Adaptive Strategies Employed by Clonal Plants in Heterogeneous Patches
Abstract
:1. Introduction
2. Phenotypic Plasticity of Clonal Plants in Response to Water Heterogeneity
3. Physiological Integration in Clonal Plants in Response to Water Heterogeneity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cornelissen, J.H.C.; Song, Y.; Yu, F.; Dong, M. Plant traits and ecosystem effects of clonality: A new research agenda. Ann. Bot. 2014, 114, 369–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douhovnikoff, V.; Dodd, R.S. Epigenetics: A potential mechanism for clonal plant success. Plant Ecol. 2015, 216, 227–233. [Google Scholar] [CrossRef]
- Klimeová, J.; Ottaviani, G.; Charles-Dominique, T.; Campetella, G.; Canullo, R.; Chelli, S.; Janovský, Z.; Lubbe, F.C.; Martínková, J.; Herben, T. Incorporating clonality into the plant ecology research agenda. Trends Plant Sci. 2021, 12, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Wang, Y.; Huang, D. Introduction to clonal genetics of plant populations-the task, nature, origin and development. Acta Ecol. Sin. 2004, 24, 865–867. [Google Scholar]
- Dong, M.; Yu, F.; Alpert, P. Ecological consequences of plant clonality preface. Ann. Bot. 2014, 114, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Liu, J.; Dong, M. ; Liu, J.; Dong, M. Ecological consequences of clonal integration in plants. Front. Plant Sci. 2016, 7, 770–781. [Google Scholar]
- Witte, L.C.; Stöcklin, J. Longevity of clonal plants: Why it matters and how to measure it. Ann. Bot. 2010, 106, 859–870. [Google Scholar] [CrossRef]
- Eriksson, O. Dynamics of genets in clonal plants. Trends Ecol. Evol. 1993, 8, 313–316. [Google Scholar] [CrossRef]
- Oborny, B.; Mony, C.; Herben, T. From virtual plants to real communities: A review of modelling clonal growth. Mol. Ecol. 2012, 234, 3–19. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Xue, G.; Peng, Y.; Song, H. Effect of clonal integration on nitrogen cycling in rhizosphere of rhizomatous clonal plant, Phyllostachys bissetii, under heterogeneous light. Sci. Total Environ. 2018, 628, 594–602. [Google Scholar] [CrossRef]
- Bittebiere, A.K.; Benot, M.L.; Mony, C. Clonality as a key but overlooked driver of biotic interactions in plants. Perspect. Plant Ecol. 2020, 43, 125510. [Google Scholar] [CrossRef]
- Chen, D.; Ali, A.; Yong, X.; Lin, C.; Niu, X.; Cai, A.; Dong, B.; Zhou, Z.; Wang, Y.; Yu, F. A multi-species comparison of selective placement patterns of ramets in invasive alien and native clonal plants to light, soil nutrient and water heterogeneity. Sci. Total Environ. 2019, 657, 1568–1577. [Google Scholar] [CrossRef]
- Dong, M. Plant clone growth in heterogeneous habitats: Risk spreading. Acta Phytoecol. Sin. 1996, 20, 543–548. [Google Scholar]
- Dong, M. Clonal growth in plants in relation to resource heterogeneity foraging behavior. Acta Bot. Sin. 1996, 38, 828–835. [Google Scholar]
- Chen, Y.; Dong, M. Relative importance of clonal and non-clonal plants in the landscape dynamics of Mu us Sandy land. Acta Phytoecol. Sin. 2002, 26, 377–380. [Google Scholar]
- Magyar, G.; Kun, Á.; Oborny, B.; Stuefer, J.F. Importance of plasticity and decision-making strategies for plant resource acquisition in spatio-temporally variable environments. New Phytol. 2007, 174, 182–193. [Google Scholar] [CrossRef]
- Ye, X.; Hu, Y.; Liu, Z.; Gao, S.; Dong, M. Water heterogeneous affects water storage in two rhizomatous clonal plants Leymus secalinus and Calamagrostis pseudophragmites. Acta Phytoecol. Sin. 2013, 37, 427–435. [Google Scholar]
