Using Transferable Eucalypt Microsatellite Markers to Identify QTL for Resistance to Ceratocystis Wilt Disease in Eucalyptus pellita F. Muel. (Myrtales, Myrtaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Fungal Inoculation and Phenotypic Evaluation
2.3. Microsatellite Genotyping
2.4. Genetic Linkage Map Analyses
2.5. QTL Analysis
3. Results
3.1. Phenotypic Evaluation
3.2. Genotyping and Linkage Map Analysis
3.3. QTL Mapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sumathi, M.; Yasodha, R. Microsatellite resources of Eucalyptus: Current status and future perspectives. Bot. Stud. 2014, 55, 73. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Islam, M.S.; Sood, S.; Maya, S.; Hanson, E.A.; Comstock, J.; Wang, J. Identifying quantitative trait loci (QTLs) and developing diagnostic markers linked to orange rust resistance in sugarcane (Saccharum spp.). Front. Plant Sci. 2018, 9, 350. [Google Scholar] [CrossRef]
- Fernandes, L.D.S.; Royaert, S.; Corrêa, F.M.; Mustiga, G.M.; Marelli, J.-P.; Corrêa, R.X.; Motamayor, J.C. Mapping of a major QTL for ceratocystis wilt disease in an F1 population of Theobroma cacao. Front. Plant Sci. 2018, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.M.F.; Lopes, U.V.; Silva, S.D.V.M.; Micheli, F.; Clement, D.; Gramacho, K.P. Identification of quantitative trait loci linked to ceratocystis wilt resistance in cacao. Mol. Breed. 2012, 30, 1563–1571. [Google Scholar] [CrossRef]
- Thavamanikumar, S.; Arnold, R.J.; Luo, J.; Thumma, B.R. Genomic studies reveal substantial dominant effects and improved genomic predictions in an open-pollinated breeding population of Eucalyptus pellita. G3 Genes Genomes Genet. 2020, 10, 3751–3763. [Google Scholar] [CrossRef]
- Müller, B.S.F.; Neves, L.G.; De Almeida Filho, J.E.; Resende, M.F.R.; Muñoz, P.R.; Dos Santos, P.E.T.; Filho, E.P.; Kirst, M.; Grattapaglia, D. Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of Eucalyptus. BMC Genom. 2017, 18, 1–17. [Google Scholar] [CrossRef]
- Brondani, R.P.; Williams, E.R.; Brondani, C.; Grattapaglia, D. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biol. 2006, 6, 20. [Google Scholar] [CrossRef]
- Brondani, R.P.; Brondani, C.; Grattapaglia, D. Towards a genus-wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers. Mol. Genet. Genom. 2002, 267, 338–347. [Google Scholar] [CrossRef]
- Brondani, R.P.V.; Brondani, C.; Tarchini, R.; Grattapaglia, D. Development, characterization and mapping of microsatellite markers in Eucalyptus grandis and E. urophylla. Theor. Appl. Genet. 1998, 97, 816–827. [Google Scholar] [CrossRef]
- Santos, K.L.D.; Welter, L.J.; Dantas, A.C.D.M.; Guerra, M.P.; Ducroquet, J.P.H.J.; Nodari, R.O. Transference of microsatellite markers from Eucalyptus spp. to Acca sellowiana and the successful use of this technique in genetic characterization. Genet. Mol. Biol. 2007, 30, 73–79. [Google Scholar] [CrossRef]
- Grattapaglia, D.; Mamani, E.M.C.; Silva-Junior, O.B.; Faria, D.A. A novel genome-wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence. Mol. Ecol. Resour. 2015, 15, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, L.M.S.; Titon, M.; Lau, D.; Rosse, L.N.; Oliveira, L.S.S.; Rosado, C.C.G.; Christo, G.G.O.; Alfenas, A.C. Eucalyptus pellita as a source of resistance to rust, ceratocystis wilt and leaf blight. Crop. Breed. Appl. Biotechnol. 2010, 10, 124–131. [Google Scholar] [CrossRef]
