichstein, M. Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agric. For. Meteorol. 2017, 249, 520–533. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubient, M.; Berbiger, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Garnier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Kutsch, W.; Bahn, M.; Heinemeyer, A. Soil Carbon Dynamics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Vekuri, H.; Tuovinen, J.P.; Kulmala, L.; Papale, D.; Kolari, P.; Aurela, M.; Laurila, T.; Liski, J.; Lohila, A. A widely-used eddy covariance gap-filling method creates systematic bias in carbon balance estimates. Sci. Rep. 2023, 13, 1720. [Google Scholar] [CrossRef]
- Hanson, P.J.; Edwards, N.T.; Garten, C.T.; Andrews, J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 2000, 48, 115–146. [Google Scholar] [CrossRef]
- Lopes De Gerenyu, V.O.; Kurganova, I.N.; Rozanova, L.N.; Kudeyarov, V.N. Annual emission of carbon dioxide from soils of the southern taiga zone of Russia. Eurasian Soil Sci. 2001, 34, 931–944. [Google Scholar]
- Kurganova, I.; Lopes de Gerenyu, V.; Rozanova, L.; Sapronov, D.; Myakshina, T.; Kudeyarov, V. Annual and seasonal CO2 fluxes from Russian southern taiga soils. Tellus B Chem. Phys. Meteorol. 2003, 55, 338–344. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Romashkin, I.V.; Zhmurin, V.A.; Kudeyarov, V.N. Native and model assessment of Respiration of forest sod-podzolic soil in Prioksko-Terrasny Biospheric Reserve. Contemp. Probl. Ecol. 2020, 13, 813–824. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Khoroshaev, D.A.; Blagodatskaya, E. Effect of snowpack pattern on cold-season CO2 efflux from soils under temperate continental climate. Geoderma 2017, 304, 28–39. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Khoroshaev, D.A.; Myakshina, T.N.; Sapronov, D.V.; Zhmurin, V.A.; Kudeyarov, V.N. Analysis of the Long-Term Soil Respiration Dynamics in the Forest and Meadow Cenoses of the Prioksko-Terrasny Biosphere Reserve in the Perspective of Current Climate Trends. Eurasian Soil Sci. 2020, 53, 1421–1436. [Google Scholar] [CrossRef]
- Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valnetini, R.; Banza, J.; Caslas, P.; Cheng, Y.; Grunzweig, J.M.; Irvine, J.; et al. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob. Biogeochem. Cycles 2003, 17, 1104. [Google Scholar] [CrossRef]
- Raich, J.W.; Potter, C.S. Global patterns of carbon dioxide emission from soils. Glob. Biogeochem. Cycles 1995, 9, 23–36. [Google Scholar] [CrossRef]
- Hashimoto, S.; Carvalhais, N.; Ito, A.; Migliavacca, M.; Nishina, K.; Reichstein, M. Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 2015, 12, 4121–4132. [Google Scholar] [CrossRef]
- Pavelka, M.; Darenova, E.; Dusek, J. Modeling of soil CO2 efflux during water table fluctuation based on in situ measured data from a sedge-grass marsh. Appl. Ecol. Environ. Res. 2016, 14, 423–437. [Google Scholar] [CrossRef]
- Komarov, A.S.; Chertov, O.G.; Nadporozhskaya, M.A.; Priputina, I.V. Models of Forest Soil Organic Matter Dynamics; Kudeyarov, V.N., Ed.; Nauka: Moscow, Russia, 2007; 380p. (In Russian) [Google Scholar]