- Klime, L.; Klimeová, J.; Hendriks, R.; van Groenendael, J. Clonal plant architecture: A comparative analysis of form and function. In The Ecology and Evolution of Clonal Plants, 2nd ed.; Kroon, H., Groenendael, J., Eds.; Backhuys Publishers: Leiden, The Netherlands, 1997; Volume 3, pp. 1–29. [Google Scholar]
- Zhou, J.; Mei, J.; Ma, J.; Zhang, Y.; Wang, H.; Jian, R. Characteristics of clonal reproduction of Alchornea trewioides in karst region of Guilin, China. J. Guangxi Norm. Univ. 2020, 38, 110–116. [Google Scholar]
- Liu, C.; Liu, Y.; Guo, K.; Fan, D.; Yu, L.; Yang, R. Exploitation of patchy soil water resources by the clonal vine Ficus tikoua in karst habitats of southwestern China. Acta Physiol. Plant. 2011, 33, 93–102. [Google Scholar] [CrossRef]
- Nie, Y.; Chen, H.; Wang, K.; Tan, W.; Deng, P.; Yang, J. Seasonal water use patterns of woody species growing on the continuous dolostone outcrops and nearby thin soils in subtropical China. Plant Soil 2011, 341, 399–412. [Google Scholar] [CrossRef]
- Liu, J.; Liao, X.; Zhang, D.; Wang, M.; Zhao, X. Population characteristics of Drepanostachyum ludianense in karst area of Guizhou, China. J. Pure Appl. Microbiol. 2014, 8, 2755–2760. [Google Scholar]
- Zhang, C.; Yu, F.; Chen, Y.; Dong, M. Phenotypic plasticity in response to the heterogeneous water supply in the rhizomatous grass species, Calamagrostis epigejos in the Mu Us Sandy Land of China. Acta Bot. Sin. 2003, 45, 1210–1217. [Google Scholar]
- Zhang, C.; Yang, C.; Dong, M. The clonal integration of photosynthates in the rhizomatous half-shrub Hedysarum laeve. Acta Ecol. Sin. 2001, 12, 1986–1993. [Google Scholar]
- Yu, F.; Dong, M.; Bertil, K. Clonal integration helps Psammochloa villosa survive sand burial in an inland dune. New Phytol. 2004, 162, 697–704. [Google Scholar] [CrossRef]
- Ricardo, C.T.; Cecilia, A.C.; Luis, E.E.; Francisco, M.F. Clonal diversity and distribution in Stenocereus eruca (Cactaceae), a narrow endemic cactus of the Sonoran Desert. Am. J. Bot. 2005, 92, 272–278. [Google Scholar]
- Wang, Y.; Hong, R.; Huang, D.; Teng, X.; Li, Y.; Masae, S.; Miki, N. The translocation of photosynthate between clonal ramets of Leymus chinensis population. Acta Ecol. Sin. 2004, 17, 3097–3109. [Google Scholar]
- Abdullah, I. Study on Restoration of Saline Alkali Patchy Degraded Grassland Based on Spatial Expansion of Dominant Clonal Grass- Leymus chinensis in Songnen Grassland of Northeast China. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2020. [Google Scholar]
- Cheng, L.; Li, D.; Zhu, Z.; Wang, H.; Ji, Q.; Li, W.; Chen, H.; Lai, S. Analysis on the characteristics of water physiological integration pattern and the ecological effects in clonal plant species Zoysia japonica. Acta Bot. Boreal. Sin. 2013, 33, 1442–1451. [Google Scholar]
- Xu, S.; Liu, Y.; Li, H.; Chen, Z.; Li, Y.; Zhang, L. Physiological integration of growth, carbohydrates, and soluble protein of Zoysia japonica clonal ramets under nutrient heterogeneity. Chin. J. Appl. Ecol. 2018, 29, 3569–3576. [Google Scholar]
- Qian, Y.; Li, D.; Han, L.; Sun, Z. Inter-ramet photosynthate translocation in Buffalograss under differential water deficit stress. J. Am. Soc. Hortic. Sci. 2010, 135, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Kirk, H.; Paul, J.; Straka, J.; Freeland, J. Long-distance dispersal and high genetic diversity are implicated in the invasive spread of the common reed, Phragmites australis (Poaceae), in northeastern North America. Am. J. Bot. 2011, 98, 1180–1190. [Google Scholar] [CrossRef]
