Landscape Features Impact the Spatial Heterogeneity of Visitation Density within a Comprehensive Park: What Are the Seasonal and Diurnal Variations?
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Characterizing Landscape Feature
2.3. Measuring Visitation Density
2.4. Statistical Analysis
3. Results
3.1. Spatiotemporal Variations in the Visitation Density
3.2. Characteristics of Landscape Features
3.3. Impacts of Landscape Features on Visitation Density
4. Discussion
4.1. Landscape Features in the Activity Zone Impact Visitation Density
4.1.1. Utilization Ability Impacts Visitation Density
4.1.2. Shading Degree Impacts Visitation Density
4.1.3. Facilities Impact Visitation Density
4.2. The Surrounding Environment of the Activity Zone Impacts Visitation Density
4.3. Management Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayala-Azcárraga, C.; Diaz, D.; Zambrano, L. Characteristics of urban parks and their relation to user well-being. Landsc. Urban Plan. 2019, 189, 27–35. [Google Scholar] [CrossRef]
- Du, H.; Zhou, F.; Cai, Y.; Li, C.; Xu, Y. Research on public health and well-being associated to the vegetation configuration of urban green space, a case study of Shanghai, China. Urban For. Urban Green. 2021, 59, 126990. [Google Scholar] [CrossRef]
- Basu, S.; Nagendra, H. Perceptions of park visitors on access to urban parks and benefits of green spaces. Urban For. Urban Green. 2021, 57, 126959. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, J.; Ma, L.; Huang, C. Factors affecting the use of urban green spaces for physical activities: Views of young urban residents in Beijing. Urban For. Urban Green. 2015, 14, 851–857. [Google Scholar] [CrossRef]
- De Jalón, S.G.; Chiabai, A.; Quiroga, S.; Suárez, C.; Ščasný, M.; Máca, V.; Zvěřinová, I.; Marques, S.; Craveiro, D.; Taylor, T. The influence of urban greenspaces on people’s physical activity: A population-based study in Spain. Landsc. Urban Plan. 2021, 215, 104229. [Google Scholar] [CrossRef]
- Veitch, J.; Ball, K.; Rivera, E.; Loh, V.; Deforche, B.; Best, K.; Timperio, A. What entices older adults to parks? Identification of park features that encourage park visitation, physical activity, and social interaction. Landsc. Urban Plan. 2022, 217, 104254. [Google Scholar] [CrossRef]
- Veitch, J.; Ball, K.; Flowers, E.; Deforche, B.; Timperio, A. Children’s ratings of park features that encourage park visitation, physical activity and social interaction. Urban For. Urban Green. 2021, 58, 126963. [Google Scholar] [CrossRef]
- Kong, L.; Liu, Z.; Pan, X.; Wang, Y.; Guo, X.; Wu, J. How do different types and landscape attributes of urban parks affect visitors’ positive emotions? Landsc. Urban Plan. 2022, 226, 104482. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Qin, B. Quantity or quality? Exploring the association between public open space and mental health in urban China. Landsc. Urban Plan. 2021, 213, 104128. [Google Scholar] [CrossRef]
- Akpinar, A.; Barbosa-Leiker, C.; Brooks, K.R. Does green space matter? Exploring relationships between green space type and health indicators. Urban For. Urban Green. 2016, 20, 407–418. [Google Scholar] [CrossRef]