- Zauza, E.A.V.; Alfenas, A.C. Resistance of Eucalyptus clones to Ceratocystis fimbriata. Plant Dis. 2004, 88, 758–760. [Google Scholar] [CrossRef] [PubMed]
- Alfenas, A.; Zauza, E.; Mafia, R.; Assis, T. Clonagem e Doenças do Eucalipto. 2a; Editora UFV: Viçosa, MG, Brazil, 2009. [Google Scholar]
- Rosado, C.C.G.; da Silva Guimarães, L.M.; Faria, D.A.; de Resende, M.D.V.; Cruz, C.D.; Grattapaglia, D.; Alfenas, A.C. QTL mapping for resistance to ceratocystis wilt in Eucalyptus. Tree Genet. Genomes 2016, 12, 1–10. [Google Scholar] [CrossRef]
- Rosado, C.C.G.; Guimarães, L.M.D.S.; Titon, M.; Lau, D.; Rosse, L.; Resende, M.D.V.D.; Alfenas, A.C. Resistance to ceratocystis wilt (Ceratocystis fimbriata) in parents and progenies of Eucalyptus grandis * E. urophylla. Silvae Genet. 2010, 59, 99–106. [Google Scholar] [CrossRef]
- Pinto, C.D.S.; Costa, R.M.L.D.; Moraes, C.B.D.; Mori, E.S.; Pieri, C.D.; Tambarussi, E.V.; Furtado, E.L. Genetic variability in progenies of Eucalyptus dunnii Maiden for resistance to Puccinia psidii. Crop. Breed. Appl. Biotechnol. 2014, 14, 187–193. [Google Scholar] [CrossRef]
- Hall, D.; Hallingbäck, H.R.; Wu, H.X. Estimation of number and size of QTL effects in forest tree traits. Tree Genet. Genomes 2016, 12, 1–17. [Google Scholar] [CrossRef]
- Fonseca, R.R.G.; Gonçalves, F.M.A.; Rosse, L.N.; Ramalho, M.A.P.; Bruzi, A.T.; Reis, C.A.F. Realized heritability in the selection of Eucalyptus spp. trees through progeny test. Crop. Breed. Appl. Biotechnol. 2010, 10, 160–165. [Google Scholar] [CrossRef]
- Miles, C.M.; Wayne, M. Quantitative Trait Locus (QTL) Analysis. Nat. Educ. 2008, 1, 208. [Google Scholar]
- Li, J.X.; Yu, S.B.; Xu, C.G.; Tan, Y.F.; Gao, Y.J.; Li, X.H.; Zhang, Q. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theor. Appl. Genet. 2000, 101, 248–254. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 2005, 142, 169–196. [Google Scholar] [CrossRef]
- Young, N.D. QTL mapping and quantitative disease resistance in plants. Annu. Rev. Phytopathol. 1996, 34, 479–501. [Google Scholar] [CrossRef] [PubMed]
- Khedikar, Y.P.; Gowda, M.V.C.; Sarvamangala, C.; Patgar, K.V.; Upadhyaya, H.D.; Varshney, R.K. A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor. Appl. Genet. 2010, 121, 971–984. [Google Scholar] [CrossRef]
- Ammitzboll, H.; Vaillancourt, R.E.; Potts, B.M.; Singarasa, S.; Mani, R.; Freeman, J.S. Quantitative Trait Loci (QTLs) for intumescence severity in Eucalyptus globulus and validation of QTL detection based on phenotyping using open-pollinated families of a mapping population. Plant Dis. 2018, 102, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Mohan, M.; Nair, S.; Bhagwat, A.; Krishna, T.G.; Yano, M.; Bhatia, C.R.; Sasaki, T. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol. Breed. 1997, 3, 87–103. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Harrington, T.C.; Alfenas, A.C.; Mizubuti, E.S.G. Movement of genotypes of Ceratocystis fimbriata within and among Eucalyptus plantations in Brazil. Phytophatology 2011, 101, 1005–1012. [Google Scholar] [CrossRef]
- Harrington, T.C. The genus Ceratocystis: Where does the oak wilt fungus fit? In Proceedings of the National Oak Wilt Symposium, Austin, TX, USA, 4–7 June 2007; pp. 27–43. [Google Scholar]
