Optimizing Landscape Structure of Hybrid Land Use in Ecological Corridors Based on Comprehensive Benefit Index in Metropolitan Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodological Framework
2.2. Study Area
2.3. Data Sources and Processing
2.3.1. Data Sources from Existing Research Results
2.3.2. Other Data Sources
2.4. Correction of Ecological Resistance Value for Non-Ecological Lands
2.5. Comprehensive Benefit Index of Ecological Corridors
3. Results
3.1. Optimal Conversion Ratio of Agricultural Land in Ecological Corridors and Analysis
3.2. Optimal Conversion Ratio of Constructed Land in Ecological Corridors and Analysis
4. Discussion
4.1. Significance of Optimizing Hybrid Landscape Land Structure in Ecological Corridors from the Perspective of Comprehensive Benefits
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
No | Corridor i | a | b | c | d | m | n | x (Maximum of A) | y (Maximum of C) |
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 12,083.30 | 24,579.77 | 25.00 | 58,521,876.90 | 19,890,396.33 | 1,209,045.78 | 15.65 | 43.47 |
2 | 5 | 11,859.27 | 24,350.84 | 25.00 | 32,181,054.40 | 30,152,431.84 | 4,053,077.10 | 22.16 | 78.83 |
3 | 12 | 12,040.30 | 24,535.99 | 25.00 | 111,933,675.93 | 123,996,475.20 | 8,204,468.30 | 99.21 | 337.03 |
4 | 15 | 11,415.57 | 23,890.97 | 25.00 | 5,447,597.27 | 1,965,288.21 | 164,759.85 | 9.80 | 8.97 |
5 | 16 | 11,727.36 | 24,215.04 | 25.00 | 36,090,400.69 | 21,862,238.34 | 1,208,944.97 | 24.01 | 24.84 |
6 | 23 | 11,428.07 | 23,904.05 | 25.00 | 24,357,348.46 | 10,133,350.88 | 546,616.69 | 56.42 | 37.51 |
7 | 26 | 12,142.87 | 24,640.29 | 25.00 | 73,796,297.00 | 47,039,846.91 | 2,185,146.79 | 13.55 | 15.24 |
8 | 29 | 12,031.18 | 24,526.70 | 25.00 | 24,022,871.67 | 18,304,149.99 | 1,533,025.80 | 33.75 | 11.58 |
9 | 37 | 11,935.61 | 24,429.09 | 25.00 | 17,918,119.92 | 8,607,462.40 | 326,234.87 | 13.27 | 26.42 |
10 | 38 | 12,311.24 | 24,810.52 | 25.00 | 407,930.06 | 196,794.41 | 21,340.42 | 0.31 | 2.38 |
11 | 43 | 11,558.91 | 24,040.50 | 25.00 | 23,872,207.53 | 14,413,167.42 | 492,954.22 | 2.26 | 4.62 |
12 | 45 | 11,752.82 | 24,241.31 | 25.00 | 26,872,102.27 | 16,444,894.86 | 650,417.91 | 2.79 | 4.54 |
13 | 48 | 8799.53 | 20,975.62 | 25.00 | 12,761,568.10 | 5,731,350.67 | 213,266.53 | 0.19 | 0.32 |
14 | 50 | 11,976.22 | 24,470.61 | 25.00 | 104,306,242.00 | 85,461,270.77 | 11,273,686.34 | 176.25 | 970.79 |
15 | 58 | 11,457.43 | 23,934.73 | 25.00 | 32,059,899.46 | 17122727.32 | 1,639,091.42 | 5.07 | 20.88 |
16 | 62 | 11,301.65 | 23,771.46 | 25.00 | 82,100,430.56 | 43,335,500.05 | 1,067,292.99 | 18.02 | 21.85 |
17 | 67 | 12,042.39 | 24,538.12 | 25.00 | 66,649,876.52 | 140,538,476.59 | 15,158,965.97 | 64.84 | 202.51 |
18 | 68 | 12,127.26 | 24,624.44 | 25.00 | 88,396,649.79 | 16,1543,896.80 | 19,619,927.42 | 40.96 | 157.16 |
19 | 70 | 12,318.25 | 24,817.58 | 25.00 | 105,011,002.80 | 244,688,303.36 | 33,631,915.51 | 30.26 | 72.73 |
20 | 72 | 12,155.60 | 24,653.20 | 25.00 | 123,916,499.95 | 166,206,902.34 | 20,852,668.12 | 42.84 | 138.49 |
21 | 73 | 11,690.03 | 24,176.47 | 25.00 | 18,454,300.78 | 8,865,096.06 | 258,232.48 | 11.48 | 45.77 |
22 | 75 | 12,133.16 | 24,630.42 | 25.00 | 20,042,961.41 | 13,625,451.61 | 893,189.53 | 12.87 | 32.93 |
23 | 76 | 11,094.51 | 23,552.61 | 25.00 | 13,444,779.35 | 10,779,199.19 | 1,231,411.90 | 1.99 | 5.39 |
24 | 78 | 11,512.50 | 23,992.18 | 25.00 | 9,359,131.81 | 4,347,870.07 | 131,499.42 | 7.75 | 6.78 |
25 | 79 | 12,104.10 | 24,600.92 | 25.00 | 15,163,421.12 | 9,594,173.63 | 643,355.31 | 10.74 | 39.85 |
26 | 82 | 11,964.73 | 24,458.88 | 25.00 | 15,359,126.26 | 12,882,585.28 | 330,364.25 | 12.05 | 28.26 |
27 | 87 | 11,973.86 | 24,468.21 | 25.00 | 41,777,091.95 | 12,684,511.23 | 161,910.56 | 17.89 | 12.16 |
28 | 88 | 11,994.08 | 24,488.86 | 25.00 | 77,123,255.77 | 31,388,541.31 | 2,157,249.04 | 35.73 | 146.64 |
29 | 103 | 12,015.19 | 24,510.40 | 25.00 | 21,718,149.19 | 11,745,113.36 | 312,811.53 | 32.74 | 62.38 |
30 | 104 | 11,713.71 | 24,200.94 | 25.00 | 8,963,188.02 | 32,892,833.99 | 4,917,848.03 | 0.15 | 0.04 |
31 | 107 | 12,036.53 | 24,532.16 | 25.00 | 67,271,598.31 | 79,443,575.37 | 10,093,084.06 | 25.23 | 70.79 |
32 | 108 | 11,982.06 | 24,476.58 | 25.00 | 102,616,993.18 | 167,611,091.09 | 22,071,160.88 | 63.95 | 197.31 |
33 | 200 | 12,107.50 | 24,604.37 | 25.00 | 65,281,711.28 | 26,644,639.52 | 2,675,012.74 | 44.82 | 542.40 |
34 | 201 | 11,977.67 | 24,472.10 | 25.00 | 190,098,347.78 | 42,066,581.64 | 1,450,453.95 | 31.48 | 347.86 |