- Veitch, J.; Carver, A.; Abbott, G.; Giles-Corti, B.; Timperio, A.; Salmon, J. How active are people in metropolitan parks? An observational study of park visitation in Australia. BMC Public Health 2015, 15, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto, L.; Ferreira, C.S.S.; Pereira, P. Environmental and socioeconomic factors influencing the use of urban green spaces in Coimbra (Portugal). Sci. Total Environ. 2021, 792, 148293. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhou, W. Recreational visits to urban parks and factors affecting park visits: Evidence from geotagged social media data. Landsc. Urban Plan. 2018, 180, 27–35. [Google Scholar] [CrossRef]
- He, B.; Hu, J.; Liu, K.; Xue, J.; Ning, L.; Fan, J. Exploring Park Visit Variability Using Cell Phone Data in Shenzhen, China. Remote Sens. 2022, 14, 499. [Google Scholar] [CrossRef]
- Li, F.; Yao, N.; Liu, D.; Liu, W.; Sun, Y.; Cheng, W.; Li, X.; Wang, X.; Zhao, Y. Explore the recreational service of large urban parks and its influential factors in city clusters—Experiments from 11 cities in the Beijing-Tianjin-Hebei region. J. Clean. Prod. 2021, 314, 128261. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, Y.; Yang, H.; Yang, L.; Gou, Z. Impact of the quality and quantity of eye-level greenery on park usage. Urban For. Urban Green. 2021, 60, 127061. [Google Scholar] [CrossRef]
- Feng, X.; Toms, R.; Astell-Burt, T. Association between green space, outdoor leisure time and physical activity. Urban For. Urban Green. 2021, 66, 127349. [Google Scholar] [CrossRef]
- Wang, M.; Qiu, M.; Chen, M.; Zhang, Y.; Zhang, S.; Wang, L. How does urban green space feature influence physical activity diversity in high-density built environment? An on-site observational study. Urban For. Urban Green. 2021, 62, 127129. [Google Scholar] [CrossRef]
- Chen, D.; Long, X.; Li, Z.; Liao, C.; Xie, C.; Che, S. Exploring the Determinants of Urban Green Space Utilization Based on Microblog Check-In Data in Shanghai, China. Forests 2021, 12, 1783. [Google Scholar] [CrossRef]
- Veitch, J.; Salmon, J.; Deforche, B.; Ghekiere, A.; Van Cauwenberg, J.; Bangay, S.; Timperio, A. Park attributes that encourage park visitation among adolescents: A conjoint analysis. Landsc. Urban Plan. 2017, 161, 52–58. [Google Scholar] [CrossRef]
- Grilli, G.; Mohan, G.; Curtis, J. Public park attributes, park visits, and associated health status. Landsc. Urban Plan. 2020, 199, 103814. [Google Scholar] [CrossRef]
- Talal, M.L.; Santelmann, M.V. Visitor access, use, and desired improvements in urban parks. Urban For. Urban Green. 2021, 63, 127216. [Google Scholar] [CrossRef]
- Donahue, M.L.; Keeler, B.L.; Wood, S.A.; Fisher, D.M.; Hamstead, Z.A.; McPhearson, T. Using social media to understand drivers of urban park visitation in the Twin Cities, MN. Landsc. Urban Plan. 2018, 175, 1–10. [Google Scholar] [CrossRef]
- Chuang, I.-T.; Benita, F.; Tunçer, B. Effects of urban park spatial characteristics on visitor density and diversity: A geolocated social media approach. Landsc. Urban Plan. 2022, 226, 104514. [Google Scholar] [CrossRef]
- Schipperijn, J.; Stigsdotter, U.K.; Randrup, T.B.; Troelsen, J. Influences on the use of urban green space—A case study in Odense, Denmark. Urban For. Urban Green. 2010, 9, 25–32. [Google Scholar] [CrossRef]