- Jiao, L.; Li, F.; Liu, X.; Wang, S.; Zhou, Y. Fine-Scale distribution patterns of Phragmites australis populations across an environmental gradient in the salt marsh wetland of dunhuang, China. Sustainability 2020, 12, 1671. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Wang, L.; Liu, C.; Yu, D.; Qu, J. Effects of a spatially heterogeneous nutrient distribution on the growth of clonal wetland plants. BMC Ecol. 2020, 20, 59. [Google Scholar] [CrossRef]
- Wang, N.; Yu, F.; Li, P.; He, W.; Liu, F.; Liu, J.; Dong, M. Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress. Ann. Bot. 2008, 101, 671–678. [Google Scholar] [CrossRef]
- Szymura, M.; Szymura, T. Growth, phenology, and biomass allocation of alien Solidago species in central Europe. Plant Spec. Biol. 2015, 30, 245–256. [Google Scholar] [CrossRef]
- Yaiza, L.L.; Marta, S.R.; Sergio, R.R.; Luís, G. Clonal integration facilitates the colonization of drought environments by plant invaders. AoB Plants 2016, 8, plw023. [Google Scholar]
- Huang, Q.; Shen, Y.; Li, X.; Zhang, G.; Huang, D.; Fan, Z. Regeneration capacity of the small clonal fragments of the invasive Mikania micrantha H.B.K.: Effects of the stolon thickness, internode length and presence of leaves. Weed Biol. Manag. 2015, 15, 70–77. [Google Scholar] [CrossRef]
- Weiner, J. Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. 2004, 6, 207–215. [Google Scholar] [CrossRef]
- Semchenko, M.; John, E.A.; Hutchings, M.J. Effects of physical connection and genetic identity of neighbouring ramets on root-placement patterns in two clonal species. New Phytol. 2007, 176, 644–654. [Google Scholar] [CrossRef]
- Hutchings, M.J.; Wijesinghe, D.K. Patchy habitats, division of labour and growth dividends in clonal plants. Trends Ecol. Evol. 1997, 12, 320–325. [Google Scholar] [CrossRef]
- Yamauchi, T.; Colmer, T.D.; Pedersen, O.; Nakazono, M.; Notes, A. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol. 2018, 176, 1118–1130. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, Q.; Sammul, M. Physiological integration ameliorates negative efects of drought stress in the clonal herb Fragaria orientalis. PLoS ONE 2012, 7, e44221. [Google Scholar]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; López, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Brodribb, T.J.; Powers, J.; Cochard, H.; Choat, B. Hanging by a thread? forests and drought. Science 2020, 368, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Flexas, J.; Bota, J.; Loreto, F.; Cornic, G.; Sharkey, T.D. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol. 2004, 6, 269–279. [Google Scholar] [CrossRef]
- Carmo-Silva, A.E.; Gore, M.A.; Andrade-Sanchez, P.; French, A.N.; Hunsaker, D.J.; Salvucci, M.E. Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ. Exp. Bot. 2012, 83, 1–11. [Google Scholar] [CrossRef]
- Sasidharan, R.; Hartman, S.; Liu, Z.; Martopawiro, S.; Sajeev, N.; van Veen, H.; Yeung, E.; Voesenek, L.A.C.J. Signal dynamics and interactions during flooding stress. Plant Physiol. 2018, 176, 1106–1117. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, R.K.; Das, S.; Ravi, I. Changes in certain antioxidative enzymes and growth parameters as a result of complete submergence and subsequent re-aeration of rice cultivars differing in submergence tolerance. J. Agron. Crop Sci. 2001, 187, 69–74. [Google Scholar] [CrossRef]
- Ella, E.S.; Kawano, N.; Yamauchi, Y.; Tanaka, K.; Ismail, A.M. Blocking ethylene perception enhances flooding tolerance in rice seedlings. Funct. Plant Biol. 2003, 30, 813–819. [Google Scholar] [CrossRef]
- Cristina, B.; Kayla, K.; Charles, J.; Cynthia, L.; Julia, B. Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. Plant J. 2008, 56, 743–755. [Google Scholar]
- Narsai, R.; Rocha, M.; Geigenberger, P.; Whelan, J.; Dongen, J.T. Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytol. 2011, 190, 472–487. [Google Scholar] [CrossRef]