- Fernandes, B.V.; Zanuncio, A.J.V.; Furtado, E.L.; Andrade, H.B. Damage and loss due to Ceratocystis fimbriata in eucalyptus wood for charcoal production. BioResources 2014, 9, 5473–5479. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Xu, K.C.; Yang, J.Y.; Han, Y.H.; Sun, Y.X.; Huang, Y.H. First report of wilt of eucalyptus caused by Ceratocystis fimbriata in China. Am. Phytophatological Sociaty 2014, 98, 1744. [Google Scholar] [CrossRef]
- Thu, P.Q.; Qynh, D.N.; Del, B. Ceratocystis sp. caused crown wilt of Acacia spp. planted in some ecological zones of Vietnam. In Proceedings of the International Conference on the Impacts of Climate Change to Forest Pests and Diseases in the Tropics, Yogyakarta, Indonesia, 8–10 October 2012. [Google Scholar]
- van Wyk, M.; Roux, J.; Nkuekam, G.K.; Wingfield, B.D.; Wingfield, M.J. Ceratocystis eucalypticola sp. nov. from Eucalyptus in South Africa and comparison to global isolates from this tree. IMA Fungus 2012, 3, 45–58. [Google Scholar] [CrossRef]
- Booth, T.H.; Jovanovic, T.; Arnold, R.J. Planting domains under climate change for Eucalyptus pellita and Eucalyptus urograndis in parts of China and South East Asia. Aust. For. 2017, 80, 1–9. [Google Scholar] [CrossRef]
- Brawner, J.T.; Bush, D.J.; Macdonell, P.F.; Warburton, P.M.; Clegg, P.A. Genetic parameters of red mahogany breeding populations grown in the tropics. Aust. For. 2010, 73, 177–183. [Google Scholar] [CrossRef]
- Francis, A.; Beadle, C.; Puspitasari, D.; Irianto, R.; Agustini, L.; Rimbawanto, A.; Gafur, A.; Hardiyanto, E.; Junarto, N.H.; Tjahjono, B.; et al. Disease progression in plantations of Acacia mangium affected by red root rot (Ganoderma philippii). For. Pathol. 2014, 44, 447–459. [Google Scholar] [CrossRef]
- Mendham, D.; Rimbawanto, A. Increasing Productivity and Profitability of Indonesian Smallholder Plantations; Australia Centre for International Agricultural Research (ACIAR): Canberra, Australia, 2015.
- Nambiar, E.K.S.; Harwood, C.E.; Mendham, D.S. Paths to sustainable wood supply to the pulp and paper industry in Indonesia after diseases have forced a change of species from acacia to eucalypts. Aust. For. 2018, 81, 148–161. [Google Scholar] [CrossRef]
- Brawner, J.; Japarudin, Y.; Lapammu, M.; Rauf, R.; Boden, D.; Wingfield, M.J. Evaluating the inheritance of Ceratocystis acaciivora symptom expression in a diverse Acacia mangium breeding population. South. For. A J. For. Sci. 2015, 77, 83–90. [Google Scholar] [CrossRef]
- Oliveira, L.S.S.; Damacena, M.B.; Guimarães, L.M.S.; Siqueira, D.L.; Alfenas, A.C. Ceratocystis fimbriata isolates on Mangifera indica have different levels of aggressiveness. Eur. J. Plant Pathol. 2016, 145, 847–856. [Google Scholar] [CrossRef]
- Faria, D.A.; Mamani, E.M.C.; Pappas, G.J.; Grattapaglia, D. Genotyping systems for Eucalyptus based on tetra-, penta-, and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests. Tree Genet. Genomes 2010, 7, 63–77. [Google Scholar] [CrossRef]
- He, X.; Wang, Y.; Li, F.; Weng, Q.; Li, M.; Xu, L.-A.; Shi, J.; Gan, S. Development of 198 novel EST-derived microsatellites in Eucalyptus (Myrtaceae). Am. J. Bot. 2012, 99, e134–e148. [Google Scholar] [CrossRef]
- Grattapaglia, D.; Sederoff, R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: Mapping strategy and RAPD markers. Genetics 1994, 137, 1121–1137. [Google Scholar] [CrossRef]
