Ecological Restoration in the Loess Plateau, China Necessitates Targeted Management Strategy: Evidence from the Beiluo River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methodology
2.3.1. Geo-Informatic Tupu Method
2.3.2. Statistics of the Changing Characteristics of Tupu
2.3.3. ESV Calculation
First-Level Service | Second-Level Service | 1 Forestland | 2 Shrub | 3 Grassland | 4 Cultivated Land | 5 Desert | 6 Water Area |
---|---|---|---|---|---|---|---|
Supplying services (SuyS) | Food production | 0.33 | 0.20 | 0.43 | 1.0 | 0.02 | 0.445 |
Raw material | 2.98 | 1.80 | 0.36 | 0.39 | 0.04 | 0.295 | |
Regulating services (RegS) | Gas regulation | 4.32 | 2.59 | 1.5 | 0.72 | 0.06 | 1.46 |
Climate regulation | 4.07 | 2.45 | 1.56 | 0.97 | 0.13 | 7.805 | |
Hydrological regulation | 4.09 | 3.90 | 1.52 | 0.77 | 0.07 | 16.105 | |
Waste treatment | 1.72 | 1.11 | 1.32 | 1.39 | 0.26 | 14.625 | |
Supporting services (SutS) | Soil formation and retention | 4.02 | 2.42 | 2.24 | 1.47 | 0.17 | 1.20 |
Biodiversity protection | 4.51 | 2.72 | 1.87 | 1.02 | 0.40 | 3.56 | |
Cultural services (CulS) | Recreation and culture | 2.08 | 3.44 | 0.87 | 0.17 | 0.24 | 4.565 |
Total | 28.12 | 20.64 | 11.67 | 7.90 | 1.39 | 50.06 |
2.3.4. Hot Spot and Spatial Auto Correlation Analysis of ESV Change
3. Results
3.1. Spatial and Temporal Evolution of Land-Use Types from 1975 to 2015
3.2. Analysis of Land-Use Change Tupu Process between 1975 and 2015
Land-Use Change Tupu Process between 1975 and 2015
3.3. Land-Use Change Tupu Patterns between 1975 and 2015
3.3.1. Prophase Transition Type
3.3.2. Middle Transition Type
3.3.3. Anaphase Transition Type
3.3.4. Repeated and Continuous Transition Types
3.4. The Influence of LUCC on ESV
3.4.1. Changes in ESV
3.4.2. Response of ESV to LUCC
3.4.3. Identifying the Hot and Cold Spots of Changes in ESV
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef]
- Harris, J.; Hobbs, R.; Higgs, E.; Aronson, J. Ecological Restoration and Global Climate Change. Restor. Ecol. 2006, 14, 170–172. [Google Scholar] [CrossRef]
- Nations, U. United Nations Decade on Ecosystem Restoration (2021~2030) [EB/OL]. Available online: https://undocs.org/A/RES/73/284 (accessed on 10 July 2023).
- Congress, I.W.C. The Marseille Manifesto [EB/OL]. Available online: https://www.iucncongress2020.org/programme/marseille-manifesto (accessed on 10 July 2023).
- Benayas, J.M.R.; Newton, A.C.; Diaz, A.; Bullock, J.M. Enhancement of Biodiversity and Ecosystem Services by Ecological Restoration: A Meta-Analysis. Sci. Rep. 2009, 325, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Fu, B.; Lu, N.; Zeng, Y.; Wu, B. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau. Sci. Rep. 2013, 3, 2846. [Google Scholar] [CrossRef] [PubMed]
- Carlucci, M.B.; Brancalion, P.H.S.; Rodrigues, R.R.; Loyola, R.; Cianciaruso, M.V. Functional traits and ecosystem services in ecological restoration. Restor. Ecol. 2020, 28, 1372–1383. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef]
- Kalogirou, S. Expert systems and GIS: An application of land suitability evaluation. Comput. Environ. Urban Syst. 2002, 26, 89–112. [Google Scholar] [CrossRef]
- Seppelt, R.; Lautenbach, S.; Volk, M. Identifying trade-offs between ecosystem services, land use, and biodiversity: A plea for combining scenario analysis and optimization on different spatial scales. Curr. Opin. Environ. Sustain. 2013, 5, 458–463. [Google Scholar] [CrossRef]
- Jia, X.; Fu, B.; Feng, X.; Hou, G.; Liu, Y.; Wang, X. The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in Northern Shaanxi, China. Ecol. Indic. 2014, 43, 103–113. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, G.; Fu, B.-J.; Gupta, H. Investigation of the relationship between precipitation extremes and sediment discharge production under extensive land cover change in the Chinese Loess Plateau. Geomorphology 2020, 361, 107176. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, H.; Li, F.; Chen, X. Research progress and prospect of soil and water conservation measures in the Loess Plateau. In Proceedings of the 5th International Conference on Traffic Engineering and Transportation System, ICTETS 2021, Chongqing, China, 24–26 September 2021; Academic Exchange Information Center (AEIC): Guangzhou, China, 2021. [Google Scholar]