- Filazzola, A.; Liczner, A.R.; Westphal, M.; Lortie, C.J. The effect of consumer pressure and abiotic stress on positive plant interactions are mediated by extreme climatic events. New Phytol. 2018, 217, 140–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabregas, N.; Fernie, A.R. The metabolic response to drought. J. Exp. Bot. 2019, 70, 1077–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, X.; Cai, C.; Fan, S.; Liu, C.; Wu, C.; Chen, B. Effects of rhizome integration on the water physiology of Phyllostachys edulis clones under heterogeneous water stress. Plants 2020, 9, 373. [Google Scholar] [CrossRef] [Green Version]
- Mao, S.; Jiang, C.; Zhang, W.; Zhang, J.; Chow, W.S.; Yang, J. Water translocation between ramets of strawberry during soil drying and its effects on photosynthetic performance. Physiol. Plant. 2009, 137, 225–234. [Google Scholar] [CrossRef]
- Eva, F.S.; Sergi, M.B. Stress memory and the inevitable effects of drought: A physiological perspective. Front. Plant Sci. 2016, 7, 1–6. [Google Scholar]
- Li, X.; Jimoh, S.O.; Li, Y.; Duan, J.; Cui, Y.; Jin, K.; Wang, Z.; Zhang, Y. Stress memory and phyllosphere/soil legacy underlie tolerance and plasticity of Leymus chinensis to periodic drought risk. Agric. For. Meteorol. 2022, 312, 108717. [Google Scholar] [CrossRef]
- Hartman, S.; Sasidharan, R.; Voesenek, L.A.C.J. The role of ethylene in metabolic acclimations to low oxygen. New Phytol. 2020, 229, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Puijalon, S.; Bouma, T.J.; Van Groenendael, J.; Bornette, G. Clonal plasticity of aquatic plant species submitted to mechanical stress: Escape versus resistance strategy. Ann. Bot. 2008, 102, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Radersma, R.; Noble, D.; Uller, T. Plasticity leaves a phenotypic signature during local adaptation. Evol. Lett. 2020, 4, 360–370. [Google Scholar] [CrossRef]
- Matesanz, S.; Mario, B.S.; Ramos-Muoz, M.; Cruz, M.D.L.; Benavides, R.; Adrián, E. Phenotypic integration does not constrain phenotypic plasticity: Differential plasticity of traits is associated to their integration across environments. New Phytol. 2021, 231, 2359–2370. [Google Scholar] [CrossRef]
- deKroon, H.; Huber, H.; Stuefer, J.F.; van Groenendael, J.M. A modular concept of phenotypic plasticity in plants. New Phytol. 2005, 166, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Pauls, S.U.; Nowak, C.; Ba’lint, M.; Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 2013, 22, 925–946. [Google Scholar] [CrossRef]
- Bufford, J.L.; Hulme, P.E. Increased adaptive phenotypic plasticity in the introduced range in alien weeds under drought and flooding. Biol. Invasions 2021, 23, 2675–2688. [Google Scholar] [CrossRef]
- Li, L.; Geng, Y.; Lan, Z.; Cheng, J.; Song, Z. Phenotypic plasticity of aquatic plants in heterogeneous environments: A review. Biodivers. Sci. 2016, 24, 216–227. [Google Scholar] [CrossRef]
- Wang, N.; Chen, H.; Dong, Y.; Yuan, M. Effects of soil-water conditions on phological plasticity and allelopathic potential of invasive plant Aegilops tauschii Coss. Acta Agrestia Sin. 2018, 26, 402–408. [Google Scholar]
- Freschet, G.T.; Cyrille, V.; Bourget, M.Y.; Michael, S.L.; Florian, F. Allocation, morphology, physiology, architecture: The multiple facets of plant above- and below-ground responses to resource stress. New Phytol. 2018, 219, 1338–1352. [Google Scholar] [CrossRef]
- Zhu, Z. Effect of different soil moisture and severing stolon on clonal plasticity in Zoysia japonica steud a clonal plant. J. Anhui Agric. Sci. 2010, 38, 18627–18630. [Google Scholar]
