Genetic Uniqueness and Genetic Structure of Populations of Picea obovata Ledeb. and Larix sibirica Ledeb. in the Northern and Middle Urals
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Genetic Diversity and Genetic Uniqueness of P. obovata and L. sibirica Populations
3.2. Genetic Structure and Differentiation of Six Populations of P. obovata and Six Populations of L. sibirica
4. Discussion
4.1. Genetic Diversity and Genetic Originality of P. obovata and L. sibirica Populations
4.2. Genetic Structure and Differentiation of Six Populations of P. obovata and Six Populations of L. sibirica
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, J.; Li, J.; Wu, W.; Liu, J. Global forest fragmentation change from 2000 to 2020. Nat. Commun. 2023, 14, 3752. [Google Scholar] [CrossRef]
- Sethi, S.S.; Ewers, R.M.; Jones, N.S.; Sleutel, J.; Shabrani, A.; Zulkifli, N.; Picinali, L. Soundscapes predict species occurrence in tropical forests. Oikos 2021, 2022, e08525. [Google Scholar] [CrossRef]
- Petit, R.J.; Hampe, A. Some evolutionary consequences of being a tree. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 187–214. [Google Scholar] [CrossRef]
- Pereira, H.M.; Navarro, L.M.; Martins, I.S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 2012, 37, 25–50. [Google Scholar] [CrossRef]
- Almeida-Rocha, J.M.; Soares, L.; Andrade, E.R.; Gaiotto, F.A.; Cazetta, E. The impact of anthropogenic disturbances on the genetic diversity of terrestrial species: A global meta-analysis. Mol. Ecol. 2020, 29, 4812–4822. [Google Scholar] [CrossRef]
- Chuyko, V.; Klinov, M.; Kulikova, E.; Lobovikov, M. The Russian Federation Forest Sector Outlook Study to 2030; FAO: Rome, Italy, 2012; Available online: https://www.fao.org/3/i3020e/i3020e00.pdf (accessed on 1 June 2023).
- Deguilloux, M.F.; Pemonge, M.H.; Petit, R.J. Novel perspectives in wood certification and forensics: Dry wood as a source of DNA. Proc. R. Soc. Lond. B 2002, 269, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Popov, P.P. Structure and differentiation of spruce populations in the komi republic. Russ. J. Ecol. 2013, 44, 193–198. [Google Scholar] [CrossRef]
- Farjon, A. World Checklist and Bibliography of Conifers; Kew: Melbourne, Australia, 1998; Volume 3. [Google Scholar]
- Skrøppa, T.; Steffenrem, A. Genetic variation in phenology and growth among and within norway spruce populations from two altitudinal transects in mid-norway. Silva Fenn. 2019, 53, 10076. [Google Scholar] [CrossRef]
- Barhoumi, C.; Ali, A.A.; Peyron, O.; Dugerdil, L.; Borisova, O.; Golubeva, Y.; Subetto, D.; Kryshen, A.; Drobyshev, I.; Ryzhkova, N.; et al. Did long-term fire control the coniferous boreal forest composition of the northern ural region (komi republic, russia)? J. Biogeogr. 2020, 47, 2426–2441. [Google Scholar] [CrossRef]
- Podchong, S.; Schmidt-Vogt, D.; Honda, K. An improved approach for identifying suitable habitat of sambar deer (Cervus unicolor kerr) using ecological niche analysis and environmental categorization: Case study at phu-khieo wildlife sanctuary, thailand. Ecol. Model. 2009, 220, 2103–2114. [Google Scholar] [CrossRef]
- Orlova, L.; Gussarova, G.; Glazkova, E.; Egorov, A.; Potokin, A.; Ivanov, S. Systematics and distribution of spruce species in the north-west of russia. Dendrobiology 2020, 84, 12–29. [Google Scholar] [CrossRef]