- Ning, Z.; Gao, G.Y.; Fu, B.J. Changes in streamflow and sediment load in the catchments of the Loess Plateau, China: A review. Acta Ecol. Sin. 2020, 40, 2–9. [Google Scholar] [CrossRef]
- Lü, Y.; Fu, B.; Feng, X.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A Policy-Driven Large Scale Ecological Restoration: Quantifying Ecosystem Services Changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Bai, L.; Jiao, J.; Wang, N.; Li, J.; Xu, Q.; Yan, X.; Tang, B. Recognition of suitable small watersheds for check dam construction on the Loess Plateau. Land Degrad. Dev. 2023, 34, 4441–4455. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Fang, B.; Wang, Q.; Chen, Z. Impacts of ecological programs on land use and ecosystem services since the 1980s: A case-study of a typical catchment on the Loess Plateau, China. Land Degrad. Dev. 2022, 33, 3271–3282. [Google Scholar] [CrossRef]
- Liu, B.; Jia, X.; Shao, M.a.; Jia, Y. Assessing soil water recovery after converting planted shrubs and grass to natural grass in the northern Loess Plateau of China. Agric. Water Manag. 2022, 264, 0378–3774. [Google Scholar] [CrossRef]
- Yunlong, W.D.C. Evaluation of Ecological Restoration Effects in China: A Review. Prog. Geogr. 2009, 28, 622–628. [Google Scholar]
- Zexing, S.; Wenyi, L.; Jiamin, L. Evaluation of comprehensive benefit for ecological restoration in Shannxi Province. Acta Ecol. Sin. 2022, 42, 2718–2729. [Google Scholar]
- Niu, L.; Shao, Q.; Ning, J.; Yang, X.; Liu, S.; Liu, G.; Zhang, X.; Huang, H. Evaluation on the degree and potential of ecological restoration in Loess Plateau. J. Nat. Resour. 2023, 38, 779–794. [Google Scholar] [CrossRef]
- Fan, C.Z.; Liang, H.E.; Haijie, Y.I.; Xiaoming, X.U.; Zou, Y.; He, J.; Lu, D.; Zhang, X. Hydrologic and sediment responses to ecological restoration in different geomorphological and vegetation type areas in past 70 years. Acta Ecol. Sin. 2023, 43, 3247–3260. [Google Scholar]
- Wang, Z.Z.; Wang, H.; Feng, X.M.; Wang, X.; Zhang, L.; Fu, B. Evaluation index system of comprehensive benefits of ecological restoration in key ecologically vulnerable regions. Acta Ecol. Sin. 2019, 39, 7356–7366. [Google Scholar] [CrossRef]
- Zhao, Y.-H.; Zhang, L.-L.; Wang, X.-F. Assessment and spatiotemporal difference of ecosystem services value in Shaanxi Province. Minist. Educ. Key Lab. 2011, 22, 2662–2672. [Google Scholar]
- Tian, Q.L.; Xu, X.M.; Lyu, D.; Wang, H.J.; Lei, S.Y.; Yi, H.J.; He, J.; He, L.; Xue, F.; Zhou, Y.D. Relationship between geographical pattern of plant diversity and environmental factors in Beiluo River Basin. China Environ. Sci. 2021, 41, 4378–4387. [Google Scholar] [CrossRef]
- Ran, D.C. Water and Sediment Variation and Ecological Protection Measures in the Middle Reach of the Yellow River. Resour. Sci. 2006, 28, 93–101. [Google Scholar]
- Qin, W.; Zhu, Q.-K.; Liu, G.-Q.; Zhang, Y. Regulation effects of runoff and sediment of ecological conservation in the upper reaches of Beiluo River. Shuili Xuebao/J. Hydraul. Eng. 2010, 41, 1325–1332. [Google Scholar]