- Yue, C.; He, Q.; Wang, K.; Weng, F. Growth of Phyllostachys praecox cv. prevernalis clone in different conditions of soil moisture. J. Zhejiang For. Sci. Technol. 2002, 22, 25–27. [Google Scholar]
- Yu, F.; Roiloa, S.R.; Peter, A. Global change, clonal growth, and biological invasions by plants. Front. Plant Sci. 2016, 7, 1467. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Li, X.; Huang, F.; Wang, R.; Lu, B.; Shen, Y.; Fan, Z.; Lin, P. Nutrient addition increases the capacity for division of labor and the benefits of clonal integration in an invasive plant. Sci. Total Environ. 2018, 643, 1232–1238. [Google Scholar] [CrossRef]
- deKroon, H.; Fransen, B.; van Rheenen, J.W.A.; van Dijk, A.; Kreulen, R. High levels of inter-ramet water translocation in two rhizomatous Carex species, as quantified by deuterium labelling. Oecologia 1996, 106, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ning, W.; Xu, S.; Yu, N.; Chen, Z.; Zhang, L. Response of physiological integration in the clonal herb Zoysia japonica to heterogeneous water conditions. Acta Physiol. Plant 2022, 44, 34. [Google Scholar] [CrossRef]
- Wang, J.; Song, H.; Cheng, J.; Zhang, J.; Li, S.; Tao, J.; Liu, J. Respose strategies of Lolium perenne L. to karst heterogeneous habitats under drought stress. Acta Ecol. Sin. 2020, 40, 4566–4572. [Google Scholar]
- Liu, J.; Li, P.; Liao, X.; Zhao, X.; Wen, P.; Chi, X.; Yan, Q. Effect of drought stress on physiological and biochemical characteristics in Drepanostachyum luodianense. Acta Agric. Boreal. Sin. 2013, 22, 153–157. [Google Scholar]
- Peng, Y.; Luo, L.; Li, H.; Yu, F. Growth responses of a rhizomatous herb Bolboschoenus planiculmis to scale and contrast of soil nutrient heterogeneity. Chin. J. Plant Ecol. 2013, 37, 335–343. [Google Scholar] [CrossRef]
- Dong, B.; Alpert, P.; Zhang, Q.; Yu, F. Clonal integration in homogeneous environments increases performance of Alternanthera philoxeroides. Oecologia 2015, 179, 393–403. [Google Scholar] [CrossRef]
- Ge, J.; He, J.; Sun, X.; Chen, Q. Ecological responses of the invasive alien plant Solidago canadensis to changes of soil water content. Acta Bot. Boreal. Sin. 2010, 30, 575–585. [Google Scholar]
- Chapman, D.F.; Robson, M.J.; Snaydon, R.W. Physiological integration in the clonal perennial herb Trifolium repens L. Oecologia 1992, 89, 338–347. [Google Scholar] [CrossRef]
- Roiloa, S.R.; Retuerto, R. Responses of the clonal Fragaria vesca to microtopographic heterogeneity under different water and light conditions. Environ. Exp. Bot. 2007, 61, 1–9. [Google Scholar] [CrossRef]
- Shi, J.; Mao, S.; Wang, L.; Ye, X.; Wu, J.; Wang, G.; Chen, F.; Yang, Q. Clonal integration driven by source-sink relationships is constrained by rhizome branching architecture in a running bamboo species (Phyllostachys glauca): A 15N assessment in the field. For. Ecol. Manag. 2021, 481, 1–9. [Google Scholar] [CrossRef]
- Jaafry, S.; Li, D.; Chen, H.; Niu, X.; Li, B. Relative costs and benefits of clonal integration of Zoysia japonica under various N:P ratios. Nord. J. Bot. 2018, 36, njb-01795. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Müller-Schärer, H.; van Kleunen, M.; Cai, A.; Zhang, P.; Yan, R.; Dong, B.; Yu, F. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytol. 2017, 216, 1072–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiner, J.; Campbell, L.G.; Pino, J.; Echarte, L. The allometry of reproduction within plant populations. J. Ecol. 2009, 97, 1220–1233. [Google Scholar] [CrossRef]
