Modeling Ecological Resilience of Alpine Forest under Climate Change in Western Sichuan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Region
2.2. Research Methodology
2.2.1. Climate Data
2.2.2. Introduction to the Model
2.2.3. Indicator Selection
2.2.4. Model Parameterization
2.2.5. Data Analysis
3. Results
3.1. Effects of Climate Change on Overall Forest Ecological Resilience
3.2. Climate Change’s Effects on Forests’ Ecological Resilience across Different Ecotones
3.3. Forest Ecological Resilience under Four Climate Scenarios: Spatial and Temporal Dynamics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; Gonzalez-Olabarria, J.R.; Lyver, P.O.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef]
- Mina, M.; Messier, C.; Duveneck, M.J.; Fortin, M.J.; Aquilue, N. Managing for the unexpected: Building resilient forest landscapes to cope with global change. Glob. Chang. Biol. 2022, 28, 4323–4341. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.G. Disturbance and landscape dynamics in a changing world. Ecology 2010, 91, 2833–2849. [Google Scholar] [CrossRef] [PubMed]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.S.; Running, S.W. Response to Comments on “Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009”. Science 2011, 333, 1093. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Andrews-Key, S.A.; Edwards, J.E.; Johnston, M.H.; Nelson, H.W.; Peterson, D.L.; Schmitt, K.M.; Swanston, C.W.; Williamson, T.B. Adapting forest management to climate change: The state of science and applications in Canada and the United States. For. Ecol. Manag. 2018, 421, 84–97. [Google Scholar] [CrossRef]
- Solomon, D.; Lehmann, J.; Kinyangi, J.; Amelung, W.; Lobe, I.; Pell, A.; Riha, S.; Ngoze, S.; Verchot, L.; Mbugua, D.; et al. Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems. Glob. Chang. Biol. 2007, 13, 511–530. [Google Scholar] [CrossRef]
- Gustafson, E.J.; Shvidenko, A.Z.; Scheller, R.M. Effectiveness of forest management strategies to mitigate effects of global change in south-central Siberia. Can. J. For. Res. 2011, 41, 1405–1421. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Cukor, J. European forests under global climate change: Review of tree growth processes, crises and management strategies. J. Environ. Manag. 2023, 332, 117353. [Google Scholar] [CrossRef]
- Sahoo, G.; Wani, A.M.; Prusty, M.; Ray, M. Effect of globalization and climate change on forest—A review. Mater. Today Proc. 2023, 80, 2060–2063. [Google Scholar] [CrossRef]
- Khaine, I.; Woo, S.Y. An overview of interrelationship between climate change and forests. For. Sci. Technol. 2015, 11, 11–18. [Google Scholar] [CrossRef]
- Xu, C.; Gertner, G.Z.; Scheller, R.M. Uncertainties in the response of a forest landscape to global climatic change. Glob. Chang. Biol. 2009, 15, 116–131. [Google Scholar] [CrossRef]
- Brand, F.S.; Jax, K. Focusing the meaning(s) of resilience: Resilience as a descriptive concept and a boundary object. Ecol. Soc. 2007, 12, 16. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Allen, C.R.; Angeler, D.G.; Cumming, G.S.; Folke, C.; Twidwell, D.; Uden, D.R. Quantifying spatial resilience. J. Appl. Ecol. 2016, 53, 625–635. [Google Scholar] [CrossRef]
