Transcriptome Analysis of Populus Overexpression in SVL Transcription Factor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Vector Construction and Production of Transgenic Plants
2.3. RNA Quantification and Qualification
2.4. Library Preparation for Transcriptome Sequencing
2.5. Quality Control, Mapping Reads to the Reference Genome, and Annotation
2.6. Quantification of Gene Expression Levels
2.7. GO Enrichment and KEGG Pathway Enrichment Analyses
2.8. Phylogenetic Analysis
3. Results
3.1. Candidate Populus SVL Homologs and Overexpression of SVL
3.2. Illumina Sequencing and Alignment to the Reference Genome
3.3. Analysis of DEGs between Transgenic and Non-Transgenic Poplars
3.4. Identification of Transcription Factors by Transcriptome Analysis
3.5. Validation of RNA-Seq Results by qRT–RCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiong, Y.; McCormack, M.; Li, L.; Hall, Q.; Xiang, C.; Sheen, J. Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 2013, 496, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Gregis, V.; Andrés, F.; Sessa, A.; Guerra, R.F.; Simonini, S.; Mateos, J.L.; Torti, S.; Zambelli, F.; Prazzoli, G.M.; Bjerkan, K.N.; et al. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol. 2013, 14, 56. [Google Scholar] [CrossRef] [PubMed]
- Borner, R.; Kampmann, G.; Chandler, J.; Gleissner, R.; Wisman, E.; Apel, K.; Melzer, S. A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J. 2000, 24, 591–599. [Google Scholar] [CrossRef]
- Samach, A.; Onouchi, H.; Gold, S.E.; Ditta, G.S.; Schwarz-Sommer, Z.; Yanofsky, M.F.; Coupland, G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 2000, 288, 1613–1616. [Google Scholar] [CrossRef] [PubMed]
- Andrés, F.; Coupland, G. The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Levy, Y.Y.; Dean, C. The Transition to Flowering. Plant Cell 1998, 10, 1973–1989. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, C.; Shen, L.; Wu, Y.; Chen, H.; Robertson, M.; Helliwell, C.A.; Ito, T.; Meyerowitz, E.; Yu, H. A repressor complex governs the integration of flowering signals in Arabidopsis. Dev. Cell 2008, 15, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, U.; Höhmann, S.; Nettesheim, K.; Wisman, E.; Saedler, H.; Huijser, P. Molecular cloning of SVP: A negative regulator of the floral transition in Arabidopsis. Plant J. 2000, 21, 351–360. [Google Scholar] [CrossRef]
- Lee, J.H.; Ryu, H.-S.; Chung, K.S.; Posé, D.; Kim, S.; Schmid, M.; Ahn, J.H. Regulation of Temperature-Responsive Flowering by MADS-Box Transcription Factor Repressors. Science 2013, 342, 628–632. [Google Scholar] [CrossRef]
- Andrés, F.; Porri, A.; Torti, S.; Mateos, J.; Romera-Branchat, M.; García-Martínez, J.L.; Fornara, F.; Gregis, V.; Kater, M.M.; Coupland, G. SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. Proc. Natl. Acad. Sci. USA 2014, 111, 2760–2769. [Google Scholar] [CrossRef]
- Rieu, I.; Ruiz-Rivero, O.; Fernandez-Garcia, N.; Griffiths, J.; Powers, S.J.; Gong, F.; Linhartova, T.; Eriksson, S.; Nilsson, O.; Thomas, S.G.; et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 2008, 53, 488–504. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Maurya, J.P.; Azeez, A.; Miskolczi, P.; Tylewicz, S.; Stojkovic, K.; Delhomme, N.; Busov, V.; Bhalerao, R.P. A genetic network mediating the control of bud break in hybrid aspen. Nat. Commun. 2018, 9, 4173. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, K.; Muiño, J.M.; Jauregui, R.; Airoldi, C.A.; Smaczniak, C.; Krajewski, P.; Angenent, G.C. Target genes of the MADS transcription factor SEPALLATA3: Integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol. 2009, 7, e1000090. [Google Scholar] [CrossRef] [PubMed]