- Tsuda, Y.; Chen, J.; Stocks, M.; Kallman, T.; Sonstebo, J.H.; Parducci, L.; Semerikov, V.; Sperisen, C.; Politov, D.; Ronkainen, T.; et al. The extent and meaning of hybridization and introgression between siberian spruce (Picea obovata) and norway spruce (picea abies): Cryptic refugia as stepping stones to the west? Mol. Ecol. 2016, 25, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.; Olsson, J.; Zhao, W.; Kroon, J.; Wennstrom, U.; Wang, X.R. Divergent patterns between phenotypic and genetic variation in scots pine. Plant Commun. 2021, 2, 100139. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Manzanedo, R.D.; Jiang, Y.; Ma, W.; Du, E.; Zhao, S.; Rademacher, T.; Dong, M.; Xu, H.; Kang, X.; et al. Reassessment of growth-climate relations indicates the potential for decline across eurasian boreal larch forests. Nat. Commun. 2023, 14, 3358. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, W.C. Around the world with larix: An introduction. In Ecology and Management of Larix Forests: A Look Ahead; Intermountain Research Station: Ogden, UT, USA, 1995. [Google Scholar]
- Brandt, J.P.; Flannigan, M.D.; Maynard, D.G.; Thompson, I.D.; Volney, W.J.A. An introduction to canada’s boreal zone: Ecosystem processes, health, sustainability, and environmental issues. Environ. Rev. 2013, 21, 207–226. [Google Scholar] [CrossRef]
- Dylis, N.V. Siberian larch. In Materials for Taxonomy, Geography and History; Izdatelstvo MOIP: Moscow, Russia, 1947; p. 137. [Google Scholar]
- Igoshina, K.N. Larch in the Urals: Materials on the History of Flora and Vegetation of the Ussr; Nauka: Leningrad, Russia, 1963. [Google Scholar]
- Putenikhin, V.P.; Martinsson, O. Present Distribution of Larix Sukaczewii Dyl; SLU, The Swedish University of Agricultural Sciences: Umea, Sweden, 1995. [Google Scholar]
- Betts, M.G.; Yang, Z.; Hadley, A.S.; Smith, A.C.; Rousseau, J.S.; Northrup, J.M.; Nocera, J.J.; Gorelick, N.; Gerber, B.D. Forest degradation drives widespread avian habitat and population declines. Nat. Ecol. Evol. 2022, 6, 709–719. [Google Scholar] [CrossRef]
- Kalendar, R.; Orbovic, V.; Egea-Cortines, M.; Song, G.Q. Editorial: Recent advances in plant genetic engineering and innovative applications. Front. Plant Sci. 2022, 13, 1045417. [Google Scholar] [CrossRef]
- Arvas, Y.E.; Marakli, S.; Kaya, Y.; Kalendar, R. The power of retrotransposons in high-throughput genotyping and sequencing. Front. Plant Sci. 2023, 14, 1174339. [Google Scholar] [CrossRef]
- Kalendar, R.; Hunter, C.; Orbovic, V. Editorial: Innovative applications of sequencing technologies in plant science. Front. Plant Sci. 2022, 13, 1058347. [Google Scholar] [CrossRef]
- Krutovskii, K.V.; Bergmann, F. Introgressive hybridization and phylogenetic relationships between norway, picea abies (L.) karst., and siberian, P. obovata ledeb., spruce species studied by isozyme loci. Heredity 1995, 74, 464–480. [Google Scholar] [CrossRef]
- Potokina, E.K.; Orlova, L.V.; Vishnevskaya, M.S.; Alekseeva, E.A.; Potokin, A.F.; Egorov, A.A. Genetic differentiation of spruce populations in northwest russia according to the results of microsatellite loci analysis. Russ. J. Genet. Appl. Res. 2013, 3, 352–360. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Larionova, A.Y.; Milyutin, L.I. Genetic polymorphism of siberian spruce (picea obovata ledeb.) in middle siberia. Russ. J. Genet. 2008, 44, 35–43. [Google Scholar] [CrossRef]