- Gunderson, L.H. Ecological resilience—In theory and application. Annu. Rev. Ecol. Syst. 2000, 31, 425–439. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef]
- Forzieri, G.; Dakos, V.; McDowell, N.G.; Ramdane, A.; Cescatti, A. Emerging signals of declining forest resilience under climate change. Nature 2022, 608, 534–539. [Google Scholar] [CrossRef]
- Zhu, W.Z.; Sheng, Z.L.; Shu, S.M.; Wang, W.W.; Li, X. Comprehensive evaluation of ecological function restoration of the natural secondary forests in a subalpine region of western Sichuan. Chin. J. Appl. Environ. Biol. 2021, 27, 694–704. [Google Scholar]
- Ma, J.M.; Liu, S.R.; Shi, Z.M.; Zhang, Y.D.; Chen, B.Y. Quantitative analysis of different restoration stages during natural succession processes of subalpine dark brown coniferous forests in western Sichuan. Chin. J. Appl. Ecol. 2007, 8, 1695–1701. [Google Scholar]
- Coops, N.C.; Waring, R.H. Estimating the vulnerability of fifteen tree species under changing climate in Northwest North America. Ecol. Model. 2011, 222, 2119–2129. [Google Scholar] [CrossRef]
- Wu, Z.; Dai, E.; Wu, Z.; Lin, M. Assessing differences in the response of forest aboveground biomass and composition under climate change in subtropical forest transition zone. Sci. Total Environ. 2020, 706, 135746. [Google Scholar] [CrossRef] [PubMed]
- Duveneck, M.J.; Scheller, R.M. Measuring and managing resistance and resilience under climate change in northern Great Lake forests (USA). Landsc. Ecol. 2016, 31, 669–686. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Liu, S.R.; Zhao, C.M. Spatial pattern of sub-alpine forest restoration in west Sichuan. Chin. J. Appl. Ecol. 2005, 9, 1706–1710. [Google Scholar]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Virah-Sawmy, M.; Gillson, L.; Willis, K.J. How does spatial heterogeneity influence resilience to climatic changes? Ecological dynamics in southeast Madagascar. Ecol. Monogr. 2009, 79, 557–574. [Google Scholar] [CrossRef]
- Grimm, V.; Calabrese, J.M. What is resilience? A short introduction. In Viability and Resilience of Complex Systems: Concepts, Methods and Case Studies from Ecology and Society; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–13. [Google Scholar]
- Chertov, O.; Bhatti, J.S.; Komarov, A.; Mikhailov, A.; Bykhovets, S. Influence of climate change, fire and harvest on the carbon dynamics of black spruce in Central Canada. For. Ecol. Manag. 2009, 257, 941–950. [Google Scholar] [CrossRef]
- He, H.S.; Yang, J.; Shifley, S.R.; Thompson, F.R. Challenges of forest landscape modeling-Simulating large landscapes and validating results. Landsc. Urban Plan. 2011, 100, 400–402. [Google Scholar] [CrossRef]
- Xiao, J.; Liang, Y.; He, H.S.; Thompson, J.R.; Wang, W.J.; Fraser, J.S.; Wu, Z. The formulations of site-scale processes affect landscape-scale forest change predictions: A comparison between LANDIS PRO and LANDIS-II forest landscape models. Landsc. Ecol. 2017, 32, 1347–1363. [Google Scholar] [CrossRef]
- Duan, S.; He, H.S.; Spetich, M.A.; Wang, W.J.; Fraser, J.S.; Xu, W. Long-term effects of succession, climate change and insect disturbance on oak-pine forest composition in the U.S. Central Hardwood Region. Eur. J. For. Res. 2021, 141, 153–164. [Google Scholar] [CrossRef]