- Goralogia, G.S.; Howe, G.T.; Brunner, A.M.; Helliwell, E.; Nagle, M.F.; Ma, C.; Lu, H.; Goddard, A.L.; Magnuson, A.C.; Klocko, A.L.; et al. Overexpression of SHORT VEGETATIVE PHASE-LIKE (SVL) in Populus delays onset and reduces abundance of flowering in field-grown trees. Hortic. Res. 2021, 8, 167. [Google Scholar] [CrossRef]
- Li, K.; Debernardi, J.M.; Li, C.; Lin, H.; Zhang, C.; Jernstedt, J.; von Korff, M.; Zhong, J.; Dubcovsky, J. Interactions between SQUAMOSA and SHORT VEGETATIVE PHASE MADS-box proteins regulate meristem transitions during wheat spike development. Plant Cell 2021, 33, 3621–3644. [Google Scholar] [CrossRef]
- West, A.G.; Causier, B.E.; Davies, B.; Sharrocks, A.D. DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors. Nucleic Acids Res. 1998, 26, 5277–5287. [Google Scholar] [CrossRef]
- Meng, S.; Cao, Y.; Li, H.; Bian, Z.; Wang, D.; Lian, C.; Yin, W.; Xia, X. PeSHN1 regulates water-use efficiency and drought tolerance by modulating wax biosynthesis in poplar. Tree Physiol. 2019, 39, 1371–1386. [Google Scholar] [CrossRef]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Snyder, A.; Jedreski, K.; Fitch, J.; Wijeratne, S.; Wetzel, A.; Hensley, J.; Flowers, M.; Bline, K.; Hall, M.W.; Muszynski, J.A. Transcriptomic profiles in children with septic shock with or without immunoparalysis. Front. Immunol. 2021, 12, 733–834. [Google Scholar] [CrossRef]
- Lu, C.; Chi, H.; Wang, Y.; Feng, X.; Wang, L.; Huang, S.; Yan, L.; Lin, S.; Liu, P.; Qiao, J. Transcriptome analysis of PCOS arrested 2-cell embryos. Cell Cycle 2018, 17, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.; Dugast-Darzacq, C.; Liu, Z.; Dong, P.; Dailey, G.M.; Cattoglio, C.; Heckert, A.; Banala, S.; Lavis, L.; Darzacq, X.; et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 2018, 361, eaar2555. [Google Scholar] [CrossRef] [PubMed]
- Higashi, K.; Ishiga, Y.; Inagaki, Y.; Toyoda, K.; Shiraishi, T.; Ichinose, Y. Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol. Genet. 2008, 279, 303–312. [Google Scholar] [CrossRef]
- Robatzek, S.; Somssich, I.E. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence- and defence-related processes. Plant J. 2001, 28, 123–133. [Google Scholar] [CrossRef]
- Jiang, Y.; Qiu, Y.; Hu, Y.; Yu, D. Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Front. Plant Sci. 2016, 7, 145. [Google Scholar] [CrossRef] [PubMed]
- Zentgraf, U.; Doll, J. Arabidopsis WRKY53, a node of multi-layer regulation in the network of senescence. Plants 2019, 8, 578. [Google Scholar] [CrossRef]
- Zheng, Y.; Ge, J.; Bao, C.; Chang, W.; Liu, J.; Shao, J.; Liu, X.; Su, L.; Pan, L.; Zhou, D.-X. Histone deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response. Mol. Plant. 2020, 13, 598–611. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Zhou, J.; Kumar, D.; Jang, G.; Ryu, K.H.; Sebastian, J.; Miyashima, S.; Helariutta, Y.; Lee, J.Y. SHORTROOT-mediated intercellular signals coordinate phloem development in Arabidopsis roots. Plant Cell 2020, 32, 1519–1535. [Google Scholar] [CrossRef]
- Kunieda, T.; Mitsuda, N.; Ohme-Takagi, M.; Takeda, S.; Aida, M.; Tasaka, M.; Kondo, M.; Nishimura, M.; Hara-Nishimura, I. NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. Plant Cell 2008, 20, 2631–2642. [Google Scholar] [CrossRef]
