Variations in Microbial Residue and Its Contribution to SOC between Organic and Mineral Soil Layers along an Altitude Gradient in the Wuyi Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Sample Setting and Soil Sampling
2.3. Measurement of Soil Properties
2.4. Amino Sugar Analysis
2.5. Statistical Analysis
3. Results
3.1. Variations in the Amino Sugar Content of the Soil Organic Matter Layer and the Mineral Layer across the Altitude Gradients
3.2. Variations in Microbial Residue Carbon in the Organic and Mineral Layers across the Altitude Gradients
3.3. Variations in Microbial Residue Carbon and SOC Inorganic and Mineral Layers across Altitude Gradients
3.4. Relationships among Fungal Residue Carbon, Bacterial Residue Carbon, Microbial Residue Carbon, and Soil Physicochemical Properties
4. Discussion
4.1. Relationship between Microbial Residue Distribution and Environmental Factors
4.2. The Contribution and Significance of Microbial Residue Carbon to Soil Carbon Pools
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, L.; Ge, T.; Zhu, Z.; Luo, Y.; Yang, Y.; Xiao, M.; Yan, Z.; Li, Y.; Wu, J. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 2021, 398, 115121. [Google Scholar] [CrossRef]
- Cai, M.; Zhao, G.; Zhao, B.; Cong, N.; Zheng, Z.; Zhu, J.; Duan, X.; Zhang, Y. Climate warming alters the relative importance of plant root and microbial community in regulating the accumulation of soil microbial necromass carbon in a Tibetan alpine meadow. Global Chang. Biol. 2023, 29, 3193–3204. [Google Scholar] [CrossRef]
- Shao, P.S.; Xie, H.T.; Bao, X.L.; Liang, C. Variation of microbial residues during forest secondary succession in topsoil and subsoil. Acta Pedol. Sin. 2021, 58, 1050–1059. [Google Scholar]
- Shao, P.S.; Han, H.Y.; Zhang, Y.H.; Fang, Y. Variation of soil microbial residues under different salinity concentrations in the Yellow River Delta. Sci. Geogr. Sin. 2022, 42, 1307–1315. [Google Scholar]
- Bhople, P.; Keiblinger, K.; Djukic, I.; Liu, D.; Zehetner, F.; Zechmeister-Boltenstern, S.; Georg Joergensen, R.; Murugan, R. Microbial necromass formation, enzyme activities and community structure in two alpine elevation gradients with different bedrock types. Geoderma 2021, 386, 114922. [Google Scholar] [CrossRef]
- Liang, C.; Zhu, X.F. Introduction to the carbon storage mechanism of soil microbial carbon pump. Sci. Sin. Terrae 2021, 51, 680–695. [Google Scholar]
- Shao, S.; Zhao, Y.; Zhang, W.; Hu, G.; Xie, H.; Yan, J.; Han, S.; He, H.; Zhang, X. Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession. Soil Biol. Biochem. 2017, 114, 114–120. [Google Scholar] [CrossRef]
- Anderson, T.-H.; Joergensen, R.G. Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH. Soil Biol. Biochem. 1997, 29, 1033–1042. [Google Scholar] [CrossRef]
- Fan, X.; Gao, D.; Zhao, C.; Wang, C.; Qu, Y.; Zhang, J.; Bai, E. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool. ISME J. 2021, 15, 2248–2263. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, J.; Chen, L.; Chu, H.; He, J.-S.; Zhang, Y.; Feng, X. Aridity and NPP constrain contribution of microbial necromass to soil organic carbon in the Qinghai-Tibet alpine grasslands. Soil Biol. Biochem. 2021, 156, 108213. [Google Scholar] [CrossRef]