35 | 202 | 10,683.96 | 23,112.72 | 25.00 | 93,889,156.42 | 53,843,664.72 | 6,506,430.79 | 15.12 | 39.61 |
36 | 203 | 11,820.23 | 24,310.73 | 25.00 | 79,869,239.73 | 38,374,486.57 | 4,593,803.14 | 14.74 | 224.27 |
37 | 204 | 11,715.92 | 24,203.22 | 25.00 | 132,544,605.70 | 150,310,498.54 | 16,566,577.18 | 8.92 | 86.70 |
38 | 205 | 12,100.36 | 24,597.11 | 25.00 | 44,315,460.59 | 64,281,905.16 | 18,422,053.32 | 43.72 | 203.45 |
39 | 206 | 5131.00 | 16,017.18 | 25.00 | 27,0662,939.47 | 6,739,5851.40 | 4,153,113.86 | 5.63 | 21.06 |
40 | 207 | 12,118.75 | 24,615.79 | 25.00 | 96,280,044.07 | 107,625,167.55 | 16,949,153.91 | 48.30 | 216.11 |
41 | 208 | 11,804.20 | 24,294.23 | 25.00 | 269,950,225.63 | 119,440,111.97 | 2,787,853.15 | 115.65 | 306.66 |
42 | 210 | 11,447.46 | 23,924.32 | 25.00 | 104,065,841.43 | 36,829,042.20 | 2,340,925.31 | 16.49 | 47.43 |
43 | 212 | 11,961.64 | 24,455.72 | 25.00 | 106,369,623.21 | 42,245,577.97 | 1,018,791.88 | 42.61 | 94.97 |
44 | 215 | 11,991.77 | 24,486.50 | 25.00 | 66,700,810.22 | 24,018,749.41 | 933,111.81 | 24.81 | 59.16 |
45 | 216 | 12,085.19 | 24,581.69 | 25.00 | 362,677,887.22 | 138,785,829.64 | 5,021,232.05 | 46.89 | 82.42 |
46 | 217 | 11,784.99 | 24,274.46 | 25.00 | 94,860,489.83 | 17,154,689.59 | 701,815.80 | 8.90 | 49.78 |
47 | 218 | 11,958.21 | 24,452.21 | 25.00 | 37,837,370.54 | 30,026,022.74 | 4,136,522.46 | 17.15 | 19.85 |
48 | 221 | 10,512.87 | 22,926.92 | 25.00 | 207,156,730.48 | 81,348,724.36 | 7,651,819.08 | 4.67 | 42.02 |
49 | 223 | 12,330.41 | 24,829.83 | 25.00 | 183,506,191.13 | 131,455,320.56 | 9,108,699.74 | 10.01 | 33.86 |
50 | 228 | 11,425.65 | 23,901.51 | 25.00 | 69,949,148.24 | 74,046,092.55 | 17,641,543.05 | 2.14 | 49.97 |
51 | 229 | 11,908.11 | 24,400.94 | 25.00 | 31,379,859.47 | 9,101,412.95 | 625,441.94 | 12.35 | 72.08 |
52 | 230 | 12,020.01 | 24,515.31 | 25.00 | 169,127,576.69 | 109,130,880.26 | 3,450,642.37 | 32.95 | 68.72 |
53 | 231 | 11,620.40 | 24,104.36 | 25.00 | 67,646,135.00 | 51,610,074.71 | 1,916,992.26 | 19.21 | 24.55 |
54 | 301 | 11,901.77 | 24,394.44 | 25.00 | 256,918,118.87 | 163,469,058.38 | 24,856,516.12 | 4.27 | 63.45 |
55 | 302 | 11,945.39 | 24,439.10 | 25.00 | 45,985,400.39 | 32174097.58 | 5,627,706.27 | 35.70 | 378.21 |
56 | 303 | 0.00 | 0.00 | 25.00 | 972,415,710.79 | 376,235,897.35 | 34,496,751.03 | 1.64 | 6.74 |
57 | 304 | 1013.49 | 7118.61 | 25.00 | 535,466,948.17 | 537,093,162.81 | 7,738,110.66 | 0.79 | 42.99 |
58 | 305 | 8929.37 | 21,129.80 | 25.00 | 97,888,691.14 | 40,405,188.77 | 4,046,026.67 | 1.56 | 13.03 |
59 | 306 | 12,221.03 | 24,719.46 | 25.00 | 415,940,724.96 | 208,860,920.37 | 4,663,956.29 | 10.47 | 13.31 |
60 | 307 | 10,905.86 | 23,351.51 | 25.00 | 342,005,289.96 | 133,897,528.56 | 13,097,126.64 | 2.24 | 20.24 |
61 | 308 | 12,317.71 | 24,817.04 | 25.00 | 178,951,800.79 | 161,445,509.44 | 4,576,161.02 | 7.70 | 26.96 |
62 | 309 | 12,146.86 | 24,644.33 | 25.00 | 157,193,469.10 | 142,670,827.10 | 1,607,304.42 | 18.33 | 51.32 |
63 | 310 | 12,077.60 | 24,573.97 | 25.00 | 69,936,085.33 | 28,438,522.86 | 1,563,523.28 | 10.89 | 23.56 |
64 | 311 | 9518.03 | 21,815.17 | 25.00 | 210,591,209.52 | 65,949,168.25 | 5,054,707.48 | 1.00 | 10.62 |
65 | 312 | 12,062.54 | 24,558.64 | 25.00 | 100,328,996.67 | 45,649,786.64 | 1,224,148.69 | 36.45 | 35.21 |
66 | 313 | 10,683.96 | 23,112.72 | 25.00 | 93,889,156.42 | 53,843,664.72 | 6,506,430.79 | 15.12 | 39.61 |
Appendix D
No | Corridor i | Planned Area of Corridor (km2) | Total Area of Agricultural Land in Corridor (km2) | The Proportion of Agricultural Land in the Corridor | Conversion Area of Agricultural Land (km2) | Optimal Conversion Ratio of Agricultural Land | Conversion Degree |
---|---|---|---|---|---|---|---|
1 | 2 | 113.15 | 15.65 | 14% | 7.31 | 47% | Moderate |
2 | 5 | 69.64 | 22.16 | 32% | 11.96 | 54% | Moderate |
3 | 12 | 185.23 | 99.21 | 54% | 7.91 | 8% | Low |
4 | 15 | 64.03 | 9.80 | 15% | 9.80 | 100% | High |
5 | 16 | 98.11 | 24.01 | 24% | 10.97 | 46% | Moderate |
6 | 23 | 234.11 | 56.42 | 24% | 10.94 | 19% | Low |
7 | 26 | 17.21 | 13.55 | 79% | 10.48 | 77% | High |
8 | 29 | 61.45 | 33.75 | 55% | 16.86 | 50% | Moderate |
9 | 37 | 27.22 | 13.27 | 49% | 13.27 | 100% | High |
10 | 38 | 1.67 | 0.31 | 19% | 0.31 | 100% | High |
11 | 43 | 3.76 | 2.26 | 60% | 2.26 | 100% | High |
12 | 45 | 5.32 | 2.79 | 52% | 2.79 | 100% | High |
13 | 48 | 0.32 | 0.19 | 60% | 0.19 | 100% | High |
14 | 50 | 394.54 | 176.25 | 45% | 8.58 | 5% | Low |