- Kopylova, T.A.; Orlova, L.V.; Egorov, A.A.; Potokina, E.K. Identification of picea abies, P. fennica, P. obovata (pinaceae) and their forms using molecular markers. Bot. J. 2012, 97, 1416–1423. [Google Scholar]
- Finkeldey, R.; Leinemann, L.; Gailing, O. Molecular genetic tools to infer the origin of forest plants and wood. Appl. Microbiol. Biotechnol. 2010, 85, 1251–1258. [Google Scholar] [CrossRef]
- Politov, D.V.; Belokon, M.M.; Belokon, Y.S.; Polyakova, T.A.; Shatokhina, A.V.; Mudrik, E.A.; Khanov, N.A.; Shestibratov, K.A. Microsatellite analysis of clonality and individual heterozygosity in natural populations of aspen populus tremula L.: Identification of highly heterozygous clone. Russ. J. Genet. 2016, 52, 636–639. [Google Scholar] [CrossRef]
- Tollefsrud, M.M.; Sonstebo, J.H.; Brochmann, C.; Johnsen, O.; Skroppa, T.; Vendramin, G.G. Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of north european picea abies. Heredity 2009, 102, 549–562. [Google Scholar] [CrossRef]
- Vasilyeva, Y.; Chertov, N.; Nechaeva, Y.; Sboeva, Y.; Pystogova, N.; Boronnikova, S.; Kalendar, R. Genetic structure, differentiation and originality of pinus sylvestris L. Populations in the east of the east european plain. Forests 2021, 12, 999. [Google Scholar] [CrossRef]
- Li, C.; Chai, B.; Wang, M. Population genetic structure of pinus tabulaeformis in shanxi plateau, china. Russ. J. Ecol. 2011, 39, 34–40. [Google Scholar] [CrossRef]
- Putenikhin, V.P.; Farukshina, G.G.; Shigapov, Z.K. Sukachev larch in the urals. In Variability and Population Genetic Structure; Nauka: Moscow, Russia, 2004. [Google Scholar]
- Semerikov, V.L.; Lascoux, M. Genetic relationship among eurasian and american larix species based on allozymes. Heredity 1999, 83 Pt 1, 62–70. [Google Scholar] [CrossRef]
- Semerikov, V.L.; Semerikova, S.A.; Polezhaeva, M.A. Nucleotide diversity and linkage disequilibrium of adaptive significant genes in larix (pinaceae). Russ. J. Genet. 2013, 49, 915–923. [Google Scholar] [CrossRef]
- Putenikhin, V.P.; Farukshina, G.G.; Shigapov, Z.K. Methods for maintaining genetic heterogeneity when creating artificial “populations” of forest-forming species. Conifers Boreal Zone 2007, 24, 272–278. [Google Scholar]
- Oreshkova, N.V.; Belokon, M.M.; Jamiyansuren, S. Genetic diversity, population structure, and differentiation of siberian larch, gmelin larch, and cajander larch on ssr-marker data. Russ. J. Genet. 2013, 49, 178–186. [Google Scholar] [CrossRef]
- Wagner, S.; Gerber, S.; Petit, R.J. Two highly informative dinucleotide ssr multiplexes for the conifer larix decidua (european larch). Mol. Ecol. Resour. 2012, 12, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Chertov, N.; Vasilyeva, Y.; Zhulanov, A.; Nechaeva, Y.; Boronnikova, S.; Kalendar, R. Genetic structure and geographical differentiation of larix sibirica ledeb. In the urals. Forests 2021, 12, 1401. [Google Scholar] [CrossRef]
- Vasilyeva, Y.S.; Sboeva, Y.V.; Boronnikova, S.V.; Chertov, N.V.; Beltyukova, N.N. Genetic diversity, genetic structure and differentiation of siberian larch populations in the urals. Turczaninowia 2020, 23, 67–82. [Google Scholar] [CrossRef]