- Wang, B.; Liang, C.; Yao, H.; Yang, E.; An, S. The accumulation of microbial necromass carbon from litter to mineral soil and its contribution to soil organic carbon sequestration. Catena 2021, 207, 105622. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, J.; Wang, W.; Jia, J.; Huang, L.; Kong, F.; Xi, M. Plant invasion reshapes the latitudinal pattern of soil microbial necromass and its contribution to soil organic carbon in coastal wetlands. Catena 2023, 222, 106859. [Google Scholar] [CrossRef]
- Li, Y. Effects of Warming and Nitrogen Deposition on Soil Amino Sugar and Lignin of Cunninghamia lanceolata in Mid-Subtropical; Fujian Normal University: Fuzhou, China, 2019. [Google Scholar]
- Zhang, X.; Amelung, W.; Yuan, Y.; Zech, W. Amino sugar signature of particle-size fractions in soils of the native prairie as affected by climate. Soil Sci. 1998, 163, 220–229. [Google Scholar] [CrossRef]
- Yu, N. Microbial Community Structure in Forest Soils at Different Dinghu Mountain and Its Association with Carbon Accumulation Process; Shenyang Ligong University: Shenyang, China, 2014. [Google Scholar]
- Zhao, P.P.; Zhou, J.C.; Lin, K.M.; Zhang, Q.F.; Yuan, P.; Zeng, X.M.; Su, Y.; Xu, J.G.; Chen, Y.M.; Yang, Y.S. Effect of different altitudes on soil microbial biomass and community structure of Pinus taiwanensis forest in mid-subtropical zone. Acta Ecol. Sin. 2019, 39, 2215–2225. [Google Scholar]
- Yang, L.; Lyu, M.; Li, X.; Xiong, X.; Lin, W.; Yang, Y.; Xie, J. Decline in the contribution of microbial residues to soil organic carbon along a subtropical elevation gradient. Sci. Total Environ. 2020, 749, 141583. [Google Scholar] [CrossRef]
- Dai, X.Q.; Lü, S.D.; Yang, Y.; Shi, L.J. Distributions and influencing factors of microbial residue carbon contents in forest soil profiles in subtropical red soil region. Acta Ecol. Sin. 2022, 42, 1108–1117. [Google Scholar]
- Ni, X.; Liao, S.; Tan, S.; Peng, Y.; Wang, D.; Yue, K.; Wu, F.; Yang, Y. The vertical distribution and control of microbial necromass carbon in forest soils. Glob. Ecol. Biogeogr. 2020, 29, 1829–1839. [Google Scholar] [CrossRef]
- Zheng, W.; Lin, W.S.; Fan, Y.X.; Li, Y.Q.; Zhou, J.C.; Zheng, Y.; Chen, S.D.; Liu, X.F.; Xiong, D.C.; Xu, C.; et al. Divergent effects of short-term warming on microbial resource limitation between topsoil and subsoil in a young subtropical Chinese fir forest. Biogeochemistry 2023, 163, 185–199. [Google Scholar] [CrossRef]
- Wen, S.; Chen, J.; Yang, Z.; Deng, L.; Feng, J.; Zhang, W.; Zeng, X.; Huang, Q.; Delgado-Baquerizo, M.; Liu, Y. Climatic seasonality challenges the stability of microbial—Driven deep soil carbon accumulation across china. Global Chang. Biol. 2023, 16760. [Google Scholar] [CrossRef]
- Ni, X.; Liao, S.; Tan, S.; Wang, D.; Peng, Y.; Yue, K.; Wu, F.; Yang, Y. A quantitative assessment of amino sugars in soil profiles. Soil Biol. Biochem. 2020, 143, 107762. [Google Scholar] [CrossRef]