- Zhang, J.; Gao, G.; Li, Z.; Fu, B.; Gupta, H.V. Identification of climate variables dominating streamflow generation and quantification of streamflow decline in the Loess Plateau, China. Sci. Total Environ. 2020, 722, 137935. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Zhang, X.; Zhang, L.; Liu, B.; Yang, Q.; Yi, H.; He, L.; Zou, Y.; He, J.; Xu, X.; et al. Attribution recognition of streamflow and sediment changes based on the Budyko hypothesis and fractal theory: A case study in the Beiluo River Basin. Dili Xuebao/Acta Geogr. Sin. 2022, 77, 79–92. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, X.-P.; Yan, S.-J.; Zhao, W.-H. Topographical distribution characteristics of vegetation restoration in the Beiluo River Basin from 1995 to 2014. Dongbei Daxue Xuebao/J. Northeast. Univ. 2016, 37, 1598–1603. [Google Scholar] [CrossRef]
- Liu, C. Research Theory and Practice in Hydology and Water Resources; Science Press: Beijing, China, 2004; p. 716. [Google Scholar]
- Chen, N.; Ma, T.; Zhang, X. Responses of soil erosion processes to land cover changes in the Loess Plateau of China: A case study on the Beiluo River basin. Catena 2016, 136, 118–127. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Li, R.; Chen, L.; Lin, P. Did streamflow or suspended sediment concentration changes reduce sediment load in the middle reaches of the Yellow River? J. Hydrol. 2017, 546, 357–369. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Liu, J.Y.; Deng, X.Z.; Liu, M.L.; Zhang, S.W. Study on the spatial patterns of land-use change and analyses of driving forces in northeastern China during 1990–2000. Chin. Geogr. Sci. 2002, 12, 299–308. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Chen, P.F. Monthly NPP Dataset Covering China’s Terrestrial Ecosystems at North of 18° N (1985–2015). J. Glob. Chang. Data Discov. 2019, 3, 34–41. [Google Scholar] [CrossRef]
- Zhu, S.H.; Yan, Y.; Shao, H.; Li, C.F. The Responses of the Net Primary Productivity of the Dryland Ecosystems in Central Asia to the CO2 and Climate Changes during the Past 35 Years. J. Nat. Resour. 2017, 32, 1844–1856. [Google Scholar] [CrossRef]
- Donghai, L.; Bin, A.; Xia, L.; Qiusheng, W.; Xiaoguang, X. Influence of land-use changes on soil erosion based on geo-information Tupu theory in Zhujiang Delta. In Proceedings of the Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Monitoring and Assessment of Natural Resources and Environments, Guangzhou, China, 28–29 June 2008. [Google Scholar]
- Yu, H.; Li, J.; Zhang, C.; Yuan, X.; Huang, Y.; Liu, X. Analysis on spatial and temporal change of land use based on geo-information Tupu. Sci. Soil Water Conserv. 2022, 20, 109–117. [Google Scholar] [CrossRef]
- Wang, J.; Shao, J.; Li, Y. Geo-Spectrum Based Analysis of Crop and Forest Land Use Change in the Recent 20 Years in the Three Gorges Reservoir Area. J. Nat. Resour. 2015, 30, 235–247. [Google Scholar] [CrossRef]
- King, R.T. Wildlife and Man. NY Conserv. 1966, 20, 8–11. [Google Scholar]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.U.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Vihervaara, P.; Kumpula, T.; Tanskanen, A.; Burkhard, B. Ecosystem services–A tool for sustainable management of human–environment systems. Case study Finnish Forest Lapland. Ecol. Complex. 2010, 7, 410–420. [Google Scholar] [CrossRef]
- Zeng, C.; Li, Y.; Duan, X.; Xu, Y. Assessment and Driving Force Analysis of Ecosystem Service 2022.04.014Value in the Urban Agglomeration Along the Middle Reaches of the Yangtze River. Res. Soil Water Conserv. 2022, 29, 362–371. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics: Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, S.; Luo, Z.; Chai, B.; Wang, W.; Nie, K. Land Use Change and Its Ecosystem Service Value in Zunyi City. Saf. Environ. Eng. 2023, 30, 252–260. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the loess plateau of china. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Liu, C.; Jia, X.; Ren, L.; Duan, G.; Shao, M.a. A preliminary investigation of water storage in check-dams across China’s Loess Plateau using electrical resistivity tomography. Hydrol. Process. 2023, 37, 14826. [Google Scholar] [CrossRef]