- Arcade, A.; Anselin, F.; Rampant, P.F.; Lesage, M.C.; Pâques, L.E.; Prat, D. Application of aflp, rapd and issr markers to genetic mapping of european and japanese larch. Theor. Appl. Genet. 2000, 100, 299–307. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Liu, Q.; Dai, J. Abietic acid suppresses non-small-cell lung cancer cell growth via blocking ikkbeta/nf-kappab signaling. Onco Targets Ther. 2019, 12, 4825–4837. [Google Scholar] [CrossRef]
- Talevi, A.; Cravero, M.S.; Castro, E.A.; Bruno-Blanch, L.E. Discovery of anticonvulsant activity of abietic acid through application of linear discriminant analysis. Bioorg. Med. Chem. Lett. 2007, 17, 1684–1690. [Google Scholar] [CrossRef]
- Ito, Y.; Ito, T.; Yamashiro, K.; Mineshiba, F.; Hirai, K.; Omori, K.; Yamamoto, T.; Takashiba, S. Antimicrobial and antibiofilm effects of abietic acid on cariogenic streptococcus mutans. Odontology 2020, 108, 57–65. [Google Scholar] [CrossRef]
- Potokina, E.K.; Aleksandrova, T.G. Genetic singularity coefficients of common vetch vicia sativa l. Accessions determined with molecular markers. Russ. J. Genet. 2009, 44, 1309–1316. [Google Scholar] [CrossRef]
- Boronnikova, S.V. Molecular Genetic Analysis and Assessment of the State of Gene Pools of Resource Plant Species in Perm Region; Perm State University: Perm, Russia, 2013. [Google Scholar]
- Ovesnov, S.A.; Efimik, E.G.; Kozminykh, T.V.; Baranova, O.G.; Kamelin, R.V.; Kovtonyuk, N.K.; Yagontseva, T.A. Illustrated Guide to Plants of the Perm Region; Book World: Perm, Russia, 2007. [Google Scholar]
- Kalendar, R.; Boronnikova, S.; Seppanen, M. Isolation and purification of DNA from complicated biological samples. Methods Mol. Biol. 2021, 2222, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Kalendar, R.; Khassenov, B.; Ramankulov, Y.; Samuilova, O.; Ivanov, K.I. Fastpcr: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics 2017, 109, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Kalendar, R.; Schulman, A.H. Transposon-based tagging: Irap, remap, and ipbs. Methods Mol. Biol. 2014, 1115, 233–255. [Google Scholar] [CrossRef]
- Vasilyeva, Y.S.; Zhulanov, A.A.; Boronnikova, S.V.; Yanbaev, Y.A. Genetic structure of ural populations of larix sibirica ledeb. On the base of analysis of nucleotide polymorphism. Silvae Genet. 2020, 69, 20–28. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. Genalex 6.5: Genetic analysis in excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Nei, M.; Tajima, F.; Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. Ii. Gene frequency data. J. Mol. Evol. 1983, 19, 153–170. [Google Scholar] [CrossRef]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 1 June 2023).
- Fick, S.E.; Hijmans, R.J. Worldclim. Available online: https://www.worldclim.org/data/worldclim21.html (accessed on 1 June 2023).
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron 2001, 4, 1. Available online: https://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 1 June 2023).
- McInnes, L.; Healy, J.; Saul, N.; Großberger, L. Umap: Uniform manifold approximation and projection. J. Open Source Softw. 2018, 3, 861. [Google Scholar] [CrossRef]
- Shigapov, Z.H.; Shigapova, A.I.; Urazbakhtina, K.A. Intraspecific genetic diversity of siberian spruce in the southern urals and in the bashkir cis-urals. Bull. Orenb. State Uni. 2009, 6, 441–444. [Google Scholar]