- Dai, E.F.; Zhou, H.; Wu, Z.; Wang, X.F.; Xi, W.M.; Zhu, J.J. Simulation study on the effects of climate change on aboveground biomass of plantation in southern China: Taking Moshao forest farm in Huitong Ecological Station as an example. Ying Yong Sheng Tai Xue Bao 2016, 27, 3059–3069. [Google Scholar]
- Scheller, R.M.; Mladenoff, D.J. A forest growth and biomass module for a landscape simulation model, LANDIS: Design, validation, and application. Ecol. Model. 2004, 180, 211–229. [Google Scholar] [CrossRef]
- Xu, C.G.; Guneralp, B.; Gertner, G.Z.; Scheller, R.M. Elasticity and loop analyses: Tools for understanding forest landscape response to climatic change in spatial dynamic models. Landsc. Ecol. 2010, 25, 855–871. [Google Scholar] [CrossRef]
- Scheller, R.M.; Domingo, J.B.; Sturtevant, B.R.; Williams, J.S.; Rudy, A.; Gustafson, E.J.; Mladenoff, D.J. Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution. Ecol. Model. 2007, 201, 409–419. [Google Scholar] [CrossRef]
- De Bruijn, A.; Gustafson, E.J.; Sturtevant, B.R.; Foster, J.R.; Miranda, B.R.; Lichti, N.I.; Jacobs, D.F. Toward more robust projections of forest landscape dynamics under novel environmental conditions: Embedding PnET within LANDIS-II. Ecol. Model. 2014, 287, 44–57. [Google Scholar] [CrossRef]
- Domke, G.M.; Oswalt, S.N.; Walters, B.F.; Morin, R.S. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl. Acad. Sci. USA 2020, 117, 24649–24651. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.M.; Zhan, J.Y.; Zhang, T. Review of ecosystem resilience research progress. Progress Geogr. 2012, 31, 303–314. [Google Scholar]
- Luo, X.; He, H.; Liang, Y.; Fraser, J.; Li, J. Mitigating the Effects of Climate Change through Harvesting and Planting in Boreal Forests of Northeastern China. Sustainability 2018, 10, 3531. [Google Scholar] [CrossRef]
- Vakili, M.; Shakeri, Z.; Motahari, S.; Farahani, M.; Robbins, Z.J.; Scheller, R.M. Resistance and Resilience of Hyrcanian Mixed Forests Under Natural and Anthropogenic Disturbances. Front. For. Glob. Chang. 2021, 4, 640451. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Spies, T.A. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol. Appl. 2014, 24, 2063–2077. [Google Scholar] [CrossRef] [PubMed]
- van Mantgem, P.J.; Stephenson, N.L.; Byrne, J.C.; Daniels, L.D.; Franklin, J.F.; Fule, P.Z.; Harmon, M.E.; Larson, A.J.; Smith, J.M.; Taylor, A.H.; et al. Widespread Increase of Tree Mortality Rates in the Western United States. Science 2009, 323, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zou, H.X.; Bachelot, B.; Dong, T.; Zhu, Z.; Liao, Y.; Plenković-Moraj, A.; Wu, Y. Predicting the responses of subalpine forest landscape dynamics to climate change on the eastern Tibetan Plateau. J. Glob. Chang. Biol. 2021, 27, 4352–4366. [Google Scholar] [CrossRef]
- Shi, J.Q.; Yu, E.X.; Xu, Y.L.; Zhang, M.F. Simulating the effects of forest landscaperestoration under climate change in southwest subalpine forests in China: A case study in the upper Zagunao watershed of theMinjiang River Basin. Chin. J. Appl. Environ. Biol. 2021, 27, 716–724. [Google Scholar]
- Yan, H.; Zhan, J.; Zhang, T. Resilience of forest ecosystems and its influencing factors. Procedia Environ. Sci. 2011, 10, 2201–2206. [Google Scholar] [CrossRef]