- Bassam, B.J.; Caetano-Anollés, G.; Gresshoff, P.M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 1991, 196, 80–83. [Google Scholar] [CrossRef]
- Broman, K.W.; Wu, H.; Sen, S.; Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef]
- Haldane, J.B.S. The combination of linkage values and the calculation of distance between the loci of linked factors. J. Genet. 1919, 8, 299–309. [Google Scholar]
- Kosambi, D.D. The estimation of map distances from recombination values. Ann. Eugen. 1943, 12, 172–175. [Google Scholar] [CrossRef]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed]
- Jelihovschi, E.; Faria, J.C.; Allaman, I.B. ScottKnott: A package for performing the Scott-Knott clustering algorithm in R. TEMA 2014, 15, 3–17. [Google Scholar] [CrossRef]
- Arriel, D.A.A.; Guimarães, L.M.D.S.; Resende, M.D.V.D.; Lima Neto, F.P.; Silva, D.F.S.H.S.; Siqueira, D.L.D.; Alfenas, A.C. Genetic control of resistance on Mangifera indica to ceratocystis wilt. Sci. Hortic. 2016, 211, 312–318. [Google Scholar] [CrossRef]
- van Wyk, M.; Heath, R.N.; Tarigan, M.; Vermeulen, M.; Wingfield, M.J. Comparison of procedures to evaluate the pathogenicity of Ceratocystis fimbriata sensu lato isolates from Eucalyptus in South Africa. South. For. A J. For. Sci. 2010, 72, 57–62. [Google Scholar] [CrossRef]
- Gomes, C.A.F.C.; Pereira, F.B.; Garcia, F.A.D.O.; Garret, A.T.D.A.; Siqueira, L.D.; Tambarussi, E.V. Inoculação de Ceratocystis fimbriata Ellis & Halsted em Eucalyptus spp. e avaliação da diversidade genética por marcadores ISSR. Sci. For. 2019, 47, 579–587. [Google Scholar] [CrossRef]
- Oliveira, L.S.S.; Guimarães, L.M.S.; Ferreira, M.A.; Nunes, A.S.; Pimenta, L.V.A.; Alfenas, A.C.; Cleary, M. Aggressiveness, cultural characteristics and genetic variation of Ceratocystis fimbriata on Eucalyptus spp. For. Pathol. 2015, 45, 505–514. [Google Scholar] [CrossRef]
- Grattapaglia, D.; Vaillancourt, R.E.; Shepherd, M.; Thumma, B.R.; Foley, W.; Külheim, C.; Potts, B.M.; Myburg, A.A. Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet. Genomes 2012, 8, 463–508. [Google Scholar] [CrossRef]
- Sumathi, M.; Bachpai, V.K.W.; Mayavel, A.; Dasgupta, M.G.; Nagarajan, B.; Rajasugunasekar, D.; Sivakumar, V.; Yasodha, R. Genetic linkage map and QTL identification for adventitious rooting traits in red gum eucalypts. 3 Biotech 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Guichoux, E.; Lagache, L.; Wagner, S.; Chaumeil, P.; Léger, P.; Lepais, O.; Lepoittevin, C.; Malausa, T.; Revardel, E.; Salin, F.; et al. Current trends in microsatellite genotyping. Mol. Ecol. Resour. 2011, 11, 591–611. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.; Brondani, R.; Grattapaglia, D.; Sederoff, R. Conservation and synteny of SSR loci and QTLs for vegetative propagation in four Eucalyptus species. Theor. Appl. Genet. 2002, 105, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Thamarus, K.; Groom, K.; Bradley, A.; Raymond, C.A.; Schimleck, L.R.; Williams, E.R.; Moran, G.F. Identification of quantitative trait loci for wood and fibre properties in two full-sib pedigrees of Eucalyptus globulus. Theor. Appl. Genet. 2004, 109, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Sumathi, M.; Bachpai, V.K.W.; Deeparaj, B.; Mayavel, A.; Dasgupta, M.G.; Nagarajan, B.; Rajasugunasekar, D.; Sivakumar, V.; Yasodha, R. Quantitative trait loci mapping for stomatal traits in interspecific hybrids of Eucalyptus. J. Genet. 2018, 97, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Thamarus, K.A.; Groom, K.; Murrell, J.; Byrne, M.; Moran, G.F. A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fibre, and floral traits. Theor. Appl. Genet. 2002, 104, 379–387. [Google Scholar] [CrossRef]