- Lande, R. Genetics and demography in biological conservation. Science 1988, 241, 1455–1460. [Google Scholar] [CrossRef]
- Vucetich, J.A.; Waite, T.A. Spatial patterns of demography and genetic processes across the species′ range: Null hypotheses for landscape conservation genetics. Conserv. Genet. 2003, 4, 639–645. [Google Scholar] [CrossRef]
- Gramazio, P.; Plesa, I.M.; Truta, A.M.; Sestras, A.F.; Vilanova, S.; Plazas, M.; Vicente, O.; Boscaiu, M.; Prohens, J.; Sestras, R.E. Highly informative ssr genotyping reveals large genetic diversity and limited differentiation in european larch (larixdecidua) populations from romania. Turk. J. Agric. For. 2018, 42, 165–175. [Google Scholar] [CrossRef]
- Amyaga, E.; Nifontov, S. Selection of nuclear microsatellite loci for specific identification of larix gmélinii rupr. And comparison of genetic profiles of larix to solve agricultural problems. IOP Conf. Ser. Earth Environ. Sci. 2019, 316, 012016. [Google Scholar] [CrossRef]
Population a | Location | Number of Trees | Coordinates |
---|---|---|---|
Picea obovata L. | |||
Po_Gn | Perm Krai, Gainy’s forestry | 31 | N: 60.3411 E: 53.8403 |
Po_Ch | Perm Krai, Cherdyn’s forestry | 31 | N: 60.4335 E: 56.3076 |
Po_Kr | Perm Krai, Krasnovishersk’s forestry | 30 | N: 60.3839 E: 57.6145 |
Po_Br | Perm Krai, Berezniki’s forestry | 31 | N: 59.3463 E: 57.0734 |
Po_Kg | Perm Krai, Sivin’s forestry | 31 | N: 58.3546 E: 54.7026 |
Po_Os | Perm Krai, Kungur’s forestry | 31 | N: 57.3117 E: 55.9024 |
Larix sibirica Ledeb. | |||
Ls_Ih | Perm Krai, Vishersky Reserve | 30 | N: 61.1178 E: 59.1537 |
Ls_Tl | Perm Krai, Vishersky Reserve | 30 | N: 61.1130 E: 58.8899 |
Ls_Bn | Perm Krai, Cherdyn’s forestry | 30 | N: 60.5147 E: 55.9203 |
Ls_Kr | Perm Krai, Krasnovishersk’s forestry | 30 | N: 60.3264 E: 57.0931 |
Ls_Gn | Perm Krai, Gainy’s forestry | 30 | N: 60.1739 E: 53.6213 |
Ls_Kh | Sverdlovsk Region, Karpinsk’s forestry | 30 | N: 58.7824 E: 59.4068 |
ID | Sequence 5′-3′ | Tm (°C) * | GC (%) | Ta (°C) |
---|---|---|---|---|
CR-212 (CT)8TG | CTCTCTCTCTCTCTCTTG | 52.6 | 50.0 | 56 |
CR-215 (CA)8GT | CACACACACACACACAGT | 58.1 | 50.0 | 56 |
ISSR8 (GAG)6C | GAGGAGGAGGAGGAGGAGC | 64.3 | 68.4 | 56 |
M1 (AC)8CG | ACACACACACACACACCG | 61.0 | 55.6 | 56 |
M3 (AC)8CT | ACACACACACACACACCT | 59.5 | 50.0 | 56 |
X9 (ACC)6G | ACCACCACCACCACCACCG | 68.6 | 68.4 | 64 |
X10 (AGC)6C | AGCAGCAGCAGCAGCAGCC | 70.0 | 68.4 | 64 |
X11 (AGC)6G | AGCAGCAGCAGCAGCAGCG | 70.1 | 68.4 | 64 |
Populations | He | na | ne | I | R |
---|---|---|---|---|---|
Po_Kr | 0.146 (0.016) | 1.553 (0.499) | 1.225 (0.282) | 0.232 (0.023) | 2 |
Po_Ch | 0.178 (0.018) | 1.675 (0.470) | 1.295 (0.351) | 0.276 (0.025) | 4 |
Po_Gn | 0.144 (0.016) | 1.605 (0.491) | 1.227 (0.310) | 0.230 (0.023) | 2 |
Po_Br | 0.162 (0.017) | 1.605 (0.491) | 1.264 (0.333) | 0.251 (0.025) | 6 |
Po_Kg | 0.138 (0.017) | 1.500 (0.502) | 1.226 (0.326) | 0.214 (0.024) | 2 |
Po_Os | 0.108 (0.015) | 1.456 (0.500) | 1.169 (0.275) | 0.174 (0.022) | 3 |
Total | 0.146 (0.007) | 1.983 (0.132) | 1.344 (0.318) | 0.230 (0.010) | 19 |
Populations | He | na | ne | I | R |
---|---|---|---|---|---|
Ls_Ih | 0.202 (0.018) | 1.640 (0.482) | 1.341 (0.368) | 0.307 (0.026) | 0 |