- Torres-Galea, P.; Hirtreiter, B.; Bolle, C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A signal transduction. Plant Physiol. 2013, 161, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Romera-Branchat, M.; Severing, E.; Pocard, C.; Ohr, H.; Vincent, C.; Née, G.; Martinez-Gallegos, R.; Jang, S.; Andrés, F.; Madrigal, P.; et al. Functional Divergence of the Arabidopsis Florigen-Interacting bZIP Transcription Factors FD and FDP. Cell Rep. 2020, 31, 107717. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Luo, C. Overexpression of zinc finger transcription factor ZAT6 enhances salt tolerance. Open Life Sci. 2018, 13, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, L.; Yan, X.; Liu, Y.; Wang, R.; Fan, T.; Ren, Y.; Tang, X.; Xiao, F.; Liu, Y.; et al. Zinc-finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol. 2016, 171, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Skirycz, A.; Claeys, H.; Maleux, K.; Dhondt, S.; De Bodt, S.; Vanden Bossche, R.; De Milde, L.; Yoshizumi, T.; Matsui, M.; et al. Ethylene response factor 6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiol. 2013, 162, 319–332. [Google Scholar] [CrossRef]
- Ding, Z.J.; Yan, J.Y.; Li, G.X.; Wu, Z.C.; Zhang, S.Q.; Zheng, S.J. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Plant J. 2014, 79, 810–823. [Google Scholar] [CrossRef]
- Song, G.; Li, X.; Munir, R.; Khan, A.R.; Azhar, W.; Yasin, M.U.; Jiang, Q.; Bancroft, I.; Gan, Y. The WRKY6 transcription factor affects seed oil accumulation and alters fatty acid compositions in Arabidopsis thaliana. Physiol. Plant. 2020, 169, 612–624. [Google Scholar] [CrossRef]
- Wang, P.; Nolan, T.M.; Yin, Y.; Bassham, D.C. Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis. Autophagy 2020, 16, 123–139. [Google Scholar] [CrossRef]
- Murmu, J.; Bush, M.J.; DeLong, C.; Li, S.; Xu, M.; Khan, M.; Malcolmson, C.; Fobert, P.R.; Zachgo, S.; Hepworth, S.R. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol. 2010, 154, 1492–1504. [Google Scholar] [CrossRef]
- Swift, J.; Alvarez, J.M.; Araus, V.; Gutiérrez, R.A.; Coruzzi, G.M. Nutrient dose-responsive transcriptome changes driven by Michaelis-Menten kinetics underlie plant growth rates. Proc. Natl. Acad. Sci. USA 2020, 117, 12531–12540. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wong, W.S.; Zhu, L.; Guo, H.W.; Ecker, J.; Li, N. Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Proteomics 2009, 9, 1646–1661. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Kim, Y.S.; Jung, J.H.; Seo, P.J.; Park, C.M. The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis. J. Biol. Chem. 2012, 287, 15307–15316. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yu, D. The WRKY57 transcription factor affects the expression of jasmonate ZIM-Domain genes transcriptionally to compromise Botrytis cinerea resistance. Plant Physiol. 2016, 171, 2771–2782. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Tian, S.; Xie, G.; Liu, R.; Wang, N.; Li, S.; He, Y.; Du, J. TEM1 combinatorially binds to FLOWERING LOCUS T and recruits a polycomb factor to repress the floral transition in Arabidopsis. Proc. Natl. Acad. Sci. USA 2021, 118, e2103895118. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, H.; He, S.; Zhai, H.; Zhao, N.; Xing, S.; Wei, Z.; Liu, Q. A novel sweetpotato transcription factor gene IbMYB116 enhances drought tolerance in transgenic Arabidopsis. Front. Plant Sci. 2019, 10, 1025. [Google Scholar] [CrossRef]