- Luo, C.; Shu, B.; Yao, Q.; Wu, H.; Xu, W.; Wang, S. Construction of a high-density genetic map based on large-scale marker development in mango using Specific-Locus Amplified Fragment Sequencing (SLAF-seq). Front. Plant Sci. 2016, 7, 1310. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B 2008, 363, 557–572. [Google Scholar] [CrossRef]
- Li, B.; Tian, L.; Zhang, J.; Huang, L.; Han, F.; Yan, S.; Wang, L.; Zheng, H.; Sun, J. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genom. 2014, 15, 1086. [Google Scholar] [CrossRef]
- Medina-Macedo, L.; Coelho, A. QTL tools applied to forest breeding. BMC Proc. 2011, 5, 47. [Google Scholar] [CrossRef]
- Wen, Y.; Fang, Y.; Hu, P.; Tan, Y.; Wang, Y.; Hou, L.; Deng, X.; Wu, H.; Zhu, L.; Zhu, L.; et al. Construction of a high-density genetic map based on SLAF markers and QTL analysis of leaf size in rice. Front. Plant Sci. 2020, 11, 1143. [Google Scholar] [CrossRef]
- Blair, M.W.; Garris, A.J.; Iyer, A.S.; Chapman, B.; Kresovich, S.; McCouch, S.R. High resolution genetic mapping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice (Oryza sativa L.). Theor. Appl. Genet. 2003, 107, 62–73. [Google Scholar] [CrossRef]
- Tanksley, S.D. Mapping polygenes. Annu. Rev. Genet. 1993, 27, 205–233. [Google Scholar] [CrossRef] [PubMed]
- Hudson, C.J.; Freeman, J.S.; Kullan, A.R.; Petroli, C.D.; Sansaloni, C.P.; Kilian, A.; Detering, F.; Grattapaglia, D.; Potts, B.M.; Myburg, A.A.; et al. A reference linkage map for Eucalyptus. BMC Genom. 2012, 13, 240. [Google Scholar] [CrossRef] [PubMed]
- Grattapaglia, D. Perspectives on genome mapping and marker-assisted breeding of eucalypts. South. For. A J. For. Sci. 2008, 70, 69–75. [Google Scholar] [CrossRef]
- Liu, W.; Gowda, M.; Steinhoff, J.; Maurer, H.P.; Würschum, T.; Longin, C.F.H.; Cossic, F.; Reif, J.C. Association mapping in an elite maize breeding population. Theor. Appl. Genet. 2011, 123, 847–858. [Google Scholar] [CrossRef]
- Liu, W.; Maurer, H.P.; Reif, J.C.; Melchinger, A.E.; Utz, H.F.; Tucker, M.R.; Ranc, N.; Della Porta, G.; Würschum, T. Optimum design of family structure and allocation of resources in association mapping with lines from multiple crosses. Heredity 2013, 110, 71–79. [Google Scholar] [CrossRef]
- Varshney, R.K.; Bohra, A.; Yu, J.; Graner, A.; Zhang, Q.; Sorrells, M.E. Designing future crops: Genomics-assisted breeding comes of age. Trends Plant Sci. 2021, 26, 631–649. [Google Scholar] [CrossRef]
- Santos, S.A.; Vidigal, P.M.P.; Thrimawithana, A.; Betancourth, B.M.L.; Guimaraes, L.M.S.; Templeton, M.D.; Alfenas, A.C. Comparative genomic and transcriptomic analyses reveal different pathogenicity-related genes among three eucalyptus fungal pathogens. Fungal Genet. Biol. 2020, 137, 103332. [Google Scholar] [CrossRef]
Marker (Prefix) | Marker Number | Original Species Target | Reference |
---|---|---|---|
EUCeSSR | 010, 070, 130, 131, 165, 227 | E. urophylla, E. tereticornis Sm | [41] |
EMBRA | 925, 1307, 1364, 1811, 2014 | E. grandis, E. saligna Sm, E. camaldulensis Brooker & Hopper, E. urophylla, E. globulus Labill, E. dunnii Maiden | [11,40] |