- Sradnick, A.; Oltmanns, M.; Raupp, J.; Joergensen, R.G. Microbial residue indices down the soil profile after long-term addition of farmyard manure and mineral fertilizer to a sandy soil. Geoderma 2014, 226, 79–84. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, Q.; Sun, Y.M.; Lin, C.; Cai, L.P.; Zhang, H.X. Ecological stoichiometric characteristics of soil carbon, nitrogen and phosphorus in moso bamboo forests at different altitudes in Wuyi Mountain. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2022, 51, 367–373. [Google Scholar]
- Zhang, H.X.; Lin, C.; Cheng, H.; Jin, C.S.; Xu, Z.K.; Wei, Z.C.; Ma, X.Q. Variation of soil organic carboncontent of moso bamboo forest along altitudinal gradient in Wuyi Mountain in China. Soils 2019, 51, 821–828. [Google Scholar]
- Cheng, H.; Zhang, H.X.; Huang, Z.J.; Xu, Z.K.; Yang, Q.; Liu, A.Q. Variations of soil organic carbon content along an altitudinal gradient in Wuyi Mountain. J. For. Environ. 2018, 38, 135–141. [Google Scholar]
- Bao, S.D. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2001. [Google Scholar]
- Zhang, X.; Amelung, W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine and galactosamine in soils. Soil Biol. Biochem. 1996, 28, 1201–1206. [Google Scholar] [CrossRef]
- Mou, Z.; Kuang, L.; He, L.; Zhang, J.; Zhang, X.; Hui, D.; Li, Y.; Wu, W.; Mei, Q.; He, X.; et al. Climatic and edaphic controls over the elevational pattern of microbial necromass in subtropical forests. Catena 2021, 207, 105707. [Google Scholar] [CrossRef]
- Wang, B.; An, S.; Liang, C.; Liu, Y.; Kuzyakov, Y. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biol. Biochem. 2021, 162, 108422. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Mayes, M.A.; Allison, S.D.; Frey, S.D.; Shi, Z.; Hu, X.; Luo, Y.; Melillo, J.M. Reduced Carbon Use Efficiency and Increased Microbial Turnover with Soil Warming. Glob. Chang. Biol. 2019, 25, 900–910. [Google Scholar] [CrossRef]
- Zeng, X.; Feng, J.; Yu, D.; Wen, S.; Zhang, Q.; Huang, Q.; Delgado-Baquerizo, M.; Liu, Y. Local temperature increases reduce soil microbial residues and carbon stocks. Global Chang. Biol. 2022, 28, 6433–6445. [Google Scholar] [CrossRef]
- Jia, S.; Liu, X.; Lin, W.; Li, X.; Yang, L.; Sun, S.; Hui, D.; Guo, J.; Zou, X.; Yang, Y. Tree Roots Exert Greater Influence on Soil Microbial Necromass Carbon than Above-Ground Litter in Subtropical Natural and Plantation Forests. Soil Biol. Biochem. 2022, 173, 108811. [Google Scholar] [CrossRef]
- Deng, X.Z.; Lei, U.B.; Sheng, J.; Li, Y.; Li, L.H.; Bao, H.Y.; Zhaqiong, B.R.; AndElka, P.-M.; Sun, G. Effects of simulated root exudates input on soil microbial residues in the degraded alpine grassland. Acta Ecol. Sin. 2022, 42, 8311–8321. [Google Scholar]
- Agboma, C.; Itenfisu, D. Investigating the Spatio-Temporal dynamics in the soil water storage in Alberta’s Agricultural region. J. Hydrol. 2020, 588, 125104. [Google Scholar] [CrossRef]
- Shao, P.; Lynch, L.; Xie, H.; Bao, X.; Liang, C. Tradeoffs among Microbial Life History Strategies Influence the Fate of Microbial Residues in Subtropical Forest Soils. Soil Biol. Biochem. 2021, 153, 108112. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Fu, Z.; Luo, Z.; Wang, F.; Wang, K. Effect of soil thickness on rainfall infiltration and runoff generation from karst hillslopes during rainstorms. Eur. J. Soil Sci. 2022, 73, e13288. [Google Scholar] [CrossRef]