- Ding, Q.-F.; Wang, J.-B.; Qi, S.-H.; Ye, H.; Huang, M.; Xu, Y.-T.; Ying, T.-Y.; Tao, J. Spatial patterns of vegetation net primary productivity in Jiangxi Province of China in relation to climate factors. Chin. J. Ecol. 2013, 32, 726–732. [Google Scholar]
- Lin, Y.; Xiao, J.-T.; Kou, Y.-P.; Zu, J.-X.; Yu, X.-R.; Li, Y.-Y. Aboveground carbon sequestration rate in alpine forests on the eastern Tibetan Plateau: Impacts of future forest management options. J. Plant Ecol. 2023, 16, rtad001. [Google Scholar] [CrossRef]
- Olson, S.K.; Smithwick, E.A.; Lucash, M.S.; Scheller, R.M.; Nicholas, R.E.; Ruckert, K.L.; Caldwell, C.M. Landscape-scale forest reorganization following insect invasion and harvest under future climate change scenarios. Ecosystems 2021, 24, 1756–1774. [Google Scholar] [CrossRef]
- Luo, X.; He, S.H.; Liang, Y.; Wu, Z.W.; Huang, C.; Zhang, Q.L. Simulating the effects of fire disturbance for predicting aboveground biomass of major forest types in the Great Xing’an Mountains. Acta Ecol. Sin. 2016, 36, 1104–1114. [Google Scholar]
Scientific Name | Lng | Mat | Shd | EffD | MaxD |
---|---|---|---|---|---|
Fir (Abies fabri) | 300 | 60 | 4 | 50 | 150 |
Spruce (Picea asperata) | 300 | 60 | 4 | 50 | 150 |
Chinese hemlock (Tsuga chinensis) | 400 | 80 | 4 | 100 | 150 |
Huashan pine (Pinus armandii) | 200 | 35 | 2 | 30 | 100 |
Chinese pine (Pinus tabuliformis) | 150 | 35 | 2 | 30 | 100 |
Liaodong oak (Quercus wutaishanica Mayr) | 300 | 40 | 2 | 50 | 200 |
Brown oak (Quercus semicarpifolia) | 250 | 40 | 2 | 50 | 200 |
Cork oak (Quercus variabilis) | 200 | 20 | 3 | 50 | 300 |
Ring-cupped oak (Cyclobalanopsis glauca) | 250 | 20 | 2 | 50 | 200 |
Minjiang cypress (Cupressus chengiana) | 300 | 30 | 3 | 200 | 500 |
Locust (Sophora japonica) | 150 | 15 | 1 | 300 | 1500 |
Chinese toon (Toona sinensis) | 120 | 15 | 1 | 300 | 1000 |
Maple (Acer spp.) | 200 | 20 | 3 | 50 | 200 |
Birch (Betula spp.) | 150 | 15 | 1 | 200 | 1500 |
Aspen (Populus spp.) | 150 | 15 | 1 | 300 | 1500 |
Alder (Alnus cremastogyne) | 150 | 15 | 2 | 200 | 1000 |
Simulated Scenarios | EBF | MEDBF | MTDF | SCF | |
---|---|---|---|---|---|
S | SC | 0.156 | 0.148 | 0.536 | 0.695 |
RCP2.6 | |||||
RCP4.5 | |||||
RCP8.5 | |||||
M | SC | 0.748 | 0.817 | 0.338 | 0.059 |
RCP2.6 | |||||
RCP4.5 | |||||
RCP8.5 | |||||
L | SC | 0.596 | 0.583 | 0.359 | 0.636 |
RCP2.6 | |||||
RCP4.5 | |||||
RCP8.5 | 0.624 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Xiao, J.; Cong, N.; Yu, X.; Lin, Y.; Liu, T.; Qi, G.; Ren, P. Modeling Ecological Resilience of Alpine Forest under Climate Change in Western Sichuan. Forests 2023, 14, 1769. https://doi.org/10.3390/f14091769
Li Y, Xiao J, Cong N, Yu X, Lin Y, Liu T, Qi G, Ren P. Modeling Ecological Resilience of Alpine Forest under Climate Change in Western Sichuan. Forests. 2023; 14(9):1769. https://doi.org/10.3390/f14091769
Chicago/Turabian StyleLi, Yuanyuan, Jiangtao Xiao, Nan Cong, Xinran Yu, Yang Lin, Tao Liu, Gang Qi, and Ping Ren. 2023. "Modeling Ecological Resilience of Alpine Forest under Climate Change in Western Sichuan" Forests 14, no. 9: 1769. https://doi.org/10.3390/f14091769
APA StyleLi, Y., Xiao, J., Cong, N., Yu, X., Lin, Y., Liu, T., Qi, G., & Ren, P. (2023). Modeling Ecological Resilience of Alpine Forest under Climate Change in Western Sichuan. Forests, 14(9), 1769. https://doi.org/10.3390/f14091769