Ls_Tl | 0.194 (0.019) | 1.558 (0.494) | 1.331 (0.375) | 0.292 (0.026) | 0 |
Ls_Bn | 0.225 (0.018) | 1.649 (0.479) | 1.381 (0.363) | 0.338 (0.026) | 0 |
Ls_Kr | 0.210 (0.017) | 1.649 (0.479) | 1.345 (0.341) | 0.321 (0.025) | 1 |
Ls_Gn | 0.243 (0.018) | 1.693 (0.463) | 1.414 (0.369) | 0.364 (0.026) | 1 |
Ls_Kh | 0.233 (0.015) | 1.690 (0.460) | 1.391 (0.361) | 0.352 (0.025) | 4 |
Total | 0.218 (0.007) | 1.921 (0.271) | 1.426 (0.311) | 0.329 (0.011) | 6 |
Primer ID | HT | HS | GST |
---|---|---|---|
M1 (AC)8CG | 0.224 (0.027) | 0.166 (0.016) | 0.260 |
CR-212 (CT)8TG | 0.212 (0.027) | 0.132 (0.007) | 0.375 |
CR-215 (CA)6GT | 0.233 (0.025) | 0.165 (0.015) | 0.291 |
X10 (AGC)6C | 0.181 (0.031) | 0.112 (0.011) | 0.381 |
X9 (ACC)6G | 0.232 (0.030) | 0.136 (0.014) | 0.413 |
Total | 0.218 (0.027) | 0.146 (0.013) | 0.331 |
Po_Kr | Po_Ch | Po_Gn | Po_Br | Po_Kg | Po_Os | |
---|---|---|---|---|---|---|
0.000 | 0.380 | 0.465 | 0.363 | 0.504 | 0.484 | Po_Kr |
0.163 | 0.000 | 0.293 | 0.306 | 0.334 | 0.454 | Po_Ch |
0.205 | 0.100 | 0.000 | 0.378 | 0.212 | 0.369 | Po_Gn |
0.155 | 0.124 | 0.151 | 0.000 | 0.425 | 0.434 | Po_Br |
0.217 | 0.109 | 0.052 | 0.167 | 0.000 | 0.443 | Po_Kg |
0.203 | 0.187 | 0.112 | 0.177 | 0.137 | 0.000 | Po_Os |
Primers | HT | HS | GST |
---|---|---|---|
M3 (AC)8CT | 0.260 (0.026) | 0.220 (0.021) | 0.155 |
X11 (AGC)6G | 0.278 (0.019) | 0.250 (0.016) | 0.101 |
CR-215 (CA)6GT | 0.219 (0.035) | 0.149 (0.018) | 0.320 |
X10 (AGC)6C | 0.282 (0.028) | 0.235 (0.024) | 0.167 |
ISSR8 (GAG)6C | 0.268 (0.026) | 0.197 (0.016) | 0.262 |
Total | 0.264 (0.025) | 0.218 (0.019) | 0.177 |
Ls_Tl | Ls_Ih | Ls_Bn | Ls_Kr | Ls_Gn | Ls_Kh | |
---|---|---|---|---|---|---|
0.000 | 0.079 | 0.285 | 0.258 | 0.276 | 0.151 | Ls_Tl |
0.035 | 0.000 | 0.261 | 0.240 | 0.258 | 0.158 | Ls_Ih |
0.148 | 0.139 | 0.000 | 0.041 | 0.116 | 0.257 | Ls_Bn |
0.127 | 0.122 | 0.028 | 0.000 | 0.062 | 0.220 | Ls_Kr |
0.149 | 0.143 | 0.065 | 0.038 | 0.000 | 0.224 | Ls_Gn |
0.071 | 0.079 | 0.154 | 0.124 | 0.136 | 0.000 | Ls_Kh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhulanov, A.; Chertov, N.; Nechaeva, Y.; Pechenkina, V.; Zhulanova, L.; Boronnikova, S.; Kalendar, R. Genetic Uniqueness and Genetic Structure of Populations of Picea obovata Ledeb. and Larix sibirica Ledeb. in the Northern and Middle Urals. Forests 2023, 14, 1822. https://doi.org/10.3390/f14091822
Zhulanov A, Chertov N, Nechaeva Y, Pechenkina V, Zhulanova L, Boronnikova S, Kalendar R. Genetic Uniqueness and Genetic Structure of Populations of Picea obovata Ledeb. and Larix sibirica Ledeb. in the Northern and Middle Urals. Forests. 2023; 14(9):1822. https://doi.org/10.3390/f14091822
Chicago/Turabian StyleZhulanov, Andrei, Nikita Chertov, Yulia Nechaeva, Viktoriia Pechenkina, Larisa Zhulanova, Svetlana Boronnikova, and Ruslan Kalendar. 2023. "Genetic Uniqueness and Genetic Structure of Populations of Picea obovata Ledeb. and Larix sibirica Ledeb. in the Northern and Middle Urals" Forests 14, no. 9: 1822. https://doi.org/10.3390/f14091822
APA StyleZhulanov, A., Chertov, N., Nechaeva, Y., Pechenkina, V., Zhulanova, L., Boronnikova, S., & Kalendar, R. (2023). Genetic Uniqueness and Genetic Structure of Populations of Picea obovata Ledeb. and Larix sibirica Ledeb. in the Northern and Middle Urals. Forests, 14(9), 1822. https://doi.org/10.3390/f14091822