- Zhang, Y.; Mitsuda, N.; Yoshizumi, T.; Horii, Y.; Oshima, Y.; Ohme-Takagi, M.; Matsui, M.; Kakimoto, T. Two types of bHLH transcription factor determine the competence of the pericycle for lateral root initiation. Nat. Plants 2021, 7, 633–643. [Google Scholar] [CrossRef]
- Zhu, R.; Dong, X.; Xue, Y.; Xu, J.; Zhang, A.; Feng, M.; Zhao, Q.; Xia, S.; Yin, Y.; He, S.; et al. Redox-responsive transcription Factor 1 is involved in extracellular ATP-regulated Arabidopsis thaliana seedling growth. Plant Cell Physiol. 2020, 61, 685–698. [Google Scholar] [CrossRef]
- Hickman, R.; Hill, C.; Penfold, C.A.; Breeze, E.; Bowden, L.; Moore, J.D.; Zhang, P.; Jackson, A.; Cooke, E.; Bewicke-Copley, F.; et al. A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J. 2013, 75, 26–39. [Google Scholar] [CrossRef]
- Ré, D.A.; Capella, M.; Bonaventure, G.; Chan, R.L. Arabidopsis AtHB7 and AtHB12 evolved divergently to fine tune processes associated with growth and responses to water stress. BMC Plant Biol. 2014, 14, 150. [Google Scholar] [CrossRef]
- Guttikonda, S.K.; Valliyodan, B.; Neelakandan, A.K.; Tran, L.S.; Kumar, R.; Quach, T.N.; Voothuluru, P.; Gutierrez-Gonzalez, J.J.; Aldrich, D.L.; Pallardy, S.G.; et al. Overexpression of AtDREB1D transcription factor improves drought tolerance in soybean. Mol. Biol. Rep. 2014, 41, 7995–8008. [Google Scholar] [CrossRef] [PubMed]
- Hur, Y.S.; Um, J.H.; Kim, S.; Kim, K.; Park, H.J.; Lim, J.S.; Kim, W.Y.; Jun, S.E.; Yoon, E.K.; Lim, J.; et al. Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication. New Phytol. 2015, 205, 316–328. [Google Scholar] [CrossRef]
- Son, O.; Hur, Y.S.; Kim, Y.K.; Lee, H.J.; Kim, S.; Kim, M.R.; Nam, K.H.; Lee, M.S.; Kim, B.Y.; Park, J.; et al. ATHB12, an ABA-inducible homeodomain-leucine zipper (HD-Zip) protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing the expression of a gibberellin 20-oxidase gene. Plant Cell Physiol. 2010, 51, 1537–1547. [Google Scholar] [CrossRef] [PubMed]
- Abdullah-Zawawi, M.R.; Ahmad-Nizammuddin, N.F.; Govender, N.; Harun, S.; Mohd-Assaad, N.; Mohamed-Hussein, Z.A. Comparative genome-wide analysis of WRKY, MADS-box and MYB transcription factor families in Arabidopsis and rice. Sci. Rep. 2021, 11, 19678. [Google Scholar] [CrossRef]
- Gregis, V.; Sessa, A.; Colombo, L.; Kater, M.M. AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J. 2008, 56, 891–902. [Google Scholar] [CrossRef]
- Lee, J.H.; Yoo, S.J.; Park, S.H.; Hwang, I.; Lee, J.S.; Ahn, J.H. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 2007, 21, 397–402. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Hong, Y.; Yao, J.; Ren, Z.; Shi, H.; Zhu, J.-K. The Flowering repressor SVP confers drought resistance in Arabidopsis by regulating abscisic acid catabolism. Mol. Plant. 2018, 11, 1184–1197. [Google Scholar] [CrossRef]
- Bian, Z.; Wang, X.; Lu, J.; Wang, D.; Zhou, Y.; Liu, Y.; Wang, S.; Yu, Z.; Xu, D.; Meng, S. The yellowhorn AGL transcription factor gene XsAGL22 contributes to ABA biosynthesis and drought tolerance in poplar. Tree Physiol. 2022, 42, 1296–1309. [Google Scholar] [CrossRef] [PubMed]
- Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY transcription factors. Trends Plant Sci. 2010, 15, 247–258. [Google Scholar] [CrossRef]