- Schipperijn, J.; Bentsen, P.; Troelsen, J.; Toftager, M.; Stigsdotter, U.K. Associations between physical activity and characteristics of urban green space. Urban For. Urban Green. 2013, 12, 109–116. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, T.; Liu, W. Increasing the use of large-scale public open spaces: A case study of the North Central Axis Square in Shenzhen, China. Habitat Int. 2016, 53, 66–77. [Google Scholar] [CrossRef]
- Mu, B.; Liu, C.; Mu, T.; Xu, X.; Tian, G.; Zhang, Y.; Kim, G. Spatiotemporal fluctuations in urban park spatial vitality determined by on-site observation and behavior mapping: A case study of three parks in Zhengzhou City, China. Urban For. Urban Green. 2021, 64, 127246. [Google Scholar] [CrossRef]
- Niu, J.; Xiong, J.; Qin, H.; Hu, J.; Deng, J.; Han, G.; Yan, J. Influence of thermal comfort of green spaces on physical activity: Empirical study in an urban park in Chongqing, China. Build. Environ. 2022, 219, 109168. [Google Scholar] [CrossRef]
- Hamstead, Z.A.; Fisher, D.; Ilieva, R.T.; Wood, S.A.; McPhearson, T.; Kremer, P. Geolocated social media as a rapid indicator of park visitation and equitable park access. Comput. Environ. Urban Syst. 2018, 72, 38–50. [Google Scholar] [CrossRef]
- Zhai, Y.; Baran, P.K. Urban park pathway design characteristics and senior walking behavior. Urban For. Urban Green. 2017, 21, 60–73. [Google Scholar] [CrossRef]
- Fan, Z.; Duan, J.; Lu, Y.; Zou, W.; Lan, W. A geographical detector study on factors influencing urban park use in Nanjing, China. Urban For. Urban Green. 2021, 59, 126996. [Google Scholar] [CrossRef]
- Lyu, F.; Zhang, L. Using multi-source big data to understand the factors affecting urban park use in Wuhan. Urban For. Urban Green. 2019, 43, 126367. [Google Scholar] [CrossRef]
- Lin, T.-P.; Tsai, K.-T.; Liao, C.-C.; Huang, Y.-C. Effects of thermal comfort and adaptation on park attendance regarding different shading levels and activity types. Build. Environ. 2013, 59, 599–611. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, C.; Zhuo, Y.; Xu, L.; Jiang, Y. Outdoor thermal environments and activities in open space: An experiment study in humid subtropical climates. Build. Environ. 2016, 103, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wen, Y.; Zhang, L.; Xiang, W.-N. Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai. Build. Environ. 2015, 94, 644–653. [Google Scholar] [CrossRef]
- Wei, D.; Yang, L.; Bao, Z.; Lu, Y.; Yang, H. Variations in outdoor thermal comfort in an urban park in the hot-summer and cold-winter region of China. Sustain. Cities Soc. 2022, 77, 103535. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A.; Hwang, R.-L. Shading effect on long-term outdoor thermal comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Saelens, B.E.; Frank, L.D.; Auffrey, C.; Whitaker, R.C.; Burdette, H.L.; Colabianchi, N. Measuring Physical Environments of Parks and Playgrounds: EAPRS Instrument Development and Inter-Rater Reliability. J. Phys. Act. Health 2006, 3, S190–S207. [Google Scholar] [CrossRef] [Green Version]