15 | 58 | 9.68 | 5.07 | 52% | 5.07 | 100% | High |
16 | 62 | 94.21 | 18.02 | 19% | 8.83 | 49% | Moderate |
17 | 67 | 118.64 | 64.84 | 55% | 18.79 | 29% | Low |
18 | 68 | 57.53 | 40.96 | 71% | 13.51 | 33% | Low |
19 | 70 | 17.45 | 6.05 | 35% | 3.33 | 55% | Moderate |
20 | 72 | 64.75 | 42.84 | 66% | 9.62 | 22% | Low |
21 | 73 | 55.30 | 11.48 | 21% | 10.56 | 92% | High |
22 | 75 | 60.69 | 12.87 | 21% | 11.49 | 89% | High |
23 | 76 | 3.02 | 1.99 | 66% | 1.99 | 100% | High |
24 | 78 | 14.56 | 7.75 | 53% | 7.75 | 100% | High |
25 | 79 | 34.61 | 10.74 | 31% | 10.74 | 100% | High |
26 | 82 | 45.63 | 12.05 | 26% | 12.05 | 100% | High |
27 | 87 | 24.72 | 17.89 | 72% | 14.55 | 81% | High |
28 | 88 | 96.16 | 35.73 | 37% | 7.15 | 20% | Low |
29 | 103 | 62.31 | 32.74 | 53% | 8.29 | 25% | Low |
30 | 104 | 0.18 | 0.15 | 82% | 0.15 | 102% | High |
31 | 107 | 36.03 | 25.23 | 70% | 10.60 | 42% | Moderate |
32 | 108 | 121.09 | 63.95 | 53% | 11.56 | 18% | Low |
33 | 200 | 270.68 | 44.82 | 17% | 8.06 | 18% | Low |
34 | 201 | 153.54 | 31.48 | 21% | 4.62 | 15% | Low |
35 | 202 | 16.86 | 15.12 | 90% | 8.11 | 54% | Moderate |
36 | 203 | 39.60 | 14.74 | 37% | 8.14 | 55% | Moderate |
37 | 204 | 10.04 | 8.92 | 89% | 8.54 | 96% | High |
38 | 205 | 68.29 | 43.72 | 64% | 15.19 | 35% | Low |
39 | 206 | 9.39 | 5.63 | 60% | 5.63 | 100% | High |
40 | 207 | 29.43 | 12.94 | 44% | 2.66 | 21% | Low |
41 | 208 | 226.14 | 115.65 | 51% | 4.18 | 4% | Low |
42 | 210 | 58.14 | 16.49 | 28% | 6.44 | 39% | Moderate |
43 | 212 | 86.48 | 42.61 | 49% | 5.24 | 12% | Low |
44 | 215 | 37.48 | 24.81 | 66% | 6.47 | 26% | Low |
45 | 216 | 95.22 | 46.89 | 49% | 4.20 | 9% | Low |
46 | 217 | 13.32 | 8.90 | 67% | 6.30 | 71% | Moderate |
47 | 218 | 16.23 | 15.56 | 96% | 10.46 | 67% | Moderate |
48 | 221 | 6.91 | 4.67 | 68% | 4.67 | 100% | High |
49 | 223 | 2.17 | 0.48 | 22% | 0.30 | 63% | Moderate |
50 | 228 | 8.47 | 2.14 | 25% | 2.14 | 100% | High |
51 | 229 | 15.14 | 12.35 | 82% | 8.60 | 70% | Moderate |
52 | 230 | 27.52 | 17.50 | 64% | 2.81 | 16% | Low |
53 | 231 | 32.61 | 19.21 | 59% | 8.30 | 43% | Moderate |
54 | 301 | 5.44 | 4.27 | 78% | 4.27 | 100% | High |
55 | 302 | 67.83 | 35.70 | 53% | 10.78 | 30% | Low |
56 | 303 | 4.00 | 1.64 | 41% | 0.00 | 0% | Low |
57 | 304 | 2.00 | 0.79 | 39% | 0.79 | 100% | High |
58 | 305 | 3.21 | 1.56 | 49% | 1.56 | 100% | High |
59 | 306 | 2.38 | 0.86 | 36% | 0.50 | 58% | Moderate |
60 | 307 | 1.94 | 0.09 | 5% | 0.09 | 100% | High |
61 | 308 | 0.97 | 0.16 | 16% | 0.11 | 71% | Moderate |
62 | 309 | 16.30 | 0.41 | 3% | 0.10 | 24% | Low |
63 | 310 | 15.76 | 10.89 | 69% | 9.24 | 85% | High |
64 | 311 | 1.51 | 1.00 | 66% | 1.00 | 100% | High |
65 | 312 | 50.13 | 36.45 | 73% | 6.29 | 17% | Low |
66 | 215 | 37.48 | 24.81 | 66% | 6.47 | 26% | Low |
Appendix E
Ecological Corridor Area | Total Area of Agricultural Land in Corridor | Optimal Conversion Ratio of Agricultural Land | Optimal Conversion Area of Agricultural Land | ||
---|---|---|---|---|---|
Ecological corridor area | Pearson’s correlation | 1 | 0.886 ** | −0.612 ** | 0.325 ** |
Significance (two sides) | 0.000 | 0.000 | 0.008 | ||
N | 66 | 66 | 66 | 66 | |
Total area of agricultural land in corridor | Pearson’s correlation | 0.886 ** | 1 | −0.644 ** | 0.362 ** |
Significance (two sides) | 0.000 | 0.000 | 0.003 | ||
N | 66 | 66 | 66 | 66 | |
Optimal conversion ratio of agricultural land | Pearson’s correlation | −0.612 ** | −0.644 ** | 1 | −0.181 |
Significance (two sides) | 0.000 | 0.000 | 0.148 | ||
N | 66 | 66 | 66 | 66 | |
Optimal conversion area of agricultural land | Pearson correlation | 0.325 ** | 0.362 ** | −0.181 | 1 |
Significance (two sides) | 0.008 | 0.003 | 0.148 | ||
N | 66 | 66 | 66 | 66 |
Appendix F
No | Corridor i | Planned Area of Corridor (km2) | Total Area of Constructed Land in Corridor(km2) | The Proportion of Constructed Land in the Corridor | Conversion Area of Constructed Land (km2) | Optimal Conversion Ratio of Constructed Land | Conversion Degree |
---|---|---|---|---|---|---|---|
1 | 2 | 113.15 | 6.35 | 6% | 6.35 | 100% | High |
2 | 5 | 69.64 | 8.28 | 12% | 2.08 | 25% | Low |
3 | 12 | 185.23 | 35.17 | 19% | 1.71 | 5% | Low |
4 | 15 | 64.03 | 0.90 | 1% | 0.90 | 100% | High |
5 | 16 | 98.11 | 2.49 | 3% | 2.49 | 100% | High |
6 | 23 | 234.11 | 3.75 | 2% | 3.75 | 100% | High |
7 | 26 | 17.21 | 1.53 | 9% | 1.53 | 100% | High |
8 | 29 | 61.45 | 1.16 | 2% | 1.16 | 100% | High |
9 | 37 | 27.22 | 2.64 | 10% | 2.64 | 100% | High |
10 | 38 | 1.67 | 0.24 | 14% | 0.24 | 100% | High |