- Tian, X.; Li, X.; Zhou, W.; Ren, Y.; Wang, Z.; Liu, Z.; Tang, J.; Tong, H.; Fang, J.; Bu, Q. Transcription Factor OsWRKY53 Positively Regulates Brassinosteroid Signaling and Plant Architecture. Plant Physiol. 2017, 175, 1337–1349. [Google Scholar] [CrossRef]
- Tang, J.; Tian, X.; Mei, E.; He, M.; Gao, J.; Yu, J.; Xu, M.; Liu, J.; Song, L.; Li, X.; et al. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels. Plant Cell. 2022, 34, 4495–4515. [Google Scholar] [CrossRef]
- Li, S. The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. Plant Signal. Behav. 2015, 10, e1044192. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Fujioka, S.; Blancaflor, E.B.; Miao, S.; Gou, X.; Li, J. TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell. 2010, 22, 1161–1173. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Tyagi, A.K. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Sci. Rep. 2015, 5, 12381. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, J.; Zhu, Z.; Dong, X.; Wang, X.; Ren, G.; Zhou, X.; Kuai, B. TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana. Plant J. 2015, 82, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Spears, B.J.; McInturf, S.A.; Collins, C.; Chlebowski, M.; Cseke, L.J.; Su, J.; Mendoza-Cózatl, D.G.; Gassmann, W. Class I TCP transcription factor AtTCP8 modulates key brassinosteroid-responsive genes. Plant Physiol. 2022, 190, 1457–1473. [Google Scholar] [CrossRef]
- Aguilar-Martínez, J.A.; Poza-Carrión, C.; Cubas, P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell. 2007, 19, 458–472. [Google Scholar] [CrossRef] [PubMed]
- Hongo, S.; Sato, K.; Yokoyama, R.; Nishitani, K. Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem. Plant Cell 2012, 24, 2624–2634. [Google Scholar] [CrossRef]
- Pelloux, J.; Rustérucci, C.; Mellerowicz, E.J. New insights into pectin methylesterase structure and function. Trends Plant Sci. 2007, 12, 267–277. [Google Scholar] [CrossRef]
- Jhu, M.Y.; Ichihashi, Y.; Farhi, M.; Wong, C.; Sinha, N.R. LATERAL ORGAN BOUNDARIES DOMAIN 25 functions as a key regulator of haustorium development in dodders. Plant Physiol. 2021, 186, 2093–2110. [Google Scholar] [CrossRef]
Line | ||||||
---|---|---|---|---|---|---|
WT1 | WT2 | WT3 | OE1 | OE2 | OE3 | |
Total reads | 54,972,750 | 46,585,190 | 54,662,374 | 49,276,572 | 47,526,720 | 47,288,042 |
Remained reads | 54,427,838 | 46,086,360 | 54,135,992 | 48,817,678 | 47,114,484 | 46,871,232 |
Aligned reads | 40,659,657 (74.7%) | 34,628,473 (75.14%) | 40,477,343 (74.77%) | 36,452,608 (74.67%) | 34,956,172 (74.19%) | 34,884,122 (74.43%) |
GC content (%) | 44.91 | 44.98 | 44.69 | 44.91 | 44.73 | 44.86 |
Q20 (%) | 97.77 | 97.78 | 97.72 | 97.82 | 97.85 | 97.87 |
Q30 (%) | 93.72 | 93.79 | 93.6 | 93.88 | 93.96 | 93.98 |
Populus | Arabidopsis | Gene Name | Gene Description | CArG Sites | References |
---|---|---|---|---|---|
Potri.001G404400 | AT3G15510 | NAC regulated seed morphology 1 | Regulates the development of integuments and degeneration of embryogenesis. Establishes a top-down signal that drives meristem asymmetric cell division of phloem sieve elements. | 4 | Hyoujin Kim et al. 2020 [30]; Kunieda et al. 2008 [31]. |
Potri.001G409500 | AT5G48150 | Phytochrome a signal transduction 1 | Specifically involved in phytochrome A signal transduction. | 11 | Patricia Torres-Galea et al. 2013 [32]. |
Potri.001G415200 | AT5G48150 | Phytochrome a signal transduction 1 | Specifically involved in phytochrome A signal transduction. | 9 | Patricia Torres-Galea et al. 2013 [32]. |