- Kaczynski, A.T.; Stanis, S.A.; Besenyi, G.M. Development and testing of a community stakeholder park audit tool. Am. J. Prev. Med. 2012, 42, 242–249. [Google Scholar] [CrossRef]
- Lange, A.; Giles-Corti, B.; Broomhall, M.J.P. Quality of Public Open Space Tool (POST): Observers’ Manual; School of Population Health, University of Western Australia: Perth, Australia, 2004. [Google Scholar]
- Lee, R.E.; Booth, K.M.; Reese-Smith, J.Y.; Regan, G.; Howard, H.H. The Physical Activity Resource Assessment (PARA) instrument: Evaluating features, amenities and incivilities of physical activity resources in urban neighborhoods. Int. J. Behav. Nutr. Phys. Act. 2005, 2, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedimo-Rung, A.L.; Gustat, J.; Tompkins, B.J.; Rice, J.; Thomson, J. Development of a Direct Observation Instrument to Measure Environmental Characteristics of Parks for Physical Activity. J. Phys. Act. Health 2006, 3, S176–S189. [Google Scholar] [CrossRef] [PubMed]
- Rivera, E.; Timperio, A.; Loh, V.H.Y.; Deforche, B.; Veitch, J. Adolescents’ perceptions of park characteristics that discourage park visitation. Urban For. Urban Green. 2022, 74, 127669. [Google Scholar] [CrossRef]
- Duan, Y.; Wagner, P.; Zhang, R.; Wulff, H.; Brehm, W. Physical activity areas in urban parks and their use by the elderly from two cities in China and Germany. Landsc. Urban Plan. 2018, 178, 261–269. [Google Scholar] [CrossRef]
- Yang, F.; Ignatieva, M.; Larsson, A.; Zhang, S.; Ni, N. Public perceptions and preferences regarding lawns and their alternatives in China: A case study of Xi’an. Urban For. Urban Green. 2019, 46, 126478. [Google Scholar] [CrossRef]
- White, M.; Smith, A.; Humphryes, K.; Pahl, S.; Snelling, D.; Depledge, M. Blue space: The importance of water for preference, affect, and restorativeness ratings of natural and built scenes. J. Environ. Psychol. 2010, 30, 482–493. [Google Scholar] [CrossRef]
- Hou, Y.; Ding, W.; Liu, C.; Li, K.; Cui, H.; Liu, B.; Chen, W. Influences of impervious surfaces on ecological risks and controlling strategies in rapidly urbanizing regions. Sci. Total Environ. 2022, 825, 153823. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Jiang, B.; Wen, Z.; Yang, N.; Li, L. Tree survival and growth are impacted by increased surface temperature on paved land. Landsc. Urban Plan. 2017, 162, 68–79. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, H.; Fan, S.; Hao, P.; Dong, L. A zoning-based solution for hierarchical forest patch mosaic in urban parks. Urban For. Urban Green. 2021, 65, 127352. [Google Scholar] [CrossRef]
No | Variable | Categories | Number of Activity Zone | % | Reference Measurement Tool |
---|---|---|---|---|---|
1 | Ground cover: record ground surface material. | Impervious surface | 84 | 77.1 | EAPRS |
Grass | 9 | 8.2 | |||
Bare soil | 16 | 14.7 | |||
2 | Shading degree: ratio of shaded area by trees and pavilions to the total area. | Less than 0.3 | 26 | 23.9 | EAPRS |
0.3 to 0.7 | 30 | 27.5 | |||
More than 0.7 | 53 | 48.6 | |||
3 | Tree cover ratio: percent of tree cover to the total area of the activity zone. | Less than 30% | 31 | 28.4 | EAPRS |
30% to 70% | 39 | 35.8 | |||
More than 70% | 39 | 35.8 | |||
4 | Number of trees: number of trees. | No trees | 59 | 54.1 | NA |