11 | 43 | 3.76 | 0.49 | 13% | 0.49 | 100% | High |
12 | 45 | 5.32 | 0.45 | 9% | 0.45 | 100% | High |
13 | 48 | 0.32 | 0.03 | 10% | 0.03 | 99% | High |
14 | 50 | 394.54 | 100.97 | 26% | 1.72 | 2% | Low |
15 | 58 | 9.68 | 2.09 | 22% | 2.09 | 100% | High |
16 | 62 | 94.21 | 2.18 | 2% | 2.18 | 100% | High |
17 | 67 | 118.64 | 21.34 | 18% | 0.00 | 0% | Low |
18 | 68 | 57.53 | 15.78 | 27% | 0.46 | 3% | Low |
19 | 70 | 17.45 | 7.49 | 43% | 0.00 | 0% | Low |
20 | 72 | 64.75 | 14.11 | 22% | 1.00 | 7% | Low |
21 | 73 | 55.30 | 4.66 | 8% | 4.66 | 100% | High |
22 | 75 | 60.69 | 3.30 | 5% | 3.30 | 100% | High |
23 | 76 | 3.02 | 0.55 | 18% | 0.55 | 100% | High |
24 | 78 | 14.56 | 0.82 | 6% | 0.82 | 100% | High |
25 | 79 | 34.61 | 4.36 | 13% | 4.36 | 100% | High |
26 | 82 | 45.63 | 2.88 | 6% | 2.88 | 100% | High |
27 | 87 | 24.72 | 1.22 | 5% | 1.22 | 100% | High |
28 | 88 | 96.16 | 14.79 | 15% | 3.57 | 24% | Low |
29 | 103 | 62.31 | 6.24 | 10% | 5.69 | 91% | High |
30 | 104 | 0.18 | 0.00 | 3% | 0.00 | 96% | High |
31 | 107 | 36.03 | 7.58 | 21% | 1.43 | 19% | Low |
32 | 108 | 121.09 | 20.37 | 17% | 0.71 | 3% | Low |
33 | 200 | 270.68 | 54.71 | 20% | 3.24 | 6% | Low |
34 | 201 | 153.54 | 34.77 | 23% | 4.90 | 14% | Low |
35 | 202 | 16.86 | 5.05 | 30% | 2.95 | 58% | Moderate |
36 | 203 | 39.60 | 25.53 | 64% | 2.99 | 12% | Low |
37 | 204 | 10.04 | 8.71 | 87% | 1.28 | 15% | Low |
38 | 205 | 68.29 | 20.93 | 31% | 0.74 | 4% | Low |
39 | 206 | 9.39 | 2.38 | 25% | 2.38 | 100% | High |
40 | 207 | 29.43 | 23.40 | 80% | 1.28 | 5% | Low |
41 | 208 | 226.14 | 30.98 | 14% | 3.60 | 12% | Low |
42 | 210 | 58.14 | 4.74 | 8% | 3.68 | 77% | Moderate |
43 | 212 | 86.48 | 9.52 | 11% | 4.72 | 50% | Moderate |
44 | 215 | 37.48 | 5.95 | 16% | 4.79 | 81% | Moderate |
45 | 216 | 95.22 | 8.25 | 9% | 3.09 | 37% | Low |
46 | 217 | 13.32 | 10.51 | 79% | 10.51 | 100% | High |
47 | 218 | 16.23 | 2.23 | 14% | 2.23 | 100% | High |
48 | 221 | 6.91 | 4.52 | 65% | 3.33 | 74% | Moderate |
49 | 223 | 2.17 | 0.88 | 41% | 0.52 | 59% | Moderate |
50 | 228 | 8.47 | 4.99 | 59% | 3.60 | 72% | Moderate |
51 | 229 | 15.14 | 7.83 | 52% | 5.78 | 74% | Moderate |
52 | 230 | 27.52 | 6.88 | 25% | 2.89 | 42% | Moderate |
53 | 231 | 32.61 | 2.48 | 8% | 2.48 | 100% | High |
54 | 301 | 5.44 | 5.08 | 93% | 1.71 | 34% | Low |
55 | 302 | 67.83 | 38.32 | 56% | 2.07 | 5% | Low |
56 | 303 | 4.00 | 0.90 | 22% | 0.90 | 100% | High |
57 | 304 | 2.00 | 0.84 | 42% | 0.84 | 100% | High |
58 | 305 | 3.21 | 1.48 | 46% | 1.48 | 100% | High |
59 | 306 | 2.38 | 1.34 | 56% | 1.34 | 100% | High |
60 | 307 | 1.94 | 1.72 | 89% | 1.72 | 100% | High |
61 | 308 | 0.97 | 0.78 | 80% | 0.67 | 87% | High |
62 | 309 | 16.30 | 6.08 | 37% | 3.87 | 64% | Low |
63 | 310 | 15.76 | 2.36 | 15% | 2.36 | 100% | High |
64 | 311 | 1.51 | 1.13 | 75% | 1.13 | 100% | High |
65 | 312 | 50.13 | 3.52 | 7% | 3.52 | 100% | High |
66 | 215 | 37.48 | 5.95 | 16% | 4.79 | 81% | Moderate |
Appendix G
Ecological Corridor Area | Total Area of Constructed Land in Corridor | Optimal Conversion Ratio Of Constructed Land | Optimal Conversion Area Of Constructed Land | ||
---|---|---|---|---|---|
Ecological corridor area | Pearson’s correlation | 1 | 0.813 ** | 0.167 | −0.462 ** |
Significance (two sides) | 0.000 | 0.184 | 0.000 | ||
N | 66 | 66 | 66 | 66 | |
Total area of constructed land in corridor | Pearson’s correlation | 0.813 ** | 1 | 0.068 | −0.668 ** |
Significance (two sides) | 0.000 | 0.592 | 0.000 | ||
N | 66 | 66 | 66 | 66 | |
Optimal conversion ratio of constructed land | Pearson’s correlation | 0.167 | 0.068 | 1 | 0.125 |
Significance (two sides) | 0.184 | 0.592 | 0.322 | ||
N | 66 | 66 | 66 | 66 | |
Optimal conversion area of constructed land | Pearson’s correlation | −0.462 ** | −0.668 ** | 0.125 | 1 |
Significance (two sides) | 0.000 | 0.000 | 0.322 | ||
N | 66 | 66 | 66 | 66 |
References
- Huang, X.; Ye, Y.; Zhao, X.; Guo, X.; Ding, H. Identification and stability analysis of critical ecological land: Case study of a hilly county in southern China. Ecol. Indic. 2022, 141, 109091. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, X.J.; Su, H.L.; Lou, Y. Identification and security pattern of ecological land in Pingdingshan newly developed area. Acta Ecol. Sin. 2015, 35, 2003–2012. [Google Scholar]
- Li, D.; Xu, E.; Zhang, H. Influence of ecological land change on wind erosion prevention service in arid area of northwest China from 1990 to 2015. Ecol. Indic. 2020, 117, 106686. [Google Scholar] [CrossRef]