Potri.002G002200 | AT1G43000 | Platz transcription factor | 0 | ||
Potri.002G018400 | AT2G17770 | bZIP transcription factor | Interacts with FD and FT. | 51 | Maida Romera-Brancha et al. 2020 [33]. |
Potri.002G119300 | AT5G04340 | ZAT6, C2H2 zinc finger transcription factor | Increases salt stress tolerance by decreasing lipid peroxidation, increasing the content of abscisic acid and GA8, and enhancing antioxidant enzyme activities. Helps Arabidopsis positively mediate heavy metal Cd stress. | 1 | Wei Tang et al. 2018 [34]; Jian Chen et al. 2016 [35]. |
Potri.003G065400 | AT3G13840 | GRAS transcription factor | 9 | ||
Potri.003G080600 | AT4G17490 | ERF subfamily B-3 of ERF/AP2 transcription factor | A central activator to inhibit leaf growth and induce stress tolerance genes. | 5 | Dubois M et al. 2013 [36]. |
Potri.003G138600 | AT4G11070 | WRKY transcription factor 41 | Involved in primary seed dormancy and thermoinhibition. Key regulator in cross talk of SA and JA pathways. | 2 | Zhong Jie Ding et al. 2014 [37]; Kuniaki Higashi et al. 2008 [25]. |
Potri.004G007500 | AT1G62300 | WRKY transcription factor 6 | Serves a function in plant senescence, pathogen defense, abiotic stress, and accumulation of FAs. | 5 | Ge Song et al. 2020 [38]. |
Potri.004G203400 | AT1G08320 | bZIP transcription factor (TGACG motif binding protein 9) | Positive regulator of autophagy. In tga9 tga10 Arabidopsis mutants, adaxial and abaxial anther lobe development is differentially affected. | 2 | Ping Wang et al. 2020 [39]; Jhadeswar Murmu et al. 2010 [40]. |
Potri.005G082000 | AT5G65210 | bZIP transcription factor (TGACG motif binding protein 1) | An early N-responsive TF, perturbs the maximum rates of N-dose transcriptomic responses (V max), Km, as well as the rate of N-dose-responsive plant growth. | 3 | Joseph Swift et al. 2020 [41]. |
Potri.005G195000 | AT5G50080 | Ethylene response factor 110 | Putative novel ethylene signaling component. | 6 | Li H et al. 2009 [42]. |
Potri.005G257200 | AT2G45430 | AT hook motif nuclear localized protein 22 | Regulates flowering time through modifying FLOWERING LOCUS T (FT) chromatin. | 2 | Ju Yun et al. 2012 [43]. |
Potri.007G010800 | AT2G22540 | MADS-box transcription factor | Floral repressor that functions within the thermosensory pathway. | ||
Potri.007G085700 | AT5G65210 | bZIP transcription factor (TGACG motif binding protein 1) | An early N-responsive TF, perturbs the maximum rates of N-dose transcriptomic responses (V max), Km, as well as the rate of N-dose-responsive plant growth. | 8 | Joseph Swift et al. 2020 [41]. |
Potri.008G094000 | AT1G69310 | WRKY DNA-binding protein 57 | Confers drought tolerance and response to Botrytis cinerea infection. | 6 | Yanjuan Jiang et al. 2016 [27]; Yanjuan Jiang and Diqiu Yu 2016 [44]. |
Potri.008G117100 | AT1G25560 | RAV transcription factor that contains AP2 and B3 binding domains | Overexpression causes late flowering and repression of expression of FT. | 5 | Hongmiao Hu et al. 2021 [45]. |
Potri.008G122100 | AT1G25340 | MYB116 | Enhanced drought tolerance, increased MeJA content, and decreased H2O2 level under drought stress. | 2 | Yuanyuan Zhou et al. 2019 [46]. |
Potri.008G142700 | AT1G31050 | bHLH transcription factor; Pericycle factor type A1 | Confers competence for auxin-induced cell division. | 4 | Ye Zhang et al. 2021 [47]. |