1–10 trees | 32 | 29.4 | |||
10–30 trees | 13 | 11.9 | |||
More than 30 trees | 5 | 4.6 | |||
5 | Presence of benches: number of benches (eighty centimeters is counted as one seat). | No benches | 20 | 18.3 | EAPRS |
1–8 benches | 27 | 24.8 | |||
8 above benches | 62 | 56.9 | |||
6 | Presence of tables: whether there are tables. | No | 71 | 65.1 | EAPRS |
Yes | 38 | 34.9 | |||
7 | Fitness facilities: whether there are fitness facilities. | No | 108 | 99.1 | CPAT |
Yes | 1 | 0.9 | |||
8 | Court: record whether there is a court. | No | 101 | 92.7 | PARA |
Yes | 8 | 7.3 | |||
9 | Presence of pavilion: whether there are pavilions. | No | 82 | 75.2 | EAPRS |
Yes | 27 | 24.8 | |||
10 | Presence of light devices: whether there are artificial lighting devices. | No (Summer) | 76 | 69.7 | BRAT-DO |
No (Winter) | 73 | 67.0 | |||
Yes (Summer) | 33 | 30.3 | |||
No (Winter) | 36 | 33.0 | |||
11 | Visual connection with water: whether the water surface (e.g., pond, lake) can be seen in the activity zone. | No | 54 | 49.5 | POST |
Yes | 55 | 50.5 | |||
12 | Water adjacent: weather there is water surface within a 50 m buffer. | No | 76 | 69.7 | CPAT |
Yes | 33 | 30.3 | |||
13 | Connected pathway: how many pathways connected to the activity zone? | 1 | 38 | 34.9 | CPAT |
2 | 45 | 41.3 | |||
3 and above | 26 | 23.9 | |||
14 | Distance to stores: nearest walking distance to the store. | Less than 300 m (Summer) | 27 | 24.8 | EAPRS |
Less than 300 m (Winter) | 36 | 33 | |||
300 to 500 m (Summer) | 24 | 22 | |||
300 to 500 m (Winter) | 23 | 21.1 | |||
Higher than 300 m (Summer) | 58 | 53.2 | |||
300 to 500 m (Winter) | 50 | 45.9 | |||
15 | Distance to park entrances: nearest walking distance to the nearest park entrance. | Less than 300 m | 43 | 39.4 | EAPRS |
300 to 500 m | 45 | 41.3 | |||
More than 500 m | 21 | 19.3 | |||
16 | Distance to toilets: nearest walking distance to the nearest toilet. | Less than 300 m (Summer) | 91 | 83.5 | CPAT |
Less than 300 m (Winter) | 94 | 86.2 | |||
300 to 500 m | 13 | 11.9 | |||
More than 500 m (Summer) | 5 | 4.6 | |||
More than 500 m (Winter) | 2 | 1.8 |
Date | Maximum Temperature (°C) | Minimum Temperature (°C) | Mean Temperature (°C) | Wind Level and Direction |
---|---|---|---|---|
29 July 2021 | 36 | 26 | 31 | North wind level 2 |
30 July 2021 | 36 | 27 | 31.5 | West wind level 1 |
31 July 2021 | 36 | 27 | 31.5 | Southeast wind level 2 |
1 August 2021 | 40 | 26 | 33 | Northeasterly wind level 1 |
11 January 2022 | 10 | 0 | 5 | Southeast wind level 1 |
12 January 2022 | 12 | 5 | 8.5 | North wind level 0 |
13 January 2022 | 10 | 4 | 7 | Northwesterly level 1 |
Periods | Median | Mean | Standard Deviation | Minimum | Maximum | Moran’s I |
---|---|---|---|---|---|---|
Summer daytime | 2353 | 4388 | 7641 | 15 | 62,083 | 0.0128 |
Winter daytime | 2963 | 5902 | 10,037 | 0 | 83,333 | −0.0051 |
Summer nighttime | 248 | 758 | 1808 | 0 | 17,083 | 0.0128 |
Winter nighttime | 67 | 410 | 763 | 0 | 6337 | 0.0055 |
No | Day | Night | ||||||
---|---|---|---|---|---|---|---|---|
Test Statistic | df | p Value | Test Statistic | df | p Value | |||
1 | Ground cover | Sum. | 14.656 | 2 | 0.001 ** | 18.218 | 2 | <0.001 *** |
Win. | 20.748 | 2 | <0.001 *** | 20.887 | 2 | <0.001 *** | ||