- García-Palacios, P.; Chen, J. Emerging relationships among soil microbes, carbon dynamics and climate change. Funct. Ecol. 2022, 36, 1332–1337. [Google Scholar] [CrossRef]
- Shen, Y.; Lei, L.; Xiao, W.; Cheng, R.; Liu, C.; Liu, X.; Lin, H.; Zeng, L. Soil Microbial Residue Characteristics in Pinus Massoniana Lamb. Plantations. Environ. Res. 2023, 231, 116081. [Google Scholar] [CrossRef]
- Wang, Q.C. Effect of Different Regeneration Methods on Soil Microbial Residue Carbon and Lignin in Subtropical Forests; Fujian Normal University: Fuzhou, China, 2019. [Google Scholar]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef]
- Bicharanloo, B.; Bagheri Shirvan, M.; Keitel, C.; Dijkstra, F.A. Rhizodeposition mediates the effect of nitrogen and phosphorous availability on microbial carbon use efficiency and turnover rate. Soil Biol. Biochem. 2020, 142, 107705. [Google Scholar] [CrossRef]
- Chen, J.; Ji, C.; Fang, J.; He, H.; Zhu, B. Dynamics of microbial residues control the responses of mineral-associated soil organic carbon to N addition in two temperate forests. Sci. Total Environ. 2020, 748, 141318. [Google Scholar] [CrossRef]
- Bai, Z.; Bodé, S.; Huygens, D.; Zhang, X.; Boeckx, P. Kinetics of amino sugar formation from organic residues of different quality. Soil Biol. Biochem. 2013, 57, 814–821. [Google Scholar] [CrossRef]
- Xiao, K.-Q.; Zhao, Y.; Liang, C.; Zhao, M.; Moore, O.W.; Otero-Fariña, A.; Zhu, Y.-G.; Johnson, K.; Peacock, C.L. Author Correction: Introducing the soil mineral carbon pump. Nat. Rev. Earth Environ. 2023, 4, 135–136. [Google Scholar] [CrossRef]
- Su, F.; Chen, X.; Zhang, L.; Hao, M.; Wei, X. Dynamics of microbial residues in highland agroecosystems as affected by cropping systems and fertilisation in a 31-year-long experiment. Eur. J. Soil Sci. 2022, 73, e13205. [Google Scholar] [CrossRef]
- Buckeridge, K.M.; La Rosa, A.F.; Mason, K.E.; Whitaker, J.; McNamara, N.P.; Grant, H.K.; Ostle, N.J. Sticky dead microbes: Rapid abiotic retention of microbial necromass in soil. Soil Biol. Biochem. 2020, 149, 107929. [Google Scholar] [CrossRef]
- Shao, P.; Han, H.; Sun, J.; Yang, H.; Xie, H. Salinity Effects on Microbial Derived-C of Coastal Wetland Soils in the Yellow River Delta. Front. Ecol. Evol. 2022, 10, 872816. [Google Scholar] [CrossRef]
- Moritz, L.K.; Liang, C.; Wagai, R.; Kitayama, K.; Balser, T.C. Vertical Distribution and Pools of Microbial Residues in Tropical Forest Soils Formed from Distinct Parent Materials. Biogeochemistry 2009, 92, 83–94. [Google Scholar] [CrossRef]
- Hao, Z.; Zhao, Y.; Wang, X.; Wu, J.; Jiang, S.; Xiao, J.; Wang, K.; Zhou, X.; Liu, H.; Li, J.; et al. Thresholds in Aridity and Soil Carbon-to-Nitrogen Ratio Govern the Accumulation of Soil Microbial Residues. Commun. Earth Environ. 2021, 2, 236. [Google Scholar] [CrossRef]