Potri.009G101900 | AT4G34410 | AP2 transcription factor; Redox responsive transcription factor 1 | Involved in eATP-regulated seedling growth. Exogenous adenosine triphosphate inhibits green seedling root growth and induces hypocotyl bending of etiolated seedlings. | 3 | Ruojia Zhu et al. 2020 [48]. |
Potri.009G164300 | AT1G08320 | bZIP transcription factor (TGACG motif binding protein 9) | Positive regulator of autophagy. In maize, mutation of the TGA9 homolog LIGULELESS2 causes defects in the formation of the blade–sheath boundary in leaves and delayed flowering. | 3 | Ping Wang et al. 2020 [39]; Jhadeswar Murmu et al. 2010 [40]. |
Potri.011G123300 | AT3G15500 | NAC domain containing protein 55 | Particates in pathogen response pathway induced by chitin. Appears to be dependent on ANAC055. | 2 | Richard Hickman et al. 2013 [49]. |
Potri.011G131100 | AT1G50600 | Scarecrow-like 5 | 7 | ||
Potri.012G023700 | AT2G46680 | Arabidopsis thaliana homeobox 7 | Promotes leaf development, chlorophyll levels, and photosynthesis; reduces stomatal and delays senescence processes. | 3 | Delfina A Ré et al. 2014 [50]. |
Potri.012G134100 | AT5G51990 | Dehydration responsive element binding protein 1D | Improved drought tolerance. | 4 | Satish K Guttikonda et al. 2014 [51]. |
Potri.014G007100 | AT2G22850 | Basic leucine zipper 6 | 5 | ||
Potri.014G096200 | AT4G23810 | WRKY53 | WRKY53 and histone deacetylase HDA9 are antagonists in response to plant stress. Node of multilayer regulation in the network of senescence. | 8 | Yu Zheng et al. 2020 [29]. Ulrike Zentgraf and Jasmin Doll 2019 [28]. |
Potri.014G103000 | AT3G61890 | Arabidopsis thaliana homeobox 12 | Positive regulator of endoreduplication and cell growth during leaf development. Negatively regulates inflorescence stem growth by decreasing gibberellin 20-oxidase gene expression. | 6 | Yoon-Sun Hur et al. 2015 [52]; Ora Son et al. 2010 [53]. |
Potri.015G050500 | AT1G68800 | TCP domain protein 12 | Arrests axillary bud development and prevents axillary bud outgrowth. | 6 | |
Potri.015G136400 | AT5G51990 | Dehydration responsive element binding protein 1D | Improved drought tolerance. | 4 | Satish K Guttikonda et al. 2014 [51]. |
Potri.016G047900 | AT5G06800 | Similar to MYB transcription factor | 6 | ||
Potri.016G126100 | AT2G38340 | Dehydration responsive element binding protein 19 | Involved in response to drought. | 3 | |
Potri.017G147000 | AT1G01490 | Heavy metal transport/detoxification superfamily protein. | 2 | ||
Potri.T127400 | AT2G04890 | SCARECROW-Like 21 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Cheng, R.; Liu, Y.; Wang, S.; Yang, Z.; Meng, S. Transcriptome Analysis of Populus Overexpression in SVL Transcription Factor. Forests 2023, 14, 1692. https://doi.org/10.3390/f14091692
Wang D, Cheng R, Liu Y, Wang S, Yang Z, Meng S. Transcriptome Analysis of Populus Overexpression in SVL Transcription Factor. Forests. 2023; 14(9):1692. https://doi.org/10.3390/f14091692
Chicago/Turabian StyleWang, Dongli, Renwu Cheng, Yunshan Liu, Shengkun Wang, Zhende Yang, and Sen Meng. 2023. "Transcriptome Analysis of Populus Overexpression in SVL Transcription Factor" Forests 14, no. 9: 1692. https://doi.org/10.3390/f14091692
APA StyleWang, D., Cheng, R., Liu, Y., Wang, S., Yang, Z., & Meng, S. (2023). Transcriptome Analysis of Populus Overexpression in SVL Transcription Factor. Forests, 14(9), 1692. https://doi.org/10.3390/f14091692