- Jalkanen, J.; Toivonen, T.; Moilanen, A. Identification of ecological networks for land-use planning with spatial conservation prioritization. Landsc. Ecol. 2020, 35, 353–371. [Google Scholar] [CrossRef]
- Sun, R.; Tian, Y.; Mao, Y.; Li, W. Impact of Watershed Ecological Restoration on The Value of Ecosystem Services: A Case of The Ling River Basin in China. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef]
- Shen, J.; Peng, Z.; Wang, Y. From GI, UGI to UAGI: Ecosystem service types and indicators of green infrastructure in response to ecological risks and human needs in global metropolitan areas. Cities 2023, 134, 104176. [Google Scholar] [CrossRef]
- Wang, M. The origin of the term “ecological environment (eco-environment)” in Chinese and its connotation. Acta Ecol. Sin. 2003, 23, 1910–1914. [Google Scholar]
- Chen, Z.; Lin, J.; Huang, J. Linking ecosystem service flow to water-related ecological security pattern: A methodological approach applied to a coastal province of China. J. Environ. Manag. 2023, 345, 118725. [Google Scholar] [CrossRef]
- Li, F.; Ye, Y.; Song, B.; Wang, R. Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China. Ecol. Model. 2014, 318, 194–203. [Google Scholar] [CrossRef]
- Liang, J.; He, X.; Zeng, G.; Zhong, M.; Gao, X.; Li, X.; Li, X.; Wu, H.; Feng, C.; Xing, W.; et al. Integrating priority areas and ecological corridors into national network for conservation planning in China. Sci. Total Environ. 2018, 626, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Shuai, N.; Hu, Y.; Gao, M.; Guo, Z.; Bai, Y. Construction and optimization of ecological networks in karst regions based on multi-scale nesting: A case study in Guangxi Hechi, China. Ecol. Inform. 2022, 74, 101963. [Google Scholar] [CrossRef]
- Beier, P.; Majka, D.; Spencer, W. Forks in the Road: Choices in Procedures for Designing Wildland Linkages. Conserv. Biol. J. Soc. Conserv. Biol. 2008, 22, 836–851. [Google Scholar] [CrossRef] [PubMed]
- Noss, R.; Harris, L. Nodes, networks, and MUMs: Preserving diversity at all scales. Environ. Manag. 1986, 10, 299–309. [Google Scholar] [CrossRef]
- Dong, J.; Peng, J.; Liu, Y.; Qiu, S.; Han, Y. Integrating spatial continuous wavelet transform and kernel density estimation to identify ecological corridors in megacities. Landsc. Urban Plan. 2020, 199, 103815. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, H.; Liu, Y. Urban ecological corridors construction: A review. Acta Ecol. Sin. 2017, 37, 23–30. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, L.; Zhong, Q.; Zhang, Q.; Ji, Y.; Song, P.; Wang, Q. An optimized evaluation method of an urban ecological network: The case of the Minhang District of Shanghai. Urban For. Urban Green. 2021, 62, 127158. [Google Scholar] [CrossRef]
- Zhou, X.N.; Yu, K.J.; Huang, Z.F. Perspectives on greenway development. Acta Ecol. Sin. 2006, 26, 3108–3116. [Google Scholar]
- Wei, Z.; Xu, Z.; Dong, B.; Xu, H.; Lu, Z.; Liu, X. Habitat suitability evaluation and ecological corridor construction of wintering cranes in Poyang Lake. Ecol. Eng. 2023, 189, 106894. [Google Scholar] [CrossRef]
- Dai, L.; Liu, Y.; Luo, X. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. 2020, 754, 141868. [Google Scholar] [CrossRef]
- Wei, Q.; Halike, A.; Yao, K.; Chen, L.; Balati, M. Construction and optimization of ecological security pattern in Ebinur Lake Basin based on MSPA-MCR models. Ecol. Indic. 2022, 138, 108857. [Google Scholar] [CrossRef]
- Chen, X.; Kang, B.; Li, M.; Du, Z.; Zhang, L.; Li, H. Identification of priority areas for territorial ecological conservation and restoration based on ecological networks: A case study of Tianjin City, China. Ecol. Indic. 2023, 146, 109809. [Google Scholar] [CrossRef]
- Zhou, G.; Huan, Y.; Wang, L.; Lan, Y.; Liang, T.; Shi, B.; Zhang, Q. Linking ecosystem services and circuit theory to identify priority conservation and restoration areas from an ecological network perspective. Sci. Total Environ. 2023, 873, 162261. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.N.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Lumia, G.; Praticò, S.; Di Fazio, S.; Cushman, S.; Modica, G. Combined use of urban Atlas and Corine land cover datasets for the implementation of an ecological network using graph theory within a multi-species approach. Ecol. Indic. 2023, 148, 110150. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, W.; Peng, Z.; Wang, Y. Improving landscape ecological network connectivity in urbanizing areas from dual dimensions of structure and function. Ecol. Model. 2023, 482, 110380. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Z.; Zhong, Q.; Zhang, Q.; Zhang, L.; Zhang, R.; Yi, Y.; Zhang, G.; Li, X.; Liu, J. Delimitation of ecological corridors in a highly urbanizing region based on circuit theory and MSPA. Ecol. Indic. 2022, 142, 109258. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Wang, J. The Research on the Urban Ecological Corridor Planning—With Daixi in Huzhou, Zhejing Province as Example. Urban Dev. Stud. 2010, 17, 75–79. [Google Scholar]