- Yan, D.; Long, X.-E.; Ye, L.; Zhang, G.; Hu, A.; Wang, D.; Ding, S. Effects of Salinity on Microbial Utilization of Straw Carbon and Microbial Residues Retention in Newly Reclaimed Coastal Soil. Eur. J. Soil Biol. 2021, 107, 103364. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Ji, C.; Han, W. Above- and Belowground Biomass Allocation in Tibetan Grasslands. J. Veg. Sci. 2009, 20, 177–184. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.; Wang, X.; Hartley, I.P.; Zhang, J.; Zhang, Y. Fungal necromass contributes more to soil organic carbon and more sensitive to land use intensity than bacterial necromass. Appl. Soil Ecol. 2022, 176, 104492. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, L.; Zhou, G.; Zhou, H.; Lu, C.; Gu, Z.; Liu, R.; He, Y.; Du, Z.; Liang, X.; et al. Tradeoffs of fungal and bacterial residues mediate soil carbon dynamics under persistent drought in subtropical evergreen forests. Appl. Soil Ecol. 2022, 178, 104588. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Hu, G.; Li, X.; Dong, Y.; Zhuge, Y.; He, H.; Zhang, X. Distinct Accumulation of Bacterial and Fungal Residues along a Salinity Gradient in Coastal Salt-Affected Soils. Soil Biol. Biochem. 2021, 158, 108266. [Google Scholar] [CrossRef]
- Fernandez, C.W.; Langley, J.A.; Chapman, S.; McCormack, M.L.; Koide, R.T. The Decomposition of Ectomycorrhizal Fungal Necromass. Soil Biol. Biochem. 2016, 93, 38–49. [Google Scholar] [CrossRef]
ID | Altitude (m) | Number of Plots | Vegetation Type | Soil Type | Bulk Density (g·cm−3) | pH Value |
---|---|---|---|---|---|---|
1 | 760 | 3 | Evergreen, broad-leaved forest | Mountain red soil | 0.98 ± 0.11 | 3.83 ± 0.04 |
2 | 1410 | 3 | Coniferous forest | Mountain yellow–red soil | 0.65 ± 0.14 | 3.83 ± 0.04 |
3 | 1790 | 3 | Sub-alpine dwarf forest | Mountain yellow soil | 0.56 ± 0.03 | 3.71 ± 0.08 |
4 | 2130 | 3 | Alpine meadow | Alpine meadow soil | 0.44 ± 0.05 | 4.05 ± 0.08 |
Soil Layer | Environmental Variables | Rank Ordering of Explanatory Power | Explanation % of Environmental Variables | F | p |
---|---|---|---|---|---|
Organic layer | Altitude | 1 | 85.8% | 60.2 | 0.002 |
TC | 2 | 5.7% | 6.0 | 0.038 | |
BD | 3 | 0.7% | 0.7 | 0.448 | |
C/N | 4 | 0.2% | 0.2 | 0.724 | |
pH | 5 | 0.2% | 0.2 | 0.748 | |
Mineral layer | Altitude | 1 | 67.9% | 21.2 | 0.004 |
TC | 2 | 28.0% | 61.3 | 0.002 | |
C/N | 3 | 2.3% | 9.9 | 0.008 | |
BD | 4 | 0.1% | 0.2 | 0.776 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Chen, X.; Zhong, A.; Guo, S.; Zhang, H. Variations in Microbial Residue and Its Contribution to SOC between Organic and Mineral Soil Layers along an Altitude Gradient in the Wuyi Mountains. Forests 2023, 14, 1678. https://doi.org/10.3390/f14081678
Sun Y, Chen X, Zhong A, Guo S, Zhang H. Variations in Microbial Residue and Its Contribution to SOC between Organic and Mineral Soil Layers along an Altitude Gradient in the Wuyi Mountains. Forests. 2023; 14(8):1678. https://doi.org/10.3390/f14081678
Chicago/Turabian StyleSun, Yiming, Xunlong Chen, Anna Zhong, Shijie Guo, and Houxi Zhang. 2023. "Variations in Microbial Residue and Its Contribution to SOC between Organic and Mineral Soil Layers along an Altitude Gradient in the Wuyi Mountains" Forests 14, no. 8: 1678. https://doi.org/10.3390/f14081678
APA StyleSun, Y., Chen, X., Zhong, A., Guo, S., & Zhang, H. (2023). Variations in Microbial Residue and Its Contribution to SOC between Organic and Mineral Soil Layers along an Altitude Gradient in the Wuyi Mountains. Forests, 14(8), 1678. https://doi.org/10.3390/f14081678