- Chertov, O.G.; Nadporozhskaya, M.A. Models of soil organic matter dynamics: Problems and perspectives. Comput. Res. Model. 2016, 8, 391–399. (In Russian) [Google Scholar] [CrossRef]
- Priputina, I.V.; Bykhovets, S.S.; Frolov, P.V.; Chertov, O.G.; Kurganova, I.N.; Lopes de Gerenyu, V.O.; Sapronov, D.V.; Myakshina, T.N. Application of Mathematical Models ROMUL and Romul_Hum for Estimating CO2 Emissions and Dynamics of Organic Matter in Albic Luvisol under Deciduous Forest in Southern Moscow Region. Eurasian Soil Sci. 2020, 53, 1480–1491. [Google Scholar] [CrossRef]
- Lopes De Gerenyu, V.O.; Kurganova, I.N.; Rozanova, L.N.; Kudeyarov, V.N. Effect of temperature and moisture on CO2 evolution rate of cultivated Phaeozem: Analyses of long-term field experiment. Plant Soil Environ. 2005, 51, 213–219. [Google Scholar] [CrossRef]
- Juhász, C.; Huzsvai, L.; Kovács, E.; Kovács, G.; Tuba, G.; Sinka, L.; Zsembeli, J. Carbon Dioxide Efflux of Bare Soil as a Function of Soil Temperature and Moisture Content under Weather Conditions of Warm, Temperate, Dry Climate Zone. Agronomy 2022, 12, 3050. [Google Scholar] [CrossRef]
- Howard, P.J.A.; Howard, D.M. Respiration of decomposing litter in relation to temperature and moisture. Oikos 1979, 33, 457465. [Google Scholar] [CrossRef]
- O’Connell, A.M. Microbial Decomposition (Respiration) of Litter in Eucalypt Forests of South-Western Australia: An Empirical Model Based on Laboratory Incubations. Soil Biol. Biochem. 1990, 22, 153–160. [Google Scholar] [CrossRef]
- Orchard, V.A.; Cook, F.J. Relationship between soil respiration and soil moisture. Soil Biol. Biochem. 1983, 15, 447–453. [Google Scholar] [CrossRef]
- Jarvis, P.; Rey, A.; Petsikos, C.; Wingate, L.; Rayment, M.; Pereira, J.; Banza, J.; David, J.; Miglietta, F.; Borghetti, M.; et al. Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: The “Birch effect”. Tree Physiol. 2007, 27, 929–940. [Google Scholar] [CrossRef]
- Maier, M.; Schack-Kirchner, H.; Hildebrand, E.E.; Holst, J. Pore-space CO2 dynamics in a deep, well-aerated soil. Eur. J. Soil Sci. 2010, 61, 877–887. [Google Scholar] [CrossRef]
- Chamindu Deepagoda, T.K.K.; Elberling, B. Characterization of diffusivity-based oxygen transport in Arctic organic soil. Eur. J. Soil Sci. 2015, 66, 983–991. [Google Scholar] [CrossRef]
- Vygodskaya, N.N.; Varlagin, A.V.; Kurbatova, Y.A.; Ol’chev, A.V.; Panferov, O.I.; Tatarinov, F.A.; Shalukhina, N.V. Response of taiga ecosystems to extreme weather conditions and climate anomalies. Dokl. Biol. Sci. 2009, 429, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Yuste, J.C.; Janssens, I.A.; Carrara, A.; Meiresonne, L.; Ceulemans, R. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol. 2003, 23, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Kurganova, I.N.; Lopes De Gerenyu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Savin, I.Y.; Shorohova, E.V. Carbon balance in forest ecosystems of southern part of Moscow region under a rising aridity of climate. Contemp. Probl. Ecol. 2017, 10, 748–760. [Google Scholar] [CrossRef]
- Karelin, D.V.; Zamolodchikov, D.G.; Isaev, A.S. Unconsidered sporadic sources of carbon dioxide emission from soils in taiga forests. Dokl. Biol. Sci. 2017, 475, 165–168. [Google Scholar] [CrossRef]