- Zhao, H.; Jiang, X.; Gu, B.; Wang, K. Evaluation and Functional Zoning of the Ecological Environment in Urban Space—A Case Study of Taizhou, China. Sustainability 2022, 14, 6619. [Google Scholar] [CrossRef]
- Matthews, S.N. A new perspective on corridor design and implementation. Landsc. Ecol. 2008, 23, 497–498. [Google Scholar] [CrossRef]
- Mörtberg, U.; Wallentinus, H.-G. Red-listed forest bird species in an urban environment—Assessment of green space corridors. Landsc. Urban Plan. 2000, 50, 215–226. [Google Scholar] [CrossRef]
- Keten, A.; Eroglu, E.; Kaya, S.; Anderson, J.T. Bird diversity along a riparian corridor in a moderate urban landscape. Ecol. Indic. 2020, 118, 106751. [Google Scholar] [CrossRef]
- Xu, Z.; Dong, B.; Wang, C.; Gao, X.; Xu, H.; Wei, Z.; Lu, Z.; Liu, X. Construction of international important wetland White-headed crane ecological corridor in Chongming Dongtan, China. Ecol. Indic. 2023, 149, 110156. [Google Scholar] [CrossRef]
- Shen, J.; Wang, Y. An improved method for the identification and setting of ecological corridors in urbanized area. Urban Ecosyst. 2022, 26, 141–160. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Wu, W.; Chen, M.; Ou, M.H. Land-use pattern optimization under the scenario of construction land surface reduction in the Su-Xi-Chang region, from the perspective of Little Egret habitat network optimization. Acta Ecol. Sin. 2018, 38, 5141–5148. [Google Scholar]
- Vergnes, A.; Viol, I.L.; Clergeau, P. Green corridors in urban landscapes affect the arthropod communities of domestic gardens. Biol. Conserv. 2012, 145, 171–178. [Google Scholar] [CrossRef]
- Li, F.; Pan, B.; Wu, Y.; Shan, L. Application of game model for stakeholder management in construction of ecological corridors: A case study on Yangtze River Basin in China. Habitat Int. 2017, 63, 113–121. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Wu, W.; Liu, W.F.; Shen, L.B. Study on construction land reduction based on “Source-Corridor” ecological security pattern paradigm. Acta Ecol. Sin. 2020, 40, 8230–8238. [Google Scholar]
- Guan, D.; Jiang, Y.; Cheng, L. How can the landscape ecological security pattern be quantitatively optimized and effectively evaluated? An integrated analysis with the granularity inverse method and landscape indicators. Environ. Sci. Pollut. Res. 2022, 1, 27. [Google Scholar] [CrossRef]
- Li, P.; Cao, H.; Sun, W.; Chen, X. Quantitative evaluation of the rebuilding costs of ecological corridors in a highly urbanized city: The perspective of land use adjustment. Ecol. Indic. 2022, 141, 109130. [Google Scholar] [CrossRef]
- Ives, C.; Hose, G.; Nipperess, D.; Taylor, M. Environmental and landscape factors influencing ant and plant diversity in suburban riparian corridors. Landsc. Urban Plan. 2011, 103, 372–382. [Google Scholar] [CrossRef]
- Ye, Y.; Su, Y.; Zhang, H.O.; Liu, K.; Wu, Q. Construction of an ecological resistance surface model and its application in urban expansion simulations. J. Geogr. Sci. 2015, 25, 211–224. [Google Scholar] [CrossRef]
- Huang, C.; Hou, X.; Li, H. An improved minimum cumulative resistance model for risk assessment of agricultural non-point source pollution in the coastal zone. Environ. Pollut. 2022, 312, 120036. [Google Scholar] [CrossRef]
- Lian, H.; Lei, Q.; Zhang, X.; Haw, Y.; Wang, H.; Zhai, L.; Liu, H.; Chuan, H., Jr.; Ren, T.; Zhou, J. Effects of anthropogenic activities on long-term changes of nitrogen budget in a plain river network region: A case study in the Taihu Basin. Sci. Total Environ. 2018, 645, 1212–1220. [Google Scholar]
- Shen, J.; Wang, Y. Allocating and mapping ecosystem service demands with spatial flow from built-up areas to natural spaces. Sci. Total Environ. 2021, 798, 149330. [Google Scholar] [CrossRef]
- GB/T 21010-2017; Current Land Use Classification. The General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2017.