- Wei, Q.; Li, Q.; Jin, Y.; Li, K.; Lei, N.; Chen, J. Effects of clonal integration on photochemical activity and growth performance of stoloniferous herb Centella asiatica suffering from heterogeneous water availability. Flora 2019, 256, 36–42. [Google Scholar] [CrossRef]
- Slade, A.J.; Hutchings, A. An analysis of the costs and benefits of physiological integration between ramets in the clonal perennial herb glechoma hederacea. Oecologia 1987, 73, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Gross, K.L.; Pregitzer, K.S.; Burton, A.J. Spatial variation in nitrogen availability in three successional plant communities. J. Ecol. 1995, 83, 357–367. [Google Scholar] [CrossRef]
- Yu, F.H.; Wang, N.; He, W.M.; Chu, Y.; Dong, M. Adaptation of rhizome connections in drylands: Increasing tolerance of clones to wind erosion. Ann. Bot. 2008, 102, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Alpert, P.; Yu, F. Clonal integration increases relative competitive ability in an invasive aquatic plant. Am. J. Bot. 2016, 103, 2079–2086. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zuo, S.; Ma, M.; Li, J.; Guo, L.; Huang, D. Appropriate nitrogen addition regulates reproductive strategies of Leymus chinensis. Glob. Ecol. Conserv. 2021, 27, e01599. [Google Scholar] [CrossRef]
- Roiloa, S.R.; Antelo, B.; Retuerto, R. Physiological integration modifiesd 15N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring. Ann. Bot. 2014, 114, 399–411. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Li, Q.; Jin, Y.; Wu, S.; Fan, L.; Lei, N.; Chen, J. Transportation or sharing of stress signals among interconnected ramets improves systemic resistance of clonal networks to water stress. Funct. Plant Biol. 2019, 46, 613–623. [Google Scholar] [CrossRef]
- Chen, J.; Dong, M.; Yu, D. Intraclonal spatial division of labour in two stoloniferous plants with different branching type in response to reciprocal patchiness of resources. Acta Ecol. Sin. 2004, 24, 921–924. [Google Scholar]
- Emmanuel, A.K.; Annie, D.R.; Francine, T. Physiological integration of connected balsam poplar ramets. Tree Physiol. 2016, 7, 797–806. [Google Scholar]
- Zhu, C.; Li, W.; Chen, Y.; Chen, Y. Characteristics of water physiological integration and its ecological significance for Populus euphratica young ramets in an extremely drought environment. J. Geophys. Res. 2018, 123, 5657–5666. [Google Scholar] [CrossRef]
- Luo, D.; Qian, Y.; Liu, J.; Han, L.; Sun, Z. Phenotypic responses of a clonal plant (Buchloe dactyloides) to nutrient heterogeneity. Acta Pratacul. Sin. 2014, 23, 104–109. [Google Scholar]
- Xiang, Y.; Zhang, F.; Duan, J.; Huang, H.; He, D.; Liu, Y.; Tao, J. Effects of clonal integration on biomass allocation and leaf structure of Glechoma longituba (Nakai) kupr in different water availability. Bull. Bot. Res. 2019, 39, 200–207. [Google Scholar]
- Hutchings, M.J.; Price, E.A.C. The causes and developmental effects of integration and independence between different parts of Glechoma hederacea clones. Oikos 2019, 63, 376–386. [Google Scholar]
Category | Plant | Growth Form (Guerilla/Phalanx/Intermediate) | Adaptation Mechanism | Ref. |
---|---|---|---|---|
Desert clonal plant | Calamagrostis epigejos | Guerilla | The growth characteristics of ramet rhizome, the number of new ramets, and biomass allocation were all changed. | [23] |
Grassland clonal plant | Zoysia japonica | Guerilla | Content levels of CAT (catalase), proline, and MDA (malondialdehyde) were significantly increased. | [74] |
Karst clonal plant | Lolium perenne L. | Phalanx | The plant responded to stress by increasing specific root length and specific root area in deep-soil areas, and by reducing root tissue density. | [75] |