- Sukhoveeva, O.E.; Karelin, D.V. Assessment of Soil Respiration with the Raich−Hashimoto Model: Parameterisation and Prediction. Izvestia RAN. Ser. Geogr. 2022, 86, 519–527. [Google Scholar]
- Kayranli, B.; Scholz, M.; Mustafa, A.; Hedmark, Å. Carbon Storage and Fluxes within Freshwater Wetlands: A Critical Review. Wetlands 2010, 30, 111–124. [Google Scholar] [CrossRef]
- Makhnykina, A.V.; Polosukhina, D.A.; Kolosov, R.A.; Prokushkin, A.S. Seasonal Dynamics of CO2 Emission from the Surface of the Raised Bog in Central Siberia. Geosph. Res. 2021, 4, 85–93. (In Russian) [Google Scholar] [CrossRef]
- Xu, X.; Inubushi, K.; Sakamoto, K. Effect of vegetations and temperature on microbial biomass carbon and metabolic quotients of temperate volcanic forest soils. Geoderma 2006, 136, 310–319. [Google Scholar] [CrossRef]
- Del Grosso, S.; Parton, W.; Mosier, A.; Holland, E.A. Modeling soil CO2 emissions from ecosystems. Biogeochemistry 2005, 73, 71–91. [Google Scholar] [CrossRef]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- Chen, S.; Huang, Y.; Zou, J.; Shen, Q.; Hu, Z.; Qin, Y.; Chen, H.; Pan, G. Modeling interannual variability of global soil respiration from climate and soil properties. Agric. For. Meteorol. 2010, 150, 590–605. [Google Scholar] [CrossRef]
- Ilyasov, D.V.; Molchanov, A.G.; Glagolev, M.V.; Suvorov, G.G.; Sirin, A.A. Modelling of carbon dioxide net ecosystem exchange of hayfield on drained peat soil: Land use scenario analysis. Comput. Res. Model. 2020, 12, 1427–1449. (In Russian) [Google Scholar] [CrossRef]
- WRB 2014. 2015. Available online: https://www.fao.org/soils-portal/data-hub/soil-classification/world-reference-base/en/ (accessed on 1 June 2023).
- Reddy, K.R.; DeLaune, R.D. Biogeochemistry of Wetlands: Science and Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Brown, R.B. Soil Texture; Agronomy Fact Sheet Series: Fact Sheet SL-29; Department of Crop and Soil Sciences, Cornell University: Ithaca, NY, USA, 2007. [Google Scholar]
- Kurganova, I.; Lopes de Gerenyu, V.; Khoroshaev, D.; Myakshina, T.; Sapronov, D.; Zhmurin, V. Temperature Sensitivity of Soil Respiration in Two Temperate Forest Ecosystems: The Synthesis of a 24-Year Continuous Observation. Forests 2022, 13, 1374. [Google Scholar] [CrossRef]
- Liu, Y.; Shang, Q.; Wang, Z.; Zhang, K.; Zhao, C. Spatial Heterogeneity of Soil Respiration Response to Precipitation Pulse in A Temperate Mixed Forest in Central China. J. Plant Anim. Ecol. 2017, 1, 1–13. [Google Scholar] [CrossRef]
- Wu, Z.; Dijkstra, P.; Koch, G.W.; Penuelas, J.; Hungate, B.A. Responses of terrestrial ecosystems to temperature and 696 precipitation change: A meta-analysis of experimental manipulation. Glob. Chang. Biol 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Deng, Q.; Hui, D.; Zhang, D.; Zhou, G.; Liu, J.; Liu, S.; Chu, G.; Li, J. Effects of precipitation increase on soil respiration: A 698 three-year field experiment in subtropical forests in China. PLoS ONE 2012, 7, e41493. [Google Scholar] [CrossRef]
- Schindlbacher, A.; Wunderlich, S.; Borken, W.; Kitzler, B.; Zechmeister-Boltenstern, S.; Jandl, R. Soil respiration under climate 656 change: Prolonged summer drought offsets soil warming effects. Glob. Chang. Biol. 2012, 18, 2270–2279. [Google Scholar] [CrossRef]