EMBRA | 5, 6, 20 | E. grandis, E. urophylla | [9] |
EMBRA | 21, 23, 28, 29, 31, 36, 40, 41, 42, 47, 56 | E. grandis, E. urophylla | [8] |
EMBRA | 114, 155, 156, 157, 158, 159, 169, 172, 184, 191, 195, 207, 239, 269, 277, 279, 301, 302, 350, 351, 368, 369, 372, 378 | E. grandis, E. urophylla | [7] |
Primer ID | Primer Sequences 5′ to 3′ | LG * | SSR Type | Allele Size Range | |
---|---|---|---|---|---|
EMBRA5 | F | ATGCTGGTCCAACTAAGATT | 5 | Di | 117–130 |
R | TGAGCCTAAAAGCCCAAC | ||||
EMBRA20 | F | GTGAGTGGGTATCCATCG | 6 | Di | 136–154 |
R | GCTGGAACTGGTCTTGAG | ||||
EMBRA21 | F | ACAAGGGAAACTTGATCG | 10 | Di | 148–150 |
R | GGAACCGAACATAGCAAG | ||||
EMBRA31 | F | AATTGCCCGAGTCAAAATAC | 6 | Di | 129–145 |
F | GGAACAATGTGGTTTGGG | ||||
EMBRA40 | R | AAAGTATCTTCACGCTTCAT | 10 | Di | 120–146 |
F | TCCCAATCATGATCTTCAG | ||||
EMBRA42 | R | GAGTAAAAATTGGTTTTGAGTG | 7 | Di | 115–126 |
F | CCCTCTTTTCATTTTGTCTT | ||||
EMBRA56 | R | TCATTGACATGCTGACTGT | 1 | Di | 127–143 |
F | ACTAACAGTTGAAAAGGTAAAGC | ||||
EMBRA156 | F | GTCAGATTGGATCTATGC | 4 | Di | 115–117 |
R | GAACAAGTAGATCCTCGTA | ||||
EMBRA157 | F | TGCCAGAATGTATCGTCC | 8 | Di | 128–152 |
R | TCTGGCTTCTTTCTTGTTG | ||||
EMBRA239 | F | AAGAGAGAGTGATTGGCGAG | 3 | Di | 174–193 |
R | CTGTGACACTAGGCATGTTG | ||||
EMBRA269 | F | TCAACTGCAATCCTTACC | 11 | Di | 194–206 |
F | CCTGCAGTGTCAGTGTGT | ||||
EMBRA351 | R | CTAGGTGAGGGAAATGAAA | - | Di | 108–110 |
F | CCAGACAACAAGAAGAAAGT | ||||
EMBRA372 | R | ACTTTGGATTACCCGCTATA | - | Di | 138–148 |
F | CATTCTGATTCCACCGTATA | ||||
EMBRA1364 | R | CGTTTTCGCTCCTCTCTCTC | 8 | Tetra | 580–595 |
F | TGTAGAGATCGGGGTCCTTG | ||||
EMBRA1811 | F | GTCGAGTTGAGTTCGCTTCC | 9 | Hexa | 272–300 |
R | AGTGAATCGGGAGAGGAGGT | ||||
EMBRA2014 | F | CACCGACTTCCTCTTCTTCG | 9 | Tetra | 117–129 |
R | CCCCATCCCTTCTCTCTCTC | ||||
EUCeSSR070 | F | AAACTAAGCTGGGAGGAA | - | Di | 182–189 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Indrayadi, H.; Glen, M.; Kurniawan, Y.R.; Brawner, J.T.; Herdyantara, B.; Beadle, C.; Tjahjono, B.; Mohammed, C. Using Transferable Eucalypt Microsatellite Markers to Identify QTL for Resistance to Ceratocystis Wilt Disease in Eucalyptus pellita F. Muel. (Myrtales, Myrtaceae). Forests 2023, 14, 1703. https://doi.org/10.3390/f14091703
Indrayadi H, Glen M, Kurniawan YR, Brawner JT, Herdyantara B, Beadle C, Tjahjono B, Mohammed C. Using Transferable Eucalypt Microsatellite Markers to Identify QTL for Resistance to Ceratocystis Wilt Disease in Eucalyptus pellita F. Muel. (Myrtales, Myrtaceae). Forests. 2023; 14(9):1703. https://doi.org/10.3390/f14091703
Chicago/Turabian StyleIndrayadi, Heru, Morag Glen, Yusup Randy Kurniawan, Jeremy Todd Brawner, Bambang Herdyantara, Chris Beadle, Budi Tjahjono, and Caroline Mohammed. 2023. "Using Transferable Eucalypt Microsatellite Markers to Identify QTL for Resistance to Ceratocystis Wilt Disease in Eucalyptus pellita F. Muel. (Myrtales, Myrtaceae)" Forests 14, no. 9: 1703. https://doi.org/10.3390/f14091703
APA StyleIndrayadi, H., Glen, M., Kurniawan, Y. R., Brawner, J. T., Herdyantara, B., Beadle, C., Tjahjono, B., & Mohammed, C. (2023). Using Transferable Eucalypt Microsatellite Markers to Identify QTL for Resistance to Ceratocystis Wilt Disease in Eucalyptus pellita F. Muel. (Myrtales, Myrtaceae). Forests, 14(9), 1703. https://doi.org/10.3390/f14091703