- Dong, H.; Song, Y.; Chen, L.; Liu, H.; Fu, X.; Xie, M. Soil erosion and human activities over the last 60 years revealed by magnetism, particle size and minerals of check dams sediments on the Chinese Loess Plateau. Environ. Earth Sci. 2022, 81, 162. [Google Scholar] [CrossRef]
- Li, Z.S.; Yang, L.; Wang, G.L.; Hou, J.; Xin, Z.; Liu, G.; Fu, B. The management of soil and water conservation in the Loess Plateau of China: Present situations, problems, and counter-solutions. Acta Ecol. Sin. 2019, 39, 7398–7409. [Google Scholar] [CrossRef]
- Gao, P.; Lei, T. Dynamic process simulation model for soil erosion of small-scale watershed system. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2010, 26, 45–50. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. Circular of the National Forestry and Grassland Administration on issuing the Technical regulations on the Design of the Operation of grain for green and the measures for Archives Management of grain for green. Natl. Land Resour. Inf. 2020, 40–45, 47. [Google Scholar] [CrossRef]
- Yang, K.; Liu, G.; Wu, F.; Sun, B. Hydrological and environmental responses to comprehensive control of soil loss in a typical watershed of hill and gully region of the Loess Plateau. Acta Ecol. Sin. 2008, 28, 2042–2051. [Google Scholar]
- Yuan, H.D.; Xin, Z.B.H.J. Models of soil and water conservation in the loess hilly region of China. Acta Ecol. Sin. 2021, 41, 6398–6416. [Google Scholar] [CrossRef]
- Zhang, K.; Lv, Y.; Fu, B. Ecosystem service evolution in ecological restoration: Trend, process, and evaluation. Acta Ecol. Sin. 2016, 36, 6337–6344. [Google Scholar]
- Seppelt, R.; Dormann, C.F.; Eppink, F.V.; Lautenbach, S.; Schmidt, S. A quantitative review of ecosystem service studies: Approaches, shortcomings and the road ahead. J. Appl. Ecol. 2011, 48, 630–636. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Hao, M.; Lei, Y.; Liu, J.; Liu, E.; Sun, Y. Potentiality Analysis of Grrain Productivity and Its Security in Changwu County in the Loess Plateau Gully Region against the Background of “Grain for Green” Projection. J. Soil Water Conserv. 2011, 25, 231–235. [Google Scholar]
- Liu, X.; Qin, Z.; Li, F. Spatiotemporal changes of the sustainability of grain production system in the Loess Plateau based on Grain for Green Project. Trans. Chin. Soc. Agric. Eng. 2022, 38, 249–257. [Google Scholar]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing Ecosystem Services into Economic Decision-Making: Land Use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef]
- Schmidt, J.P.; Moore, R.; Alber, M. Integrating ecosystem services and local government finances into land use planning: A case study from coastal Georgia. Landsc. Urban Plan. 2014, 122, 56–67. [Google Scholar] [CrossRef]
- Chen, W.X.; Chi, G.Q.; Li, J.F. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [Google Scholar] [CrossRef]
- Gaodi, X.; Shuyan, C.; Chunxia, L.; Changshun, Z.; Yu, X. Current status and future trends for eco-compensation in China. J. Resour. Ecol. 2015, 6, 355–362. [Google Scholar] [CrossRef]
- Wang, W.; Guo, H.; Chuai, X.; Dai, C.; Lai, L.; Zhang, M. The impact of land use change on the temporospatial variations of ecosystems services value in China and an optimized land use solution. Environ. Sci. Policy 2014, 44, 62–72. [Google Scholar] [CrossRef]
- Yue, S.; Zhang, S.; Yan, Y. Impacts of Land Use Change on Ecosystem Services Value in the Northeast China Transect (NECT). Acta Geogr. Sin. 2007, 62, 879–886. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Zhang, S.; Song, K.; Duan, H. Estimates of loss in ecosystem service values of Songnen plain from 1980 to 2000. J. Geogr. Sci. 2005, 15, 80–86. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Wu, C.; Li, J.; Lu, Q.; Qi, X.; Zhang, M.; Zuo, T.; Lu, J. Land use and ecosystems services value changes and ecological land management in coastal Jiangsu, China. Habitat Int. 2016, 57, 164–174. [Google Scholar] [CrossRef]