- Lundquist, E.J.; Scow, K.M.; Jackson, L.E.; Uesugi, S.L.; Johnson, C.R. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biol. Biochem. 1999, 12, 1661–1675. [Google Scholar] [CrossRef]
- Xu, X.; Luo, X. Effect of wetting intensity on soil GHG fluxes and microbial biomass under a temperate forest floor during dry season. Geoderma 2012, 170, 118–126. [Google Scholar] [CrossRef]
- Monteith, J.L.; Unsworth, M.H. Chapter 13—Steady-State Heat Balance: (i) Water Surfaces, Soil, and Vegetation. In Principles of Environmental Physics, 4th ed.; Monteith, J.L., Unsworth, M.H., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 217–247. [Google Scholar]
- Cuxart, J.; Boone, A.A. Evapotranspiration over Land from a Boundary-Layer Meteorology Perspective. Bound.-Layer Meteorol. 2020, 177, 427–459. [Google Scholar] [CrossRef]
- Karelin, D.V.; Zamolodchikov, D.G.; Shilkin, A.V.; Popov, S. The effect of tree mortality on CO2 fluxes in an old-growth spruce forest. Eur. J. Forest Res. 2021, 140, 287–305. [Google Scholar] [CrossRef]
Entic Podzol | Haplic Luvisol | ||
---|---|---|---|
Forest | Forest zone | coniferous-deciduous | Deciduous |
Forest type | mature mixed with pine, linden, aspen, birch, and oak, the age of which reaches 90–120 years 2 | secondary deciduous with aspen, linden, and maple of an average tree age of 50–70 years 2 | |
Soil | Texture | sandy-loamy 3 | loamy 3 |
granulometry (sand:silt:clay) | 11.6:1.0:1.3 1 | 4:4:2 2 | |
pHKCl | 3.67 1 | 5.56 2 | |
C/N | 15.3 1 | 12.8 2 | |
SOC storage [kg C/m2] | 1.23 (0–20 cm) 4 | 5.02 (0–20 cm) 4 | |
Water-holding capacity [%] | 40.5 2 | 57.5 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kivalov, S.; Lopes de Gerenyu, V.; Khoroshaev, D.; Myakshina, T.; Sapronov, D.; Ivashchenko, K.; Kurganova, I. Soil Temperature, Organic-Carbon Storage, and Water-Holding Ability Should Be Accounted for the Empirical Soil Respiration Model Selection in Two Forest Ecosystems. Forests 2023, 14, 1568. https://doi.org/10.3390/f14081568
Kivalov S, Lopes de Gerenyu V, Khoroshaev D, Myakshina T, Sapronov D, Ivashchenko K, Kurganova I. Soil Temperature, Organic-Carbon Storage, and Water-Holding Ability Should Be Accounted for the Empirical Soil Respiration Model Selection in Two Forest Ecosystems. Forests. 2023; 14(8):1568. https://doi.org/10.3390/f14081568
Chicago/Turabian StyleKivalov, Sergey, Valentin Lopes de Gerenyu, Dmitry Khoroshaev, Tatiana Myakshina, Dmitry Sapronov, Kristina Ivashchenko, and Irina Kurganova. 2023. "Soil Temperature, Organic-Carbon Storage, and Water-Holding Ability Should Be Accounted for the Empirical Soil Respiration Model Selection in Two Forest Ecosystems" Forests 14, no. 8: 1568. https://doi.org/10.3390/f14081568
APA StyleKivalov, S., Lopes de Gerenyu, V., Khoroshaev, D., Myakshina, T., Sapronov, D., Ivashchenko, K., & Kurganova, I. (2023). Soil Temperature, Organic-Carbon Storage, and Water-Holding Ability Should Be Accounted for the Empirical Soil Respiration Model Selection in Two Forest Ecosystems. Forests, 14(8), 1568. https://doi.org/10.3390/f14081568