- Xu, X. Spatial distribution data set of terrestrial ecosystem service values in China. Resour. Environ. Sci. Data Regist. Publ. Syst. 2018. [Google Scholar] [CrossRef]
- Chen, J.Y.; Yin, H.; Kong, F.; Yao, G.P. The complex eco-network development around Taihu lake, China. Shengtai Xuebao/Acta Ecol. Sin. 2015, 35, 3113–3123. [Google Scholar] [CrossRef]
- Chen, C.; Wu, S.; Douglas, M.C.; Lü, M.Q.; Wen, Z.; Jiang, Y.; Chen, J. Effects of changing cost values on landscape connectivity simulation. Acta Ecol. Sin. 2015, 35, 7367–7376. [Google Scholar]
- Teng, M.; Zhou, Z.; Wang, P.; Wu, C.; Xu, Y. The function types of green corridor and the key issues in its planning based upon structure design and management. Acta Ecol. Sin. 2010, 30, 1604–1614. [Google Scholar]
- Zhu, Q.; Yu, K.-J.; Li, D.-H. The width of ecological corridor in landscape planning. Acta Ecol. Sin. 2005, 25, 2406–2412. [Google Scholar]
- Jia, B.; Wang, C.; Qiu, K. Development potential analysis of ecological land in Wuhan. Urban Environ. Urban Ecol. 2010, 23, 10–13. [Google Scholar]
- Zhou, Y.; Shi, T.-M.; Hu, Y.-M.; Gao, C.; Liu, M. Urban green space land suitability and its spatial distribution in Shenyang City of Northeast China. Chin. J. Ecol. 2011, 30, 1805–1812. [Google Scholar]
- Miao, Y.-H.; Zhang, Z.-M.; Zhang, S.-l. Evaluation Method of Rainwater Garden Construction Suitability Based on GIS. China Water Wastewater 2020, 36, 108–114. [Google Scholar]
- Margules, C.; Pressey, R. Systematic conservation planning. Nature 2000, 405, 243–253. [Google Scholar] [CrossRef]
- Baguette, M.; Blanchet, S.; Legrand, D.; Stevens, V.; Turlure, C. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. Camb. Philos. Soc. 2012, 88, 310–326. [Google Scholar] [CrossRef]
- Oh, K.; Lee, D.; Park, C. Urban Ecological Network Planning for Sustainable Landscape Management. J. Urban Technol. 2011, 18, 39–59. [Google Scholar] [CrossRef]
- Boitani, L.; Falcucci, A.; Maiorano, L.; Rondinini, C. Ecological Networks as Conceptual Frameworks or Operational Tools in Conservation. Conserv. Biol. J. Soc. Conserv. Biol. 2008, 21, 1414–1422. [Google Scholar] [CrossRef]
- Balmford, A.; Bruner, A.; Cooper, P. Economic Reasons for Conserving Wild Nature. Science 2002, 297, 950–953. [Google Scholar] [CrossRef]
- Bennett, A. Linkages in the Landscape: The Role of Corridors and Connectivity in Wildlife Conservation; IUCN: Gland, Switzerland; Cambridge, UK, 2003. [Google Scholar]
- Pino, J.; Marull, J. Ecological networks: Are they enough for connectivity conservation? A case study in the Barcelona Metropolitan Region (NE Spain). Land Use Policy 2012, 29, 684–690. [Google Scholar] [CrossRef]
- Foltête, J.-C. How ecological networks could benefit from landscape graphs: A response to the paper by Spartaco Gippoliti and Corrado Battisti. Land Use Policy Int. J. Cover. All Asp. Land Use 2019, 80, 391–394. [Google Scholar] [CrossRef]
- Searns, R.M. The evolution of greenways as an adaptive urban landscape form. Landsc. Urban Plan. 1995, 33, 65–80. [Google Scholar] [CrossRef]
- Vimal, R.; Mathevet, R.; Thompson, J. The changing landscape of ecological networks. J. Nat. Conserv. 2012, 20, 49–55. [Google Scholar] [CrossRef]
- Terry, A.; Ullrich, K.; Riecken, U. The Green Belt of Europe: From Vision to Reality; IUCN: Gland, Switzerland; Cambridge, UK, 2006. [Google Scholar]
- Jongman, R.H.G. Homogenisation and fragmentation of the European landscape: Ecological consequences and solutions. Landsc. Urban Plan. 2002, 58, 211–221. [Google Scholar] [CrossRef]
- Jin, Y.; Li, T.; Zhou, Y. Multi-scenario Optimization Simulation of Green Space System Layout Based on Chaos Theory—Taking Chongming as an Example. In Proceedings of the China Society of Landscape Architecture Annual Conference 2018, Guiyang, China, 20–22 August 2018. [Google Scholar]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University: Cambridge, UK, 1989. [Google Scholar]
- Nowak, D.; Dwyer, J.F. Understanding the benefits and costs of urban forest ecosystems. In Handbook of Urban and Community Forestry in the Northeast; Springer: Dordrecht, The Netherlands, 2007; pp. 11–25. [Google Scholar]
- Sarkar, C.; Webster, C.; Pryor, M.; Tang, D.; Melbourne, S.; Zhang, X.; Liu, J. Exploring associations between urban green, street design and walking: Results from the Greater London boroughs. Landsc. Urban Plan. 2015, 143, 112–125. [Google Scholar] [CrossRef]
- Laverne, R.J.; Winson-Geideman, K. The Influence of Trees and Landscaping on Rental Rates at Office Buildings. J. Arboric. 2003, 29, 281–290. [Google Scholar] [CrossRef]
- Tyteca, D.; Hermy, M.; Mahy, G.; Verheyen, K.; Haumont, F.; Born, C.-H.; Demez, L.; Giusto, A.; Endels, P.; Leduc, L.; et al. Feasibility Study of Ecological Networks: Ecological, Economic, Social and Legal Aspects; Belgian Science Policy: Brussels, Belgium, 2006.