- Kienast, F.; Bolliger, J.; Potschin, M.; De Groot, R.S.; Verburg, P.H.; Heller, I.; Wascher, D.; Haines-Young, R. Assessing Landscape Functions with Broad-Scale Environmental Data: Insights Gained from a Prototype Development for Europe. Environ. Manag. 2009, 44, 1099–1120. [Google Scholar] [CrossRef]
- Yi, H.; Güneralp, B.; Filippi, A.M.; Kreuter, U.P.; Güneralp, İ. Impacts of Land Change on Ecosystem Services in the San Antonio River Basin, Texas, from 1984 to 2010. Ecol. Econ. 2017, 135, 125–135. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. Part A Hum. Policy Dimens. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Long, H. Explanation of Land Use Transitions. China Land Sci. 2022, 36, 1–7. [Google Scholar]
Tupu Pattern | Definition | Examples | Meaning |
---|---|---|---|
Prophase transition type | Only one change took place between 1975 and 2000. | 12222, 22444 | Reflects the LUTs for the time scale. |
Middle transition type | Only changed between 2000 and 2010. | 22233, 5522 | |
Anaphase transition type | Only changed between 2010 and 2015. | 11112, 44443 | |
Repeated transition type | There have been two or more changes, involving only two types of land use. | 22112, 22121, 22122, 22212 | After at least two changes, the early land-use types reappeared in the later stage, highlighting the contradiction between the two land-use types. |
Continuous transition type | There have been more than two changes, involving three or more land-use types. | 11213, 11231, 14211, 14241 | The frequency of prominent change is high, and the type of change is diverse. |
Prophase Transition Type | Middle Transition Type | Anaphase Transition Type | Repeated Transition Type | Continuous Transition Type | |
---|---|---|---|---|---|
LHG region | 44333 (0.90%) | 44433 (23.51%) 33311 (2.21%) | 44443 (27.51%) 33332 (6.83%) 33331 (5.88%) 11113 (3.60%) 44442 (2.58%) 44441 (1.62%) | 33313 (5.75%) 33433 (2.04%) 44343 (1.03%) | 44413 (2.24%) 44431 (2.14%) 44432 (1.80%) 33312 (0.95%) |
LPG region | —— | 33311 (18.53%) 22211 (10.01%) 44433 (4.10%) 44422 (0.84%) | 44443 (10.13%) 33331 (7.23%) 44441 (5.90%) 11113 (3.19%) 33332 (2.37%) 22221 (2.02%) 44442 (1.84%) 11112 (1.27%) 44445 (0.97%) 66663 (0.82%) | 33313 (10.08%) 22212 (1.78%) | 33312 (5.50%) 22213 (2.79%) 44431 (1.10%) |
RM region | —— | 33311 (22.56%) 22211 (22.55%) 44433 (1.56%) | 11112 (5.96%) 11113 (4.86%) 44443 (4.36%) 44441 (2.39%) 33331 (1.94%) | 33313 (7.64%) 22212 (5.50%) | 33312 (9.00%) 22213 (2.61%) |
TP region | —— | 44433 (8.69%) 33311 (5.60%) 44455 (1.67%) 22211 (1.39%) | 44443 (29.98%) 44445 (9.25%) 44441 (5.01%) 11113 (4.72%) 33331 (3.76%) 66663 (1.79%) 44446 (1.08%) 33332 (0.88%) 33335 (0.88%) 44442 (0.74%) | 33313 (8.69%) 33433 (1.58%) 55455 (0.83%) 44343 (0.75%) 44344 (0.63%) | 33312 (1.46%) 44413 (0.69%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, J.; Zhang, J.; Wang, J.; Li, M.; Nie, S.; Qian, M. Ecological Restoration in the Loess Plateau, China Necessitates Targeted Management Strategy: Evidence from the Beiluo River Basin. Forests 2023, 14, 1753. https://doi.org/10.3390/f14091753
Xing J, Zhang J, Wang J, Li M, Nie S, Qian M. Ecological Restoration in the Loess Plateau, China Necessitates Targeted Management Strategy: Evidence from the Beiluo River Basin. Forests. 2023; 14(9):1753. https://doi.org/10.3390/f14091753
Chicago/Turabian StyleXing, Jiacheng, Jianjun Zhang, Jing Wang, Mingjun Li, Shitan Nie, and Mingjie Qian. 2023. "Ecological Restoration in the Loess Plateau, China Necessitates Targeted Management Strategy: Evidence from the Beiluo River Basin" Forests 14, no. 9: 1753. https://doi.org/10.3390/f14091753
APA StyleXing, J., Zhang, J., Wang, J., Li, M., Nie, S., & Qian, M. (2023). Ecological Restoration in the Loess Plateau, China Necessitates Targeted Management Strategy: Evidence from the Beiluo River Basin. Forests, 14(9), 1753. https://doi.org/10.3390/f14091753