Drepanostachyum luodianense | Phalanx | The degree of membrane lipid peroxidation was reduced by increasing the content of osmotic adjustment substances, and by increasing coordination between protective enzymes. | [76] | |
Wetland clonal plant | Typha orientalis | Guerrilla | Plant height, number of ramets, interval diameter and length, and biomass accumulation were significantly increased. | [34] |
Bolboschoenus planiculmis | Intermediate | Plant biomass, rhizome length, bulb number, total leaf length, plant height, spacer length, and root–shoot ratio were changed. | [77] | |
Other clonal plant | Alternanthera philoxeroides | Guerrilla | Maximum quantum yield of photosystem II, total biomass, ramet number, and total stolon length were significantly reduced. | [78] |
Solidago canadensis L. | Guerrilla | Growth, biomass allocation, clonal characteristics, and photosynthetic physiology were regulated. | [79] |
Species | Tree/ Shrub/Herb | Research Methods | Integrated Substance | Transport Direction | Integration Result | Ref. |
---|---|---|---|---|---|---|
Populus euphratica | Tree | Sap flow monitoring | Water | Acopetal | There was a cost tradeoff in the water physiology integration of offspring ramets. | [96] |
Populus balsamifera L. | Tree | Connecting/severing stem | Water | Net photosynthesis, stomatal conductance, and leaf water potential of stressed ramets were not affected by water exchange. | [94] | |
Hedysarum laeve | Shrub | 14C labeling and defoliation experiment | Photo-synthate | Acopetal | The daughter plants did not sacrifice their own growth when transporting the photosynthetic substance to the stressed mother plants. | [24] |
Acid fuchsin dye application | Water | Acopetal/basipetal | Depending upon the ramet level, the donor ramet delivered different water proportions to the recipient ramet. | [23] | ||
Mikania micrantha | Herb | Connecting/severing stem | Water/photosynthate | Relatively stable photosynthesis and specific leaf areas were maintained through clonal integration, but the resource allocation of ramets was changed. | [10] | |
Buchloe dactyloides | Herb | Acid fuchsin application | Water | Acopetal | The chlorophyll fluorescence characteristics of the ortet were improved, increasing the ability of ramets to absorb nutrients. | [31,97] |
14C isotope labeling | Photo-synthate | Mainly acopetal | ||||
Glechoma longituba | Herb | Connecting/severing stem | Photo-synthate | Mainly acopetal | The investment obtained by the stressed ramets was increased, and the leaf stomatal adaptation strategy improved survival rates and adaptation to the habitat. | [98,99] |
Zoysia japonica Steud | Herb | 18O tracer technique | Water | Mainly acopetal | The distribution ratios of water transport were different in different structures of Zoysia japonica. | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Huang, L.; He, S.; Zeng, X.; Chen, Y.; Wang, H. Adaptive Strategies Employed by Clonal Plants in Heterogeneous Patches. Forests 2023, 14, 1648. https://doi.org/10.3390/f14081648
Yang P, Huang L, He S, Zeng X, Chen Y, Wang H. Adaptive Strategies Employed by Clonal Plants in Heterogeneous Patches. Forests. 2023; 14(8):1648. https://doi.org/10.3390/f14081648
Chicago/Turabian StyleYang, Pan, Li Huang, Suni He, Xianghua Zeng, Yinyi Chen, and Haimiao Wang. 2023. "Adaptive Strategies Employed by Clonal Plants in Heterogeneous Patches" Forests 14, no. 8: 1648. https://doi.org/10.3390/f14081648
APA StyleYang, P., Huang, L., He, S., Zeng, X., Chen, Y., & Wang, H. (2023). Adaptive Strategies Employed by Clonal Plants in Heterogeneous Patches. Forests, 14(8), 1648. https://doi.org/10.3390/f14081648