2 | Shading degree | Sum. | 7.079 | 2 | 0.029 * | 12.968 | 2 | 0.002 ** |
Win. | 3.260 | 2 | 0.196 | 12.593 | 2 | 0.002 ** | ||
3 | Tree cover ratio | Sum. | 3.541 | 2 | 0.170 | 18.995 | 2 | <0.001 *** |
Win. | 11.398 | 2 | 0.003 ** | 23.157 | 2 | <0.001 *** | ||
4 | Number of trees | Sum. | 15.159 | 3 | 0.002 ** | 6.410 | 3 | 0.093 |
Win. | 20.557 | 3 | <0.001 *** | 6.012 | 3 | 0.111 | ||
5 | Presence of benches | Sum. | 12.700 | 2 | 0.002 ** | 1.085 | 2 | 0.581 |
Win. | 7.191 | 2 | 0.027 * | 0.774 | 2 | 0.679 | ||
6 | Presence of tables | Sum. | 0.237 | 1 | 0.627 | 7.574 | 1 | 0.006 ** |
Win. | 1.930 | 1 | 0.165 | 24.786 | 1 | <0.001 *** | ||
7 | Presence of fitness facilities | Sum. | 0.445 | 1 | 0.504 | 1.404 | 1 | 0.236 |
Win. | 0.365 | 1 | 0.546 | 1.722 | 1 | 0.189 | ||
8 | Presence of court | Sum. | 0.439 | 1 | 0.508 | 1.135 | 1 | 0.287 |
Win. | 0.261 | 1 | 0.609 | 1.805 | 1 | 0.179 | ||
9 | Presence of pavilion | Sum. | 20.882 | 1 | <0.001 *** | 0.919 | 1 | 0.338 |
Win. | 7.649 | 1 | 0.006 ** | 2.217 | 1 | 0.136 | ||
10 | Presence of light devices | Sum. | 0.141 | 1 | 0.707 | 19.709 | 1 | <0.001 *** |
Win. | 3.185 | 1 | 0.074 | 34.213 | 1 | <0.001 *** | ||
11 | Visual connection to water | Sum. | 6.175 | 1 | 0.013 * | 14.222 | 1 | <0.001 *** |
Win. | 6.159 | 1 | 0.013 * | 12.671 | 1 | <0.001 *** | ||
12 | Water adjacent | Sum. | 0.113 | 1 | 0.737 | 0.354 | 1 | 0.552 |
Win. | 0.031 | 1 | 0.861 | 0.968 | 1 | 0.325 | ||
13 | Connected pathway | Sum. | 6.972 | 2 | 0.031 * | 7.001 | 2 | 0.030 * |
Win. | 2.889 | 2 | 0.236 | 14.506 | 2 | 0.001 ** | ||
14 | Distance to stores | Sum. | 11.677 | 2 | 0.003 ** | 4.017 | 2 | 0.134 |
Win. | 5.721 | 2 | 0.057 | 10.915 | 2 | 0.004 ** | ||
15 | Distance to park entrances | Sum. | 8.612 | 2 | 0.013 * | 12.193 | 2 | 0.002 ** |
Win. | 9.987 | 2 | 0.007 ** | 17.685 | 2 | <0.001 *** | ||
16 | Distance to toilets | Sum. | 6.730 | 2 | 0.035 * | 7.143 | 2 | 0.028 * |
Win. | 1.180 | 2 | 0.554 | 5.034 | 2 | 0.081 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Gan, D.; Cai, Z.; Xiao, M.; Shu, D.; Wu, C.; Yu, X.; Li, X. Landscape Features Impact the Spatial Heterogeneity of Visitation Density within a Comprehensive Park: What Are the Seasonal and Diurnal Variations? Forests 2023, 14, 1627. https://doi.org/10.3390/f14081627
Peng Y, Gan D, Cai Z, Xiao M, Shu D, Wu C, Yu X, Li X. Landscape Features Impact the Spatial Heterogeneity of Visitation Density within a Comprehensive Park: What Are the Seasonal and Diurnal Variations? Forests. 2023; 14(8):1627. https://doi.org/10.3390/f14081627
Chicago/Turabian StylePeng, Yulin, Dexin Gan, Zhengwu Cai, Mingxi Xiao, Di Shu, Can Wu, Xiaoying Yu, and Xiaoma Li. 2023. "Landscape Features Impact the Spatial Heterogeneity of Visitation Density within a Comprehensive Park: What Are the Seasonal and Diurnal Variations?" Forests 14, no. 8: 1627. https://doi.org/10.3390/f14081627
APA StylePeng, Y., Gan, D., Cai, Z., Xiao, M., Shu, D., Wu, C., Yu, X., & Li, X. (2023). Landscape Features Impact the Spatial Heterogeneity of Visitation Density within a Comprehensive Park: What Are the Seasonal and Diurnal Variations? Forests, 14(8), 1627. https://doi.org/10.3390/f14081627