- Zhao, M. Research on Urban Green Space Landscape Style Based on System Theory; Nanjing Forestry University: Nanjing, China, 2013. [Google Scholar]
- Su, K.; Yu, Q.; Yue, D.; Zhang, Q.; Yang, L.; Liu, Z.; Niu, T.; Sun, X. Simulation of a forest-grass ecological network in a typical desert oasis based on multiple scenes. Ecol. Model. 2019, 413, 108834. [Google Scholar] [CrossRef]
- Opdam, P.F.M.; Steingröver, E.G.; van Rooij, S.A.M. Ecological Networks: A Spatial Concept for Multi-Actor Planning of Sustainable Landscapes. Landsc. Urban Plan. 2006, 75, 322–332. [Google Scholar] [CrossRef]
Data | Source | Type | Usage |
66 ecological corridors and their widths | [34] | Shapefile Polygon | Used to provide the planning scope of each ecological corridor |
Spatial data on the demand levels for three ecosystem services (flood regulation, local climate regulation, and outdoor recreation) in the constructed lands of the study area | [46] | GRID 15 m × 15 m | Used to calculate the economic input cost R: to correct the value of ecological resistance of constructed lands |
Land use data (2015) | Beijing Digital View Technology Co., Ltd., Beijing, China (http://www.dview.com.cn/) (accessed on 20 July 2023) Geographical Information Monitoring Cloud Platform (http://www.dsac.cn/) (accessed on 20 July 2023) | GRID 15 m × 15 m | Used to calculate the agricultural land area x and constructed land area y within the planning scope of ecological corridor |
China’s population in grid transformation (2015) | Geographic Data Sharing Infrastructure, College of Urban and Environmental Science, Peking University (http://geodata.pku.edu.cn) (accessed on 20 July 2023) | GRID 1 km × 1 km | Used to calculate the social coordination cost S: total population and population density |
Spatial distribution dataset of ecosystem service values in terrestrial ecosystems in China (2015) | Resource and Environment Science and Data Center, https://www.resdc.cn/data.aspx?DATAID=258 (accessed on 20 July 2023) | GRID 1 km × 1 km | (1) Used to calculate the ecological benefit enhancement potential E: The improvement of multiple ecosystem service capacity of ecological corridor brought by the conversion of agricultural land to ecological land; (2) Used to calculate the economic input cost R: to modify the ecological resistance value of agricultural land |
Width Range | Number of UEC | Total Length (km) | Total Area (km2) | Location | Main Types of UECs |
12–30 m | 2 | 291.3 | 1.5 | Inner city | Existing urban riverside greenways in the planning |
30–60 m | 5 | 188.7 | 7.6 | Existing urban green corridors in the planning | |
60–100 m | 7 | 254.1 | 17.5 | Intertown | Natural water system corridors, intercity/interval corridors |
100–200 m | 4 | 154.9 | 23.4 | Suburban and rural areas | Natural water corridors, suburban and rural road corridors |
200–600 m | 13 | 396.8 | 135.0 | Natural water corridors | |
600–1200 m | 35 | 1532.5 | 1605.7 | Potential green corridors, large river corridors | |
Total | 66 | 2818.3 | 1790.6 | — | — |
Land Use Types | Land Use Number | Subclass | Values |
---|---|---|---|
Agricultural land | 1 | — | 250 |
Constructed land | 2 | Rural residential land | 1000 |
3 | Urban land | 2000 | |
Ecological patches | 4 | Forest, grassland, lake and pond, unused land | 1 |
River corridors | 5 | — | 20 |
Conversion Degree | Conversion Ratio Range | Optimal Conversion Area of Agricultural Land (km2) | Number of Corridors Involved | Conversion and Optimization Recommendations |
---|---|---|---|---|
Low | 0%~35% | 166.95 | 23 | Layout: select agricultural land in local key locations for conversion, such as agricultural land in corridors that interrupt the ecological spatial continuity or scattered and independent agricultural land for priority conversion |
Type: to be converted to the type of ecological land that predominates within the corridor or the type of ecological land that is in close proximity to the converted agricultural land | ||||
Moderate | 35%~77% | 127.16 | 17 | Layout: select agricultural land at the edge of the corridor, patches of agricultural land scattered inside the corridor, or agricultural land that is located in an ecological land that presents a stepping-stone layout for priority conversion |
Type: to be converted to the type of ecological land that aligns with the dominant ecological land or ecological stepping stones | ||||
High | 77%~100% | 151.38 | 26 | Layout: select agricultural land at the edge of the corridor or agricultural land that is within the narrower corridor and lacks an ecological base for priority conversion |
Type: to be converted to the type of ecological land that predominates within a corridor or is in close proximity to the converted agricultural land or to the ecological land type with a high capacity to provide multiple ecosystem services (e.g., forests) | ||||
Total | 445.49 | 66 | — |
Optimal Conversion Ratio of Agricultural Land | Optimal Conversion Ratio of Constructed Land | ||
---|---|---|---|
Optimal conversion ratio of agricultural land | Pearson’s correlation | 1 | 0.587 ** |
Significance (two sides) | 0.000 | ||
N | 66 | 66 | |
Optimal conversion ratio of constructed land | Pearson’s correlation | 0.587 ** | 1 |
Significance (two sides) | 0.000 | ||
N | 66 | 66 |
Conversion Degree | Conversion Ratio Range | Optimal Conversion Area of Constructed Land (km2) | Number of Corridors Involved | Conversion and Optimization Recommendations |
---|---|---|---|---|
Low | 0%~37% | 37.58 | 21 | Layout: Add green infrastructure on the basis of the urban constructed land located in the ecological corridor, and carry out the greening construction of the village bay in combination with the residence in the constructed land of rural settlements. Select the constructed lands that are most likely to block the flow of organisms or ecosystem services in the ecological corridor for priority conversion. |
Type: Construct green infrastructures such as the block park, road greening, and rain garden, as well as vertical three-dimensional greening such as roof greening, wall demolition, and greening. To be converted to the type of ecological land that dominates within the ecological corridor or the type of ecological land that is in close proximity to the converted constructed land. | ||||
Moderate | 37%~87% | 36.13 | 10 | Layout: Select small-scale constructed lands located within large-scale ecological lands, constructed lands most likely to hinder the flow of biological and ecosystem services, and constructed lands located in buffer zones on both sides of narrow river corridors that belong to small human settlements for priority conversion. Select constructed lands that are clustered or connected in ecological corridors and belong to medium or large urban areas for green infrastructure construction. |
Type: To be converted to the type of ecological land that dominates in the ecological corridor or is in close proximity to the converted constructed lands. Construct small-scale urban green infrastructures such as community green spaces, pocket parks, and rain gardens, as well as green planting, ecological slope protection, or green belts along rivers. | ||||
High | 87%~100% | 79.37 | 35 | Layout: Select scattered and small-scale constructed land located inside the large-scale ecological land in the ecological corridor for priority conversion, constructed lands in river corridors that belong to small-scale settlements, constructed lands located in an ecological corridor that belongs to a medium-sized urban area, and constructed lands located within a narrow river corridor that belongs to a large-scale urban area for priority conversion |
Type: To be converted to the type of ecological land that dominates in the ecological corridor or is in close proximity to the converted constructed land. Construct small-scale urban green infrastructures such as community green spaces, pocket parks, and rain gardens, increase planting along rivers, and build ecological slope protection or green belts along rivers. | ||||
Total | 153.08 | 66 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, J.; Wang, Y. Optimizing Landscape Structure of Hybrid Land Use in Ecological Corridors Based on Comprehensive Benefit Index in Metropolitan Area. Forests 2023, 14, 1714. https://doi.org/10.3390/f14091714
Shen J, Wang Y. Optimizing Landscape Structure of Hybrid Land Use in Ecological Corridors Based on Comprehensive Benefit Index in Metropolitan Area. Forests. 2023; 14(9):1714. https://doi.org/10.3390/f14091714
Chicago/Turabian StyleShen, Jiake, and Yuncai Wang. 2023. "Optimizing Landscape Structure of Hybrid Land Use in Ecological Corridors Based on Comprehensive Benefit Index in Metropolitan Area" Forests 14, no. 9: 1714. https://doi.org/10.3390/f14091714
APA StyleShen, J., & Wang, Y. (2023). Optimizing Landscape Structure of Hybrid Land Use in Ecological Corridors Based on Comprehensive Benefit Index in Metropolitan Area. Forests, 14(9), 1714. https://doi.org/